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Abstract
The emerging severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is causing global health crises. Children can be
infected, but are less likely to develop severe neurological abnormalities compared with adults. However, whether SARS-CoV-2
can directly cause neurological impairments in pediatric patients is not known. The possible evolutionary and molecular rela-
tionship between SARS-CoV-2 and non-segmented RNA viruses were examined with reference to neurological disorders in
pediatric patients. SARS-CoV-2 shares similar functional domains with neuroinvasive and neurotropic RNA viruses. The Spike
1 (S1) receptor binding domain and the cleavage sites at S1/S2 boundary are less conserved compared with the S2 among
coronaviruses.

Keywords Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) . Neuroinvasive and neurotrophic non-segmented
RNAviruses .Multiple sequence alignment . Genome . Phylogenetic tree . Conserved domain . Spike protein . Pediatric patients

Introduction

Viral infections of the respiratory tract are one of the leading
causes of morbidity and mortality in humans worldwide, es-
pecially in infants and children (Jartti et al. 2012). Respiratory
viruses are able to enter brain (neuroinvasion) and infect nerve
cells (neurotropism) in addition to causing respiratory diseases
(Desforges et al. 2014). Coronaviruses (CoVs) are one of the
most important respiratory viruses and contain a non-
segmented RNA sequence. CoVs are phylogenetically classi-
fied into four genera: α-, β-, γ-, and δ-CoVs. Some members
of CoVs such as severe acute respiratory syndrome coronavi-
rus (SARS-CoV) and human CoV strains 229E (HCoV-
229E), OC43 (HCoV-OC43), NL63 (HCoV-NL63), and
HKU1 (HCoV-HKU1) can predispose to neurological injury
(Bergmann et al. 2006; Morgello 2020). HCoV-OC43,
HCoV-HKU1, and HCoV-229E infections have especially

been shown to be associated with nervous system injury in
pediatric patients (Lau et al. 2006; Principi et al. 2010; Yeh
et al. 2004).

Much attention has been given recently to the novel SARS-
CoV-2 and its related coronavirus disease 2019 (COVID-19).
Neurological syndromes including abnormalities in smell and
taste, stroke, and acute necrotizing hemorrhagic encephalopa-
thy have been observed in SARS-CoV-2-infected patients
(Beyrouti et al. 2020; Poyiadji et al. 2020; Xydakis et al.
2020). Although these clinical findings suggest that SARS-
CoV-2 could have neuroinvasive and neurotropic potential,
whether SARS-CoV-2 plays a direct causative role remains
to be determined. Moreover, SARS-CoV-2-related neurolog-
ical abnormalities mostly occur in severe cases, in which
virus-induced immune system hyperactivity, the “cytokine
storm,” contributes to disease severity (Wu et al. 2020).
SARS-CoV-2 infection is less likely to be symptomatic or
result in severe disease in infants and children compared with
adult patients (Zimmermann and Curtis 2020). Furthermore,
whether SARS-CoV-2 can be detected in nervous system and
directly predispose to neurological abnormalities in infants
and children have not been reported up to April 2020.
Furthermore, very limited information is available to describe
the possible evolutionary and molecular relationships of
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SARS-CoV-2 with other neuroinvasive and neurotropic RNA
viruses that have the potential to result in infection in pediatric
patients.

The purpose of the present study was to compare phyloge-
netically the whole-genome sequences of SARS-CoV-2 and
non-segmented RNA viruses including CoVs and other virus-
es that have the potential to infect the nervous system of in-
fants and children with use of bioinformatics methodology.
The conserved domains (CDs) of SARS-CoV-2 and multiple
sequence alignment (msa) methods were used to compare
selected CDs that exist in both CoVs and members of other
RNA viral families. Finally, the surface spike (S) glycoprotein
and its protease cleavage sites were aligned among the CoVs
to investigate their potential contribution to neurovirulence.
The S protein of SARS-CoV-2 consists of two functional
domains: the receptor binding domain (RBD) of S1 protein
that binds to host cell receptor angiotensin-converting enzyme
2 (ACE2), and the S2 protein that mediates viral and mem-
brane fusion (Lan et al. 2020). The virus requires S protein
priming by cellular proteases, furin, and transmembrane serine
protease 2 (TMPRSS2) for entry and membrane fusion after
binding to the ACE2 (Hoffmann et al. 2018). Furin cleaves the
S protein at the S1/S2 boundary (Andersen et al. 2020),
whereas TMPRSS2 cleaves the S protein at the S1/S2 bound-
ary or within S2 subunit (Hoffmann et al. 2020; Lan et al.
2020).

