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Abstract
Etiology of vestibular schwannoma (VS) is unknown. Viruses can infect and reside in neural tissues for decades, and new 
viruses with unknown tumorigenic potential have been discovered. The presence of herpesvirus, polyomavirus, parvovirus, 
and anellovirus DNA was analyzed by quantitative PCR in 46 formalin-fixed paraffin-embedded VS samples. Five samples 
were analyzed by targeted next-generation sequencing. Viral DNA was detected altogether in 24/46 (52%) tumor samples, 
mostly representing anelloviruses (46%). Our findings show frequent persistence of anelloviruses, considered normal virome, 
in VS. None of the other viruses showed an extensive presence, thereby suggesting insignificant role in VS.
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Introduction

Vestibular schwannoma (VS) arises from the eight cranial 
nerve (CNVIII) and can occur either sporadically or as a result 
of neurofibromatosis 2 (NF2) syndrome. The etiology of spo-
radic VS is unknown. Typical risk factors for malignancies, 
such as tobacco smoking and alcohol consumption, do not 
seem to play a significant role in this entity. The only identi-
fied risk factors are medical irradiation during early life and 
exposure to radiation hazards (Preston et al. 2002; Ron et al. 

1988; Schneider et al. 2008). Studies have shown possible 
links of sporadic VS to certain genes (De Vries et al. 2015); 
however, the trigger for a tumor-forming cascade is unknown. 
A possible microbial etiology has been studied less.

Viruses and other microbes are estimated to cause 15% of 
all cancers worldwide (Plummer et al. 2016). This subject 
is even more topical than ever before as the rapid evolution 
in virus research has brought attention to newly discovered 
viruses. The role of viral infections as an etiological factor 
in intracranial tumors has previously been proposed. The 
prevalence of cytomegalovirus (CMV) in glioblastoma was 
as much as 84% among 1653 tumors (Rahman et al. 2018). 
Merkel cell polyomavirus (MCPyV) has been found in sev-
eral head and neck tumors, including neurofibromas (1/3, 
33%) and schwannomas (2/12, 17%) (Tanio et al. 2015).

Given this background, and the potential exposure of the 
CNVIII to middle ear viruses and other microbes, it is intriguing 
to speculate on a potential viral etiology of VS. A few studies 
have been published regarding this topic. Bhimrao et al. (2015) 
investigated the prevalence of certain herpesviruses in tissue 
microarray samples of sporadic VS and neurofibromatosis-related 
schwannomas, but none were detected. Håvik et al. (2018) applied 
ViroChip microarray (n = 15 patients), RT-PCR for human endog-
enous retrovirus K (HERV-K) and herpes simplex virus-1 and -2 
(HSV-1, -2) RNA (n = 46), and whole genome sequencing (n = 2). 
HERV-K was detected, but other findings remained modest. The 
ViroChip used in the study was published 20 years ago.
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The DNA-virus families in focus in the present study 
(Herpesviridae, Parvoviridae, Polyomaviridae, Papillo-
maviridae, and Anelloviridae) comprehend oncogenic and 
cancer-associated viruses, as well as viruses with oncolytic 
abilities (Beral et al. 1990; Chang et al. 1994; Feng et al. 
2008; Gissmann et al. 1984; Kreuter et al. 2018; Nüesch 
et al. 2012; Syrjänen et al. 1983; Väisänen et al. 2019). 
Within the total of nine viruses of the human herpesvirus 
family, human herpesvirus 8 (HHV-8) causes Kaposi ‘s sar-
coma (Beral et al. 1990; Chang et al. 1994), and Epstein-
Barr virus (EBV) is strongly associated with, e.g., Burkitt’s 
lymphoma and nasopharyngeal carcinoma (Henle et al. 
1970). HSV-1 and -2 and varicella zoster virus (VZV), on 
the other hand, are neurotropic and widespread, but without 
clear association with malignancies.

Human polyomaviruses comprise a group of 15 viruses, the 
majority discovered during the last decade, and most with a 
high seroprevalence among humans. MCPyV causes Merkel 
cell carcinoma in humans; however, the association of poly-
omaviruses to other tumors is still unknown (Csoboz et al. 
2020; De-Thé et al. 1978; Feng et al. 2008). Among parvo-
viruses, many viruses have been discovered in the past two 
decades: human bocaviruses 1–4 (HBoV 1–4), parvovirus 4 
(Parv4), and the protoparvoviruses bufaviruses (BuV), cuta-
viruses (CuV), and tusaviruses (TuV; (Söderlund-Venermo 
2019). HBoV1 causes pediatric respiratory tract infections, 
whereas CuV has been associated with cutaneous T cell lym-
phoma (Kreuter et al. 2018; Phan et al. 2016; Qiu et al. 2017; 
Väisänen et al. 2019). However, the clinical roles of the other 
recently discovered viruses need further investigation.

