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Abstract Neuroimaging abnormalities are common in chron-
ically infectedHIV-positive individuals. Themajority of studies
have focused on structural or functional brain outcomes in
samples infected with clade B HIV. While preliminary work
reveals a similar structural imaging phenotype in patients in-
fected with clade C HIV, no study has examined functional
connectivity (FC) using resting-state functional magnetic reso-
nance imaging (rs-fMRI) in clade C HIV. In particular, we were
interested to explore HIV-only effects on neurocognitive func-
tion using associations with rs-fMRI. In the present study, 56
treatment-naïve, clade C HIV-infected participants (age
32.27 ± 5.53 years, education 10.02 ± 1.72 years, 46 female)
underwent rs-fMRI and cognitive testing. Individual resting-
state networks were correlated with global deficit scores

(GDS) in order to explore associations between them within
an HIV-positive sample. Results revealed ten regions in six
resting-state networks where FC inversely correlated with
GDS scores (worse performance). The networks affected in-
cluded three independent attention networks: the default mode
network (DMN), sensorimotor network, and basal ganglia.
Connectivity in these regions did not correlate with plasma viral
load or CD4 cell count. The design of this study is unique and
has not been previously reported in clade B. The abnormalities
related to neurocognitive performance reported in this study of
clade C may reflect late disease stage and/or unique host/viral
dynamics. Longitudinal studies will help to clarify the clinical
significance of resting-state alterations in clade C HIV.
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Introduction

HIV-associated neurocognitive disorders (HAND) are a com-
mon sequel of HIV infection and persist despite the use of
combination antiretroviral therapy (cART) (Heaton et al.
2010). In HIV-infected individuals, the relative contribution
of HIV disease mechanisms, cART, and host variables to the
expression of cognitive impairment remains unclear. The di-
agnosis of HIV-associated cognitive impairment requires test-
ing of multiple neurocognitive domains, including attention,
information processing, language, complex perceptual motor
skills (or psychomotor processing), learning, memory, and
simple motor skills (McArthur 2004; Gartner 2000; De
Francesco et al. 2016). The incidence of severe forms of
HAND has declined through the effects of cART, but milder
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forms remain persistent, and may be increasing in prevalence.
It is unclear whether these milder forms are a precursor of
more severe disorder; or whether the frequency is inflated by
limitations in the diagnostic process (Gisslen et al. 2011). A
valid imaging biomarker in neuropsychologically impaired
individuals would help to clarify some of these concerns
through a more direct link to HIV neuropathology.

Prior studies reveal variability in the reported prevalence of
HAND. These may be the result of differences in the adapta-
tion and use of neuropsychological testing across sites, cART-
experience and regimen, HIV disease stage and degree of viral
suppression, and demographic characteristics of the study
samples (such as gender, age, and pre-morbid cognitive re-
serve) (Bouwman et al. 1998; Antinori et al. 2007). The net
effect is limited insight into the association between neuro-
pathological HIV effects and clinical impairment. HIV geno-
type has also been proposed as a source of variability in
HAND since the subtypes of HIV are not equally distributed
on a global basis. While HIV-B is prevalent in North America
and Europe, HIV-C is dominant in Sub-Saharan Africa and
Southeast Asia (Rotta and Almeida 2011). Most of the neuro-
imaging work conducted to date in HIV has focused on struc-
tural and functional markers of HAND in HIV-B. Structural
neuroimaging of HIV-C in South Africa confirm
neurovirulence, with smaller volumes in the total gray matter
(GM), white matter (WM), and thalamus in HIV-infected par-
ticipants compared to healthy controls (Heaps et al. 2012). A
further study comparing volumes between HIV-B and HIV-C
samples with respect to local controls revealed no effect of
HIV subtype (Ortega et al. 2013). Again, there are limited data
linking neuroimaging signature of HIV-C and cognitive abil-
ities. Specifically, there are no studies exploring the resting-
state functional properties of the brain in HIV-C individuals.
Resting-state functional magnetic resonance imaging (rs-
fMRI) is a non-invasive imaging technique that permits inves-
tigation of resting-state functional connectivity (RSFC),
which adds additional information to existing structural imag-
ing modalities. Previous studies indicate high sensitivity of
RSFC to impaired brain function across multiple clinical dis-
orders (Van den Heuvel and Pol 2010;Wang et al. 2013; Zhou
et al. 2013).