Methods

The whole-genome sequences of 32 non-segmented RNA vi-
ruses including 10 CoVs (Table 1) were retrieved from
National Center for Biotechnology Information (NCBI,
Bethesda, MD, USA) for the purpose of phylogenetic analy-
sis, which was conducted with MEGAX (Penn State
University, PA, USA). Three major criteria were used for
selecting virus sequences for the phylogenetic analysis. The
viruses (1) have human as host, except murine hepatitis virus
strain JHM (MHV-JHM), which has mouse as host, but shows
a high degree of neuroinvasion and neurotropism (Bergmann
et al. 2006; Desforges et al. 2014); (2) have been reported to
be associated with neurological diseases in human, especially
in fetuses, neonates, or children if possible; and (3) have been
isolated from human (especially fetus, neonate, or children)
nervous system such as brain, cerebrospinal fluid (CSF), spi-
nal cord, and sensory organs if possible. Furthermore, because
the SARS-CoV-2-related multisystem inflammatory syn-
drome (MIS) was initially reported in children in Europe and
North America (DeBiasi et al. 2020; Riphagen et al. 2020;
Verdoni et al. 2020), an Italy variant (GenBank: MT077125)
and a USA variant (GenBank: MT325563) were added into
the present study alongside the original Wuhan variant
(SARS-CoV-2-Wuhan, GenBank: NC_045512). All genomic

sequences were aligned with the ClustalW algorithm and phy-
logenetic prediction inferred by the maximum likelihood
method and Tamura-Nei model (Kumar et al. 2018; Tamura
and Nei 1993) except for sequence identity analysis between
the three SARS-CoV-2 variants, which was detected by
Clustal Omega (https://www.ebi.ac.uk/Tools/msa/clustalo/).
The reliability of phylogenetic inference at each branch node
was estimated by the Bootstrap test with 1000 replications
(Felsenstein 1985). Bootstrap values greater than 80% were
considered statistically significant for grouping (Zhu et al.
2016). The trees were visualized by Dendroscope-3
(University of Tübingen, Baden-Württemberg, Germany)
(Huson and Scornavacca 2012). The searches of each geno-
mic open reading frame (ORF) and the CDs encoded byORFs
were performed through the ORF Finder and Conserved
Domain Database webservers (NCBI), respectively
(Marchler-Bauer et al. 2015). For the S protein sequence
alignment, CoVs that do not infect humans such as porcine
hemagglutinating encephalomyelitis virus (PHEV, GenBank:
KY419112), feline coronavirus (FCoV, GenBank:
DQ010921), and transmissible gastroenteritis virus (TGEV,
GenBank: KX900411) (Bergmann et al. 2006) were also an-
alyzed for the purpose of comparison. RStudio (RStudio, Inc.,
Boston, MA, USA) with msa package was used (Bodenhofer
et al. 2015) for multiple protein sequence alignment. The re-
sults were visualized by RStudio and LaTeX with TEXshade
package (Beitz 2000).