Anelloviruses encompass a broad scale of viruses, includ-
ing the ubiquitous torque teno viruses (TTV). No causal asso-
ciation to any disease has been made; thereby, they are con-
sidered a part of the normal human virome.

The unknown etiology of VS, with abundant virus load 
in the anatomical proximity constituting a potential trigger, 
formed the motivation for the present study. Quantitative PCR 
(qPCR) is the gold standard for virus detection due to its high 
sensitivity and specificity, whereas next-generation sequenc-
ing (NGS) enables wider multiplex-screening and analysis 
of the virus sequence. We performed a retrospective cross-
sectional study to evaluate the prevalence of viral DNAs in VS 
by qPCRs and NGS, targeting many recently discovered virus 
entities not studied before.

Materials and methods

Ethics

A research ethics committee approval (HUS/31/07.03.2019) 
and an institutional research permission (HUS/332/2019) 
were obtained at the Helsinki University Hospital.

Patient characteristics and clinical specimens

The patients were treated at the Departments of Neurosur-
gery and Otorhinolaryngology – Head and Neck Surgery, 
Helsinki University Hospital, Helsinki, Finland, between 
2008 and 2018. Altogether 46 FFPE tumor samples from 
46 patients were collected from the Helsinki Biobank (per-
mission no. §73/15.05.2019, HUS/118/2019). The clinical 
information was recorded from hospital charts.

There were 30 females (65%) and 16 males (35%). The 
mean age at operation was 52.8 years (median 53.1, range 
32.3–80.9). Forty-four patients had sporadic tumors. One 
patient had bilateral VS suggestive of neurofibromatosis 2, 
and one patient had multiple meningiomas, although the 
genetic testing for neurofibromatosis was negative. Only 
six (13%) patients were known smokers, while the smok-
ing status was unknown for 26 (57%) patients. The alcohol 
use was not recorded for 85% of the patients. Three (7%) 
patients used immunomodulatory drugs, and two (4%) 
patients had diabetes. VS had an extracanalicular exten-
sion in 44 (96%) cases. Radiation therapy (RT) was given 
altogether to six (13%) patients, but preoperatively only 
to one (2%) patient.

The samples were collected from FFPE tissue blocks 
as 2-mm punch biopsies in a PCR-sterile manner from the 
site of the tumor tissue — one sample for the qPCR and 
another from a nearby location for NGS. All samples were 
collected in 1.5 ml microcentrifuge tubes and stored until 
DNA extraction.

DNA extraction

DNA was extracted using QIAamp DNA mini kit (Qiagen, 
Heiden, Germany) according to the manufacturer’s proto-
col, with slight modifications: paraffin removal was done 
twice and 40 µl of proteinase K was used. The DNA preps 
were eluted in 100 µl AE buffer and stored at − 20 °C.

Evaluation of DNA quality and human cell quantity 
was done by subjecting the samples to the reference gene 
RNase-P qPCR, as described earlier (Toppinen et  al. 
2015).

Virus DNA detection by qPCR

The viruses analyzed with qPCR are listed in Supplemen-
tal Table 1. For the nine human viruses of Herpesviridae, 
a three-tube multiplex qPCR assay (HSV-1, HSV-2, and 
VZV; HHV-6A, HHV-6B, and HHV-7; EBV, cytomegalo-
virus (CMV), and HHV-8) was applied to target each virus  
(Pyöriä et al. 2020). For three virus members of Polyoma-
viridae, BK polyomavirus (BKPyV), JCPyV, and MCPyV,  
the LT genes were detected by singleplex qPCR assays 
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(Dumoulin and Hirsch 2011; Goh et al. 2009). As for the 
members of Parvoviridae, parvovirus B19 (B19V) was 
detected and quantified with a pan-B19 qPCR, target-
ing the NS1 genes of all three genotypes (Toppinen et al. 
2015), whereas HBoV1-4 were detected by a multiplex 
qPCR, targeting the NS1 regions of all four bocaviruses 
(Kantola et al. 2010). CuV, BuV, and TuV were detected 
and quantified by a multiplex qPCR (Väisänen et al. 2019) 
targeting the NS1 region of BuV and VP2 regions of TuV 
and CuV. For TTV detection, the conserved untranslated 
region (UTR) was targeted by a multiplex qPCR, which 
detects most TTV types (Toppinen et al. 2020; Väisänen 
et al. 2022). All real-time qPCR assays were performed 
with AriaMx Realtime PCR System (Agilent Technolo-
gies, Santa Clara, CA).