HIV-B infected individuals exhibit altered connectivity in
the attention network (Ortega et al. 2015), thalamus (Qiu et al.
2011), and the default mode network (DMN) (Thomas et al.
2013; Wang et al. 2011), when compared to HIV- controls.
OnlyWang et al. (2011) identified a link between connectivity
and cognitive performance inHIV-Bwhere connectivity in the
lateral occipital cortex network was correlated with a task
involving visual-motor coordination. While these previous
studies focused on between group effects, Ann et al. (2016)
focused on RSFC between HAND and non-HAND partici-
pants using a seed-based analysis centered in the bilateral
precuneus. They found reduced connectivity between the

bilateral precuneus and prefrontal cortex in the HAND partic-
ipants compared to cognitively intact HIV+ individuals.
Additionally, increased connectivity in the DMN correlated
with better performance on tests of learning and memory.
While informative, these studies included mixed samples of
cART-naïve individuals, and the methodological approach did
not examine whole-brain correlations between RSFC and cog-
nitive function.

We designed our study to identify HIV-specific effects on
RSFC in a cohort of treatment-naïve HIV-infected individuals
by inserting Global Deficit Scores into the general linear mod-
el (GLM). Our research further adds to the literature by spe-
cifically investigating these effects in HIV-C, for which there
are limited data. We hypothesized that worse cognitive func-
tion would correlate with altered connectivity through a range
of resting-state networks, and that these patterns would corre-
spond to the typical cognitive phenotype of treatment-naïve
HIV.

Methods

Participants

We included 61 HIV+ and 50 HIV- demographically similar
control participants from a larger study (Paul et al. 2014), for
the purposes of neurocognitive ascertainment. Data from only
the HIV+ participants were then used to explore the associa-
tions between RSFC and cognition. All participants provided
consent to participate in the study as prescribed by the Human
Research Ethics Committee at the University of Cape Town.
Exclusion criteria included schizophrenia and bipolar mood
disorder, neurological disorders such as multiple sclerosis and
other central nervous system (CNS) conditions, head injury
with more than 30 min loss of consciousness, clinical evi-
dence of opportunistic CNS infections, and substance use dis-
order as defined by the Mini-International Neuropsychiatric
Interview (MINI-Plus) (Lecrubier et al. 1997). Additionally,
participants with possible pregnancy, claustrophobia, or metal
implants were disqualified from participation in the study as
these factors would affect scanning.

Participants were recruited from two primary care HIV
clinics in Cape Town, South Africa, prior to cART initiation.
As such, all were cART-naïve at the time of participation.
Inclusion criteria included an age range of 18 to 45 years,
and Xhosa as the primary language. HIV status was deter-
mined by an enzyme-linked immune assay (ELISA) and con-
firmed by either aWestern blot, plasmaHIVRNA, or a second
antibody test. HIV subtype was determined by polymerase
chain reaction (PCR) of the tat exon 1 region (HXB2 position
5831–6045), using the Promega GoTaq Flexi Kit (Promega,
Madison, WI). This approach has been described in Paul et al.
(2014, 2017).
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Neuroimaging scans were acquired and blood samples
were taken during a separate visit 1 week after neuropsycho-
logical testing and prior to commencing cART.

Neuropsychological assessment

All cognitive tests were performed by a psychometrist fluent
in both Xhosa and English. Tests included grooved pegboard
test, the Hopkins Verbal Learning Test-Revised (HVLT-R)
(Brandt and Benedict 1991), Rey Complex Figure Test
(RFC) (Knight and Kaplan 2003), Brief Visuospatial
Memory Test-Revised (BVMT-R) (Benedict et al. 1996),
Mental Alternation Test (MAT) (Salib and McCarthy 2002),
Wechsler Memory Scale III (WMS III) (Wechsler 1997), Trail
Making Test A (TMTA) (Corrigan and Hinkeldey 1987),
Color Trails Test (CTT) (D'Elia and Satz 1996), Stroop
Color Word Test (Golden 1978), Wisconsin Card Sorting
Test (WCST) (Grant and Berg 1948), and the Wechsler
Abbreviated Scale of Intelligence (WASI) (Wechsler 1999).

Cognitive performances recorded for the HIV-infected
group were converted to T scores based on comparisons to
the HIV-negative sample. T scores were then converted to
global deficit scores (GDS) as described previously (Carey
et al. 2004). The GDS, within the HIV+ group only, were then
used to explore the resting-state signature of HIV infection.