Results

SARS-CoV-2 is genetically distant from other non-
segmented RNA viruses

Figure 1 b represents a circular phylogram demonstrating the
evolutionary relationship between SARS-CoV-2 (blue-
labelled) and 29 non-segmented RNA viruses known to infect
nervous system (Messacar et al. 2018). Nineteen of these
RNA viruses (red-labelled) are also known to be
neuroinvasive and neurotropic to infants and children
(Messacar et al. 2018). Three SARS-Cov-2 variants share
more than 99.97% genomic sequence identity as the results
given by the analysis using Clustal Omega. The phylogram
demonstrates that the SARS-CoV-2 is the closest relative to
SARS-CoV because the branch lengths of the phylogram are
proportional to the amount of inferred evolutionary change.
Furthermore, SARS-CoV-2 is grouped closed to SARS-CoV
with bootstrap value of 100%. However, the bootstrap value
for subdividing SARS-CoV-2-USA from SARS-CoV-2-
Wuhan was 63.70%, suggesting that the support of grouping
of both SARS-CoV-2 variants is low. The CoV sequences
formed a genetic group distinct from other virus sequences,
and are evolutionarily distant from other members of viral
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families. The bootstrap value for dividing CoV family from its
closest viral family picornaviruses was 43.60%.

SARS-CoV-2 conserved domains are found in other
neuroinvasive and neurotropic RNA viruses

Figure 2 a is a schematic diagram showing some important
SARS-CoV-2 ORFs and their encoded CDs. Similar to other
CoVs, SARS-CoV-2 contains at least six ORFs in its genome
with their encoded nonstructural (nsp), structural, and acces-
sory proteins. Four main structural proteins, spike, membrane
(or matrix), envelope (E), and nucleocapsid proteins, are
encoded by ORFs 26, 75, 5, and 31, respectively, near the
3′-terminus. SARS-CoV-2 has two functional CDs,
macrodomain (macro_X_nsp3-like) and viroporin (E protein)
(Madan et al. 2005), which can be found in the other
neuroinvasive and neurotropic RNA viruses, and also contains
the common RNA viral domains such as RNA-directed RNA
polymerase (RdRp). Figure 2 b (I, II) and c (I, II) show the msa
results of macro_X_nsp3-like and viroporin, respectively. In
both macro_X_nsp3-like and viroporin, all three SARS-CoV-
2 variants have 100% of identity and similarity in protein
sequences. The macro_X_nsp3-like is encoded by ORF9
and can be found in CoVs and togaviruses. Compared with
the neuroinvasive and neurotropic viruses, SARS-CoV-2
shares 33.3% identity and 47.1% similarity with HCoV-
OC43, 36.3% identity and 47.9% similarity with HCoV-
229E, 31.3% identity and 41.5% similarity with rubella,
30.3% identity and 44.6% similarity with eastern equine en-
cephalitis virus, 30.9% identity and 42.7% similarity with
western equine encephalitis virus, 37.1% identity and 50.4%
similarity with Venezuelan equine encephalitis virus, and
26.5% identity and 37.1% similarity with Chikungunya virus
(Fig. 2b-II). The possibility of higher-level groupings of
macro_X_nsp3-like is strongly supported within CoVs (boot-
strap values, 99 to 100%), but not between CoVs and other
neuroinvasive and neurotropic viruses (bootstrap values
54.3%, Fig. 2b-III).

The viroporin is encoded by ORF 5 and can be found
in CoVs, coxsackievirus, echovirus, poliovirus, and HIV-
1. Compared with the neuroinvasive and neurotropic vi-
ruses, SARS-CoV-2 shares sequence identity and se-
quence similarity with HCoV-OC43 (20.2% identity,
40.5% similarity), HCoV-229E (23.6% identity, 40.2%
similarity), coxsackievirus (13.5% identity, 25.6% simi-
larity), echovirus (13.5% identity, 24.3% similarity), po-
liovirus (13.5% identity, 31.0% similarity), and HIV-1
(9.4% identity, 27.0% similarity) (Fig. 2c-II). The possi-
bility of higher-level groupings of viroporin within CoVs
is high (bootstrap values, 74 to 100%), whereas it is low
between CoVs and other neuroinvasive and neurotropic
viruses (bootstrap values 61.7%, Fig. 2c-III).T
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Diversity of spike protein may determine the severity
of SARS-CoV-2 infection

As the S protein is a major neurovirulent factor of several
CoVs, there was a key focus on aligning the S protein among
different CoVs (Miura et al. 2008; Phillips et al. 2002).