Molecular biology grade water was included in all PCR 
reactions as non-template control. Ten-fold diluted plasmids 
 (101–106), containing each viral target amplicon, served as 
PCR standards and as positive controls. To prevent contam-
ination, the master mix components, tumor samples, and 
plasmids were each handled in separate rooms. Laminar 
hoods were used when preparing and handling the samples 
and plasmids.

Virus DNA detection by NGS

The viruses analyzed with targeted NGS are listed in Sup-
plemental Table 1. The DNA was mechanically fragmented 
with a Covaris E220 with a target length of 200 nt. Sub-
sequently, the libraries were prepared with the KAPA 
HyperPlus kit (Roche) using unique Dual Index Adapters 
(Roche). Targeted enrichment of the viral DNAs was per-
formed using a custom panel of biotinylated RNA-probes 
covering the full length of the viral genomes (Arbor Bio-
sciences) as described (Toppinen et al. 2020). Each sample 
was individually enriched via two rounds of hybridization, 
following the manufacturer recommendations for low input 
DNA (MyBaits v5 kit; Arbor Biosciences). The probes were 
100 bp in length and designed with 2 × tiling. Kapa Univer-
sal Blockers (Roche) were used to block unspecific binding 
to the adapters during hybridization.

During library preparation and viral enrichment, the 
libraries were amplified 3 × 13–25 cycles. The clean-up 
steps were performed with 0.8 × KAPA HyperPure Beads 
(Roche). The enriched libraries were quantified with the 
KAPA Library Quantification Kit (Roche) using Stratagene 
3005P qPCR System (Agilent) and pooled for sequencing 
on NovaSeq 6000 (S1, PE151 kit; Illumina).

NGS analysis

The data analysis was done with TRACESPipeLite, a 
streamlined version of TRACESPipe (Pratas et al. 2020). 

TRACESPipeLite is fully automatic and provides for each 
reconstructed viral genome, the consensus sequences, breadth 
and depth coverage, and the associated profiles, among other 
information and quality controls. The paired-end reads were 
trimmed and collapsed with AdapterRemoval, cutting ambig-
uous bases at the 5′/3′ termini with quality scores below or 
equal to two. Reads shorter than 20 bases were discarded. 
FALCON-meta (Pratas et al. 2018) was used to find the 
highest similar reference from the NCBI viral database. The 
reads were aligned with BWA (Li and Durbin 2010) using 
a seed length of 1000 and a maximum diff of 0.01. Read 
duplicates were removed with SAMtools (Li et al. 2009) and 
the consensus sequences reconstructed with BCFtools (Li 
2011). The coverage profiles were created with BEDtools 
(Quinlan 2014). When in low breadth coverage (< 15%), the 
individual reads were manually inspected and confirmed by 
BLAST. The pipeline is freely available, under MIT license, 
at https:// github. com/ virom elab/ TRACE SPipe Lite, along 
with the code (included in the TRACESPipeLite repository).

Results

Presence of virus DNA by qPCR

The viruses analyzed with qPCR are listed in Supplemental 
Table 1. Altogether, 26 viral DNA findings were made by 
qPCR in 24/46 (52%) tumors (Table 1). One tumor had three 
viral DNA findings, and two tumors had two viral findings 
each. The viral loads ranged between 9 and 121,000 copies 
per 1 million cells (cpm). TTV DNA was detected in alto-
gether 21/46 (46%) tumors, with viral loads of 1.38–8.91 ×  104, 
mean 1.08 ×  104 cpm. In 15/46 (33%) tumors, TTV PCR was 
positive in duplicate analysis. MCPyV was detected in 3/46 
(7%) tumors. One tumor was positive for EBV, one tumor for 
B19V, and one tumor for HHV-7 DNA. Duplicate analysis 
performed for all these six tumor samples tested negative, 
probably due to low virus loads (mean 44.8, median 39.3, 
range 8.75–89.3 cpm). Sixteen out of 21 viruses from our 
screen were not detected in any sample. The two patients with 
probable NF2 tested both positive for TTV but negative for 
all other viruses. The human RNaseP served as evaluation of 
DNA quality and human cell quantity and its qPCR results 
varied between  102 and  105 copies/μl among all samples with 
a mean of 4.4 ×  103.

Presence of virus DNA in NGS

The viruses analyzed with targeted NGS are listed in Sup-
plemental Table 1. Tumor samples from five patients, previ-
ously analyzed with qPCR, were chosen for targeted enrich-
ment and sequencing, four samples because of their viral 
DNA positivity (MCPyV, EBV, HHV-7) and one sample 

https://github.com/viromelab/TRACESPipeLite
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without any viral DNA by qPCR as a negative control. Also, 
one peripheral neural tissue sample was used as a control. 
Human endogenous retrovirus (HERV) served as an internal 
control, and all the six samples were positive for it. One 
tumor gave a single read for B19V DNA (one manually con-
firmed read). Apart from HERV and B19V, all the samples 
were DNA negative for all the other 40 tested viruses.