MRI scanning protocol

A 3T Allegra MRI scanner (Siemens, Erlangen, Germany)
located at the Cape Universities Brain Imaging Centre
(CUBIC), in Cape Town, South Africa, was utilized for all
scans. For each subject, a gradient echo planar imaging
(EPI) sequence was used to acquire rs-fMRI data: voxel reso-
lution = 4 × 4 × 4 mm3; FOV = 256 × 256 × 144 mm3; 36
slices; 164 volumes; TR/TE = 2200/27 ms; flip angle = 90o.
Additionally, T1-weighted (T1w) structural images were ac-
quired using an MPRAGE sequence for each subject: voxel
resolution = 1 × 1 × 1mm3; FOV = 256 × 256 × 176mm3; 176
slices; TR/TE = 2400/2.38 ms; TI = 1000 ms; flip angle = 8o.

Pre-processing

Processing and analyses of all imaging data were performed
using tools in AFNI (Cox 1996) and FSL (v5.0) (Smith et al.
2004), as well as in-house scripts. Prior to processing of the
functional data, each subject’s T1w volume was skull-stripped
by means of in-house scripts and AFNI’s 3dSkullStrip, for
later use in alignment and registration. Each subject’s skull-
stripped anatomical was visually checked to ensure the quality
of the processing, with adjustments performed as necessary.

The main processing of each subject’s rs-fMRI data was
implemented using a set of procedures specified with AFNI’s
afni_proc.py tool as follows. First, the first four time points

were removed from each EPI time series, spikes were truncat-
ed, and slice timing correction was applied to adjust for the
temporal offset between slice acquisitions. The EPI volumes
were coregistered using 6 degrees of freedom (3 translation
and 3 rotation) to adjust for motion during scanning and
aligned to the T1w anatomical image. Volumes exceeding
0.3 mm of bulk motion were excluded from further analyses.
The average subject motion for the remainder of the volumes
was found to be 0.10 ± 0.05 mm. Linear affine alignment of
each subject’s motion-adjusted EPI volumes to their T1w vol-
umes was performed, which was nonlinearly warped to the
standard Talairach-Tournoux template; these transforms were
concatenated with the motion adjustment, and a single trans-
form was applied to map the EPI data into standard space,
maintaining their initial spatial resolution. Visual inspection
of the alignment between the rs-fMRI data and the Talairach
template was performed for each subject as an additional mea-
sure of quality control.

The T1w volumes were segmented into tissue masks of
graymatter (GM), white matter (WM), and cerebrospinal fluid
(CSF). Signals from eroded maps of both WM and CSF were
regressed out from the EPI time series along with motion,
motion derivatives, and linear and quadratic trends. The EPI
data were then spatially smoothed using a 6-mm full-width at
half-maximum (FWHM) Gaussian kernel. Low-frequency
fluctuations (LFFs) were calculated by bandpass filtering the
time series in the standard interval 0.01–0.1 Hz, in order to
reduce contributions of physiological processes in the BOLD
signal.

Group independent component analysis (ICA) was
preformed using FSL’s MELODIC tool (Smith et al. 2004),
in order to decompose the 4D time series data and to identify
resting-state networks (RSNs) of high temporal correlation. A
standard size of dimension reduction was used, producing 20
independent components (ICs). The ICs were compared with
a standard set of RSN template maps from the Functional
Connectome Project (Biswal et al. 2010) using 3dMatch in
FATCAT (Taylor and Saad 2013), with results also inspected
visually. In this case, 14 ICs were identified as known func-
tional networks, and these were thresholded at Z > 4 to provide
network spatial masks of high RSFC. The remaining compo-
nents (representing mainly non-GM tissue, edge alignment
artifacts, small motion effects, etc.) were not included in fur-
ther analyses.

Statistical analyses

General linear modeling (GLM) was implemented with non-
parametric permutation testing in FSL to examine the associ-
ation between the RSFC and GDS. The design matrix was set
up to evaluate correlations between the connectivity measures
of each RSN and participant GDS, while controlling for pos-
sible confounders. In this study, subject age, gender, and
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education (number of years) were considered as poten-
tial confounders. Voxelwise connectivity Z scores were
estimated for each subject and each network using
FSL’s dual_regression function (Beckmann et al.
2009). FSL’s randomize function (Winkler et al. 2014)
was then used to perform permutation tests for
voxelwise GLMs using the specified design matrix,
resulting in test statistic maps. AFNI’s AlphaSim tool
was used to determine the minimum cluster size of sig-
nificant regions within the respective RSN with a
corrected p < 0.05/N, where N is the number of net-
works identified, and alpha = 0.01. Significant clusters
were then identified and extracted using FATCAT’s
3dROIMaker.

For each participant, an average RSFC value (i.e., Z score)
was calculated for each significant cluster. SPSS (version 20;
IBM, Armonk, NY) was used to determine Pearson correla-
tion coefficients between the RSFC and GDS. Outliers, de-
fined as the mean ± 3 times the standard deviation (SD), was
removed from these calculations.