Fingerprint analysis was implemented for the RBD of S1
(Fig. 3a) and S2 proteins (Fig. 3b) in order to gain an overview
of the sequence identity and similarity among the different
CoVs. The complete sequence is depicted in one single line,
and the amino acid residues are presented as colored vertical
lines. Higher similarities correspond to darker vertical lines.
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Fig. 1 Evolutionary history of SARS-CoV-2 compared with selected
CoVs and neuroinvasive and neurotropic non-segmented RNA viruses.
Evolutionary analyses were conducted in MEGAX. The nucleotide se-
quences were aligned with ClustalW and the results were visualized by
Dendroscope-3. The percentage of replicate trees in which the associated
clusters was found by the bootstrap test (1000 replicates) is shown next to
the branches. The accession numbers for the viruses studied in this

present study are shown. The highest log likelihood of the tree is −
541499.02. The branch of SARS-CoV-2 was labelled with blue color,
whereas the branches of other viruses infecting infants and children ner-
vous system were labelled with red color. This analysis involved 32
nucleotide sequences and contained a total of 32822 positions in the final
dataset. The distance scale bar suggests a 0.2 (20%) genetic variation for
the length of the scale between sequences
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As shown in Fig. 3 a and b, the protein sequences of S1 RBD
and S2 have 100% identity and similarity between all three
SARS-CoV-2 variants. However, the S1 RBD is less con-
served than that of S2. In the S1 RBD, SARS-CoV-2 shares
73.4% identity and 82.8% similarity with SARS-CoV, 20.8%
identity and 32.5% similarity with HCoV-OC43, 15.6% iden-
tity and 26% similarity with HCoV-229E, 20.5% identity and
33.7% similarity with MHV-JHM, and 20% identity and
29.6% similarity with HCoV-HKU1. All of these viruses pos-
sess neuroinvasive and neurotropic properties. However, the
S1 RBD has only 12.6% identity and 22.9% similarity to that
of TGEV. This virus has not been reported to infect the human
nervous system thus far. In the S2 protein, SARS-CoV-2
shares 89.4% identity and 95.5% similarity with SARS-
CoV, 42.3% identity and 59.7% similarity with HCoV-
OC43, 33.5% identity and 50.6% similarity with HCoV-
229E, 41.3% identity and 59.7% similarity with MHV-JHM,
and 39.1% identity and 57.2% similarity with HCoV-HKU1,
but here SARS-CoV-2 shares relatively less identity and sim-
ilarity with TGEV (32.2% identity and 47.9% similarity).
Figure 3 c shows the protease cleavage sites at the S1/S2
boundary and within the S2 protein. All three SARS-CoV-2
variants have same cleavage motifs. The consensus motifs of
the cleavage sites at the S1/S2 boundary (sites 1 and 2) are

much less conserved than the motifs within the S2 protein.
The cleavage site 1 of S1/S2 boundary of SARS-CoV-2,
SARS-CoV, MHV-JHM, HCoV-HKU1, HCoV-OC43,
PHEV, and MERS-CoV is prone to mutation, and the site 1
in HCoV-299E, HCoV-NL63, TGEV, and FCoV does not
contain a consensus motif. A polybasic cleavage site
(RRAR) for furin was found at the S1/S2 boundary of
SARS-CoV-2 (Fig. 3c). This polybasic cleavage site was ob-
served in MHV-JHM as well, but not in other CoVs and vi-
ruses studied. Furthermore, the cleavage site 2 at the S1/S2
boundary of SARS-CoV-2 shows a similar motif to SARS-
CoV, MHV-JHM, HCoV-HKU1, HCoV-OC43, and PHEV,
but not to HCoV-299E, HCoV-NL63, TGEV, FCoV, and
MERS-CoV. These results suggest that SARS-CoV-2 binding
and priming host receptor probably share more similar mech-
anisms with those from neuroinvasive and neurotropic CoVs
rather than the other CoVs.