Discussion

This study is an up-to-date qPCR and NGS screening to 
detect both well-known and recently discovered viruses (her-
pesviruses, polyomaviruses, parvoviruses, and papillomavi-
ruses) in 46 VS. QPCR for 20 viruses of three virus families 
(herpesviruses, polyomaviruses, and parvoviruses; Supple-
mental Table 1) resulted in six positive virus DNA findings 
(MCPyV, EBV, B19V, HHV-7). MCPyV was detected in 
three (3/46, 6.5%) tumors, with approximately similar results 
of two in 12 schwannomas (17%) by Tanio et al (2015). A 
possible “hit-and-run” mechanism has been proposed for 
MCPyV (Prezioso et al. 2021), but in our study, we were 
unable to investigate such potential because of the lack of 
parallel lymph node samples. EBV, B19V, and HHV-7 were 
each detected once.

QPCR was supplemented with targeted NGS to both 
verify the findings, and to broaden the spectrum of 
screened viruses. Forty-one viruses of seven virus fam-
ilies (Supplemental Table 1) in five tumors, previously 
analyzed by qPCR, were investigated with targeted enrich-
ment and sequencing. Only B19V DNA was detected in 
one tumor sample.

In addition, wide-spread anelloviruses, namely, TTVs, 
were screened by qPCR. Their DNA was found in 21/46 
(46%) tumors. This was expected, since TTVs are consid-
ered normal flora (Arze et al. 2021). Given that TTV is 
actively replicating in healthy individuals and that its clini-
cal significance has not yet been determined, the presence 
in VS is insufficient proof of association, not to mention 
causality.

QPCR offers a solid, sensitive base for virus screening. 
NGS with targeted enrichment is also well justified in virus 
research. We used a panel that includes 90% of the DNA 
viral families and majority of viruses with a clinical signifi-
cance in humans (Supplemental Table 1). Whole genome 
sequencing has undeniably an even broader potential in the 
extent of screening, but its sensitivity for virus detection is 
low, and therefore, the approach with targeted viruses was 
preferred in this study. NGS overcomes the limitations of 
FFPE samples (low amount of DNA, DNA fragmentation, 
DNA deamination) that can potentially affect the perfor-
mance of PCR.

QPCR and NGS results were largely consistent with each 
other, in that only limited amounts of virus DNAs were 
found. This is in accordance with previous studies (Bhimrao 
et al. 2015; Havik et al. 2018). The more recently identified 
viruses searched for in our study (bocaviruses, bufavirus, 
cutavirus, tusavirus, polyomaviruses) were not studied in the 
previous reports. HERV was detected in all our sequenced 
samples and serves as an internal control rather than a poten-
tial etiological factor.

In this study, we were unable to repeat our original qPCR 
results with duplicate qPCR analysis or detect the same 
viruses with NGS. This might be due to low virus load in 
combination with a second freeze–thaw round needed for 
NGS with possible degraded DNA. In addition, although 
FFPE samples have previously been shown to be a useful 
source for virus screening (Jauhiainen et al. 2021), it is pos-
sible that with this tumor type, larger samples and fresh 
tumor material would be beneficial as they may increase 
the amount of intact DNA and improve its quality (Mielonen 
et al. 2022).

When searching for possible viral etiology for VS, 
one has to bear in mind that the mere presence of virus 
DNA in a tissue sample does not indicate a causative role 
in disease development, and neither does its absence. 
A possible “hit-and-run” phenomenon may be involved 
as the trigger (Ferreira et al. 2021), but this would war-
rant more advanced techniques, not yet available, to be 
investigated.

Table 1  Different virus types 
detected with qPCR in 46 
vestibular schwannoma samples

Viral DNA 
findings

Virus load (virus 
DNA/1000 000 
cells)

Herpesviridae Human herpesvirus 7 1 2.54 ×  101

Epstein –Barr Virus 1 8.75 ×  100

Polyomaviridae Merkel cell polyomavirus 3 Mean 6.87 ×  101

Parvoviridae Parvovirus B19 1 2.86 ×  101

Anelloviridae Torque teno virus 21 1.08 ×  104
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Conclusion

Based on the current and previous studies, it seems unlikely 
that herpesviruses, polyomaviruses, parvoviruses, and papil-
lomaviruses play a significant etiological role in VS. Thus, 
the etiology of VS remains to be studied further.

Supplementary Information The online version contains supplemen-
tary material available at https:// doi. org/ 10. 1007/ s13365- 023- 01112-8.
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