Results

Sample characteristics

Fifty-six participants were included in the subsequent
analyses as excessive motion eliminated five participants
(Table 1).

Resting-state networks

A total of 14 ICs were identified as standard RSNs. The IC
number, network, and corresponding functional connectome
project map are provided in Table 2. The RSNs were
thresholded at a Z > 4 and binarized to form network masks
(Fig. 1).

Resting-state connectivity correlations with GDS

Analyses revealed regions in 6 of the 14 identified networks
where RSFC was significantly associated with cognitive im-
pairment in HIV-infected participants. In all cases, the func-
tional connectivity (FC) of the significant clusters was in-
versely related to GDS. Table 3 shows the peak coordinates

Table 1 Sample characteristics of HIV-positive participants included in
imaging analysis

Demographic variables HIV positive

N 56

Age (years) 32.27 ± 5.53

Gender (male/female) 10/46

Education (years) 10.02 ± 1.72

GDSa 0.60 ± 0.59

Clinical measures

CD4 count (cells/mm3) at time of scan 185.39 ± 147.37

Average plasma viral load, RNA copies/mL (logged) 4.59 ± 1.02

a GDS values for the HIV-positive sample were calculated from T scores
with respect to control group scores

Table 2 Identified RSNs with
network name, abbreviation,
independent component number
(IC no.) and corresponding
network in the Functional
Connectome Project (FCP)
(Biswal et al. 2010) templates

Network name Abbreviation IC no. Corresponding FCP no.

Visual occipital lobe Vis1 00 02

Dorsal attention dAtt 01 09

Right executive control R-Exec 02 08

Default mode network DMN 03 13

Dorsal default mode network dDMN 04 06

Salience Sal 05 16

Visual lingual gyrus Vis2 06 01

Sensorimotor SenMot 07 15

Ventral attention vAtt 08 18

Left executive control L-Exec 09 11

Attention Att 10 20

Auditory Aud 11 18

Cerebellum Cer 12 07

Basal ganglia Bas 13 12

878 J. Neurovirol. (2017) 23:875–885



of these regions of interest (ROIs) in each RSN, as well as the
anatomical structure at the peak. Several networks contained
more than one significant cluster.

Figures 2 and 3 show the cluster locations (blue) within the
networks (hot colors). Additionally, the scatterplots of the
RSFC-GDS correlations are shown for each cluster.

Fig. 1 Z score maps (thresholded Z > 4) representing the 14 RSNs
identified by the ICA for 56 HIV+ subjects: visual occipital lobe (Vis1),
dorsal attention (dAtt), right executive (R-Exec), default mode network

(DMN), dorsal DMN (dDMN), salience (Sal), visual lingual gyrus (Vis2),
sensorimotor (SenMot), ventral attention (vAtt), left executive (L-Exec),
attention (Att), auditory (Aud), cerebellum (Cer), and basal ganglia (Bas)
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Discussion

We describe a unique association between neurocognitive
function and RSFC in treatment-naïve HIV-C-infected adults.
We found that reduced RSFC was correlated with cognitive
deficits in the attention and sensorimotor networks, DMN, and
basal ganglia. Our study is unique in the fact that no previous
rs-fMRI studies identified regions of altered connectivity by
inserting measures of cognition into the GLM analysis—even
in the frequent clade B studies. As such, the present study is
the first to report global cognitive function as a predictor of
differences in resting-state network activation. In this way, rs-
fMRI may hold promise as a sensitive biomarker of
neurocognitive status.

The fact that RSFC was significantly affected in the atten-
tion networks is to be expected as impaired attention in HIV-
infected individuals is common (Berger and Arendt 2000;
Selnes 2005; Watkins and Treisman 2015; Cysique and
Brew 2009; Nath et al. 2008; Heaton et al. 2004). Of the
previous rs-fMRI studies, only one (Ortega et al. 2015) report-
ed reduced RSFC between HIV-infected individuals and
healthy controls in attention networks. However, they did
not find any correlations between RSFC and neurocognitive
impairment. In contrast, our results show reduced RSFC with
increased cognitive impairment in five regions of the attention
networks. These differences might be explained by methods,

the absence of cART use in our samples, or the clinical and
demographic composition of the samples.