Discussion

The primary objectives of the current study were to determine
the possible evolutionary and molecular relationships between
SARS-CoV-2 and non-segmented RNA viruses, especially
the viruses that can infect the nervous system in infants and
children. Furthermore, the consensus sequence motifs of S
protein and its protease cleavage sites were focused on to
discover their potential roles in neurovirulence.

Three of the CoV members (HCoV-HKU1, HCoV-OC43,
and HCoV-229E) have been reported result in injury of the
nervous system in pediatric patients. Therefore, it remains
possible that SARS-CoV-2 is also neuroinvasive, neurotropic,
and even neurovirulent in infants and children because neuro-
logical impairment has been reported in SARS-CoV-2-
infected patients (Mao et al. 2020; Xydakis et al. 2020).
Although SARS-CoV-2 is genetically distant from the other
members of the RNA viral families, its macrodomain
(macro_X_nsp3-like) and viroporin (E protein) can also be
found in the RNA viruses, which infect the nervous system
of infants and children. In the present investigation, the
macrodomain (macro_X_nsp3-like) was found in CoVs and
togaviruses. The macrodomain plays an important role in viral
replication and pathogenesis. It has been reported that MHV
were unable to cause hepatitis or had reduced neurovirulence
after the catalytic site of macrodomain had beenmutated (Fehr
et al. 2015; Park and Griffin 2009). The macrodomain activity
in togaviruses has been shown to affect neurovirulence in
mice (Abraham et al. 2020). Furthermore, macrodomain pro-
motes virulence and suppresses interferon (IFN) expression in
mice during the early stages of SARS-CoV infection (Fehr
et al. 2016). Since SARS-CoV-2 shares high macrodomain
sequence identity (80.3%) and similarity (89.3%) with
SARS-CoV (Fig. 2b-II), and IFN acts as a modulator of

�Fig. 2 a Schematic representation of SARS-CoV-2 complete genome
(accession number: NC_04551) and selected ORF and encoded con-
served domains. Macrodomain (macro_X_nsp3-like), S protein, and
viroporin (E protein), investigated in the present study, are highlighted
in blue color. The arrows indicate the protease priming sites on S protein.
b The macrodomain (macro_X_nsp3-like) sequence of SARS-CoV-2
was compared with SARS-CoV, MERS-CoV, HCoV-OC43, HCoV-
229E, HCoV-HKU1, HCoV-NL63, MHV-JHM, rubella, eastern equine
encephalitis virus, western equine encephalitis virus, Venezuelan equine
encephalitis virus, and Chikungunya virus. c The viroporin sequence of
SARS-CoV-2 was compared with SARS-CoV, MERS-CoV, HCoV-
OC43, HCoV-229E, HCoV-HKU1, HCoV-NL63, MHV-JHM,
coxsackievirus, echovirus, poliovirus, and HIV-1. RStudio with msa
package including ClustalW command was used for multiple sequence
alignment. The results were visualized by RStudio and LaTeX with
TEXshade package. All identical residues at a position were shaded in
blue or purple if the number of matching residues is higher than 50% or
80%, respectively. The residues that are not identical but similar to the
consensus sequence were shaded in red. Furthermore, the degree of pro-
tein sequence conservation and amino acid properties such as charge and
hydrophobicity were shown as color scales and bar graph along the align-
ment. On the top of the plot, residue conservation was shown as bars and
the charge of amino acid side chain was shown as color scales (red: acidic;
blue: basic). Hydrophobicity was shown at the bottom of the plot (upper
red box: hydrophobic; underside box: hydrophilic). The degree of simi-
larity and identity between all sequences in the alignment were shown in
tables (b-II, c-II). The bootstrap consensus trees inferred from 1000 rep-
licates to represent the evolutionary history of the macrodomain (macro_
X_nsp3-like) (b-III) and viroporin (c-III) between the viruses analyzed.
The percentage of replicate trees in which the associated viruses clustered
together in the bootstrap test is shown next to the branches. Branches
corresponding to partitions reproduced in less than 50% bootstrap repli-
cates are collapsed

935J. Neurovirol. (2020) 26:929–940



blood-brain barrier (BBB) integrity for viral neuroinvasion
(Miner and Diamond 2016), suppression of IFN by
macrodomain activity may result in BBB leakage after viral
infection and further facilitate neuroinvasion.

Viroporin is a family of small transmembrane proteins in-
cluding the E protein of CoVs (Madan et al. 2005). In the
present study, viroporin was detected in CoVs, picornaviruses
such as coxsakie-, echo-, polio-viruses, and retroviruses such
as HIV-1, which is consistent with previous reports (Gonzalez
2015; Madan et al. 2005; Nieva et al. 2012). Viroporin may
play a role in neurotropism, because some CoVs such as the
neurovirulent MHV with E gene deletion were severely

disabled from infecting new host cells with significantly re-
duced viral titers (DeDiego et al. 2007). Moreover, viroporin
in HCoV-OC43 has been show as a determinant of
neurovirulence and central nervous system (CNS) pathology
(Madan et al. 2005; Stodola et al. 2018). During SARS-CoV
infections, viroporin can activate caspase-1 by activating the
NLRP3 inflammasome (Chen et al. 2019; Farag et al. 2020).
Caspase-1 cleaves pro-interleukin (IL)-1β to mature IL-1β.
As a major proinflammatory cytokine, IL-1β facilitates
neuroinvasion by disrupting blood-brain barrier (BBB) integ-
rity (Miner and Diamond 2016). High viroporin sequence
identity (95.9%) and similarity (97.2%) were observed
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Fig. 3 Multiple sequence alignments of S1 RBD, S2 protein, and S
protein protease cleavage sites among CoVs. An overview of sequence
similarities of S1 RBD (a) and S2 protein (b) was implemented by
fingerprint plots, which depict the complete sequence in one single line.
The residues were presented as colored vertical lines (red: similar; blue: ≥
50% conserved; purple: ≥ 80% conserved). S1 RBD showed much less
conserved than S2 protein. The star symbol (*) in a indicated that the
whole S1 protein sequences of four CoVs (HCoV-229E, HCoV-NL63,
TGEV, FCoV) were used for msa analysis, because the S1 RBD of them

cannot be found in NCBI Conserved Domain Database. The degree of
similarity and identity between all sequences in the alignment were
shown in tables. c The protease cleavage sites of S protein were
compared among CoVs with same msa methodology as described in
Fig. 2 b and c. There are two cleavage sites at S1/S2 boundary.
However, both are less conserved than the cleavage site at S2 protein.
The polybasic cleavage sites (RRAR) for furin observed in SARS-CoV-2
and MHV-JHM at S1/S2 boundary were underlined in red
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between SARS-CoV-2 and SARS-CoV (Fig. 2c-II). Thus, it
might speculate that SARS-CoV-2 is neuroinvasive by means
of viroporin-induced inflammation causing BBB leakage.
Although the exact functions of macrodomain and viroporin
in SARS-CoV-2 have not been elucidated, the sequence iden-
tity and similarity suggest that SARS-CoV-2 may share sim-
ilar mechanisms with neuroinvasive and neurotropic viruses
to infect the nervous system in pediatric patients, which in-
clude suppression of IFN by macrodomain activity and/or
increased membrane permeability and inflammation induced
by viroporin. However, whether such mechanisms in
neuroinvasive and neurotropic viruses differ from non-
neuroinvasive and non-neurotropic viruses has not been stud-
ied. The further investigation is necessary.

The present analysis also showed that the S1 RBD and the
protease cleavage sites at the S1/S2 boundary are much less
well conserved compared with the S2 protein and the protease
cleavage site at S2 among CoVs, respectively. These findings
are consistent with previous reports (Perlman and Wheeler
2016) and suggest that each CoV may need a specific binding
receptor and protease to bind to its target cells. The high di-
versity of S1 RBD and cleavage sites at S1/S2 boundary may
also determine the severity of the injury to host resulting from
the viral infection. However, both SARS-CoV-2 and SARS-
CoV cell entries require ACE2 binding and TMPRSS2 prim-
ing (Hoffmann et al. 2020; Li et al. 2003). This is probably
because they share high sequence identity and similarity of S1
RBD and protease cleavage sites. ACE2 receptor expression
can be found in human brain and brain-derived microvascular
endothelial cells (Li et al. 2007), whereas the TMPRSS2 gene
appears to be low or absent in the human brain (Glowacka
et al. 2011; Vaarala et al. 2001). Furthermore, TMPRSS2
expression in human immature BBB endothelial cells has
not been reported. This could explain the reason that SARS-
CoV-2 infection is usually mild in the nervous system of
adults and children. Besides ACE2 binding and TMPRSS2
priming, SARS-CoV-2 cell entry requires furin, which is
highly expressed in the CNS. The polybasic furin cleavage
site (RRAR) was observed in all three SARS-CoV-2 variants
and a highly neurovirulent MHV-JHM (Fig. 3C). This is of
importance to understand the roles of SARS-CoV-2 in the
neurologic diseases, because other proteases such as
TMPRSS2 associated with S protein priming may not be pres-
ent in the human brain. This suggests that SARS-CoV-2 has
great potential to be neurotropic and even neurovirulent to the
nervous system.

There are several limitations to the study. First, not all viral
sequences selected from NCBI database were obtained from
nervous tissues of pediatric patients with neurological dis-
eases. This means that it is possible that not all of the results
described have direct relevance to pediatric nervous system
diseases. This could be corrected in future studies once up-
dated viral sequences have been obtained and sequenced from

nervous tissues of pediatric patients with neurological dis-
eases. Secondly, although the homology of macro- and
viroporin domains has been predicted between SARS-CoV-
2 and other RNA viruses studied, it may be unrelated to the
prediction for the analysis, especially in neurological diseases
in pediatric patients. There are no direct evidence showing
both domains of SARS-CoV-2 play important roles in
neuroinvasion and neurotropism in pediatric patients.
However, this homology prediction can still be useful in pro-
posing and testing hypothesis in molecular biology, such as
hypotheses about the drug design, ligand binding site location,
and substrate specificity (Vyas et al. 2012; Xiang 2006).
Thirdly, it will be important to understand the function
and similarity of predicted domains in 3-dimension (3D)
functional protein structure between SARS-CoV-2 and
other RNA viruses, which was not performed in the
current study. However, the 3D crystallization structure
of SARS-CoV-2 macrodomain has been shown to have
high similarity to SARS-CoV (Frick et al. 2020). The
3D remodeling of SARS-CoV-2 S protein using bioin-
formatic analyses has recently been reported, showing
that SARS-CoV-2 and SARS-CoV have similar receptor
utilization, but with low amino acid similarity in RBD
(Jaimes et al. 2020), and the S proteins of SARS-CoV-2
and SARS-CoV are structurally and evolutionary related
(Baig et al. 2020). The 3D structure of viroporin in
SARS-CoV-2 has not been reported so far. However,
Surya et al. showed a nuclear magnetic resonance spec-
troscopy (NMR) structure of the E protein of SARS-
CoV (Surya et al. 2018), which will be helpful in
studying the function and structure of viroporin in
SARS-CoV-2 in the future.

Conclusion

In summary, although there is no evidence of SARS-CoV-2
directly causing any known human neuropathology, SARS-
CoV-2 shares some close molecular and structural similarity
to neuroinvasive and neurotropic non-segmented RNA virus-
es. This leads to speculation about possible involvement of
SARS-CoV-2 in causing neurological abnormalities in pedi-
atric patients.
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