We also found that cognitive deficits correlated with re-
duced RSFC in the thalamus, a structure known to be affected
in several motor disorders, such Parkinson’s disease and
Huntington’s chorea, (Mink 1996; Groenewegen 2003). The
basal ganglia also play a role in emotional processing
(Cancelliere and Kertesz 1990; Paulmann et al. 2008), learn-
ing and memory (Graybiel 2005; Packard and Knowlton
2002), and executive function (Graybiel 2000). Structural
MRI has frequently shown that reduced subcortical volumes
in HIV-infected individuals are related to neurocognitive im-
pairment (Dal Pan et al. 1992; Aylward et al. 1993; Paul et al.
2002; Ances et al. 2006). The findings reported by Qiu et al.
(2011) support our results. Specifically, Qiu et al. (2011) re-
ported reduced regional homogeneity in the thalamus. Again,
thalamic involvement may reflect a subcortical pattern com-
monly seen in untreated HIV.

Reduced RSFC in the sensorimotor network also cor-
related with worse global cognition. Juengst et al.
(2007) performed task-based fMRI requiring simple sen-
sorimotor activity in a between-group study of HIV-
infected individuals with a range of HAND severity
and healthy controls. While group differences were not
identified, the hemodynamic response was delayed in
the HIV-infected participants with minor neurocognitive

Table 3 Volumes, peak Talairach
coordinates, and anatomical
location of clusters showing
significant association between
resting state functional
connectivity (RSFC) with global
deficit scores (GDS). Also shown
are the correlation (Pearson r) and
significance values. In each case,
reduced RSFC was associated
with increased GDS. Figures 2
and 3 show region locations and
scatterplots

Network Size
(mm3)

Peak (mm) r p Anatomical locations
of peak

x y z

IC01 –Dorsal attention (dAtt)
attention

2173 34 − 5 52 − 0.53 <0.001 Right precentral gyrus

IC03 – DMN 1920 18 47 36 − 0.40 0.003 Right superior frontal
gyrus

IC07 - Sensorimotor
(SenMot)

2176 − 42 − 29 36 − 0.32 0.016 Left postcentral gyrus

2368 34 − 9 52 − 0.37 0.005 Right precentral gyrus

4608 10 − 9 60 − 0.39 0.003 Right medial frontal
gyrus

IC08 – Ventral attention
(vAtt)

1984 58 − 17 − 20 − 0.39 0.003 Right inferior
temporal gyrus

2112 10 51 36 − 0.51 <0.001 Right superior frontal
gyrus

IC10 – Attention
(Att)

1920 54 23 20 − 0.36 0.007 Right inferior frontal
gyrus

2304 34 − 41 40 − 0.45 0.001 Right inferior parietal
lobule

IC13 – Basal ganglia (Bas) 2816 6 − 5 8 − 0.36 0.007 Right thalamus
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disorder (MNCD) and HIV-associated dementia (HAD),
which is consistent with alterations in neuronal func-
tioning. By contrast, other rs-fMRI studies have not re-
vealed altered RSFC in the sensorimotor network in
HIV-infected patients. The absence of cognitive perfor-
mance in the analytic models may account for these
outcomes.

Our results of reduced RSFC in the DMN are supported by
other studies focused on RSFC (Thomas et al. 2013) and re-
gional homogeneity (Wang et al. 2011). Additionally, Ann
et al. (2016) found positive correlations between the right

inferior operculum and superior frontal gyrus, the specific
region of the DMN identified in our study, with the memory
and learning neuropsychiatric domains.

While the aforementioned studies did not specifically men-
tion clade, they were performed in higher-income countries
where clade B is prevalent. However, the different designs of
these reports make it difficult to definitively ascribe altered
RSFC findings to clade effects. In spite of this, our findings
of altered connectivity with GDS in the attention network,
thalamus, and DMN are reflected in these studies, irrespective
of design and clade. In contrast, only our study found that
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connectivity (blue) in the dorsal
attention network (hotter colors)
for 56 HIV+ subjects. Peak is sit-
uated in a the right precentral gy-
rus of the dAtt network, b the
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RSFC in the sensorimotor network was affected. Table 4 sum-
marizes the methodologies, demographics, and major findings
of the cited articles. Firstly, there are several demographic
differences between these studies and our own, namely that
most of the participants in our sample were female with fewer
years of education than the prior studies. Secondly, our sample
only included treatment-naïve individuals, as compared to the
other studies mostly including cART-experienced samples.
These differences may account for the level of RSFC disrup-
tion observed in the present study. Thirdly, viral clade differ-
ences may be present. Previous work from our team confirms
that HIV-C is neurovirulent, despite earlier preclinical evi-
dence suggesting lower neurotoxicity of clade C due to a

polymorphism in the Tat C31 dicysteine motif. We have pre-
viously reported outcomes from the sample included in this
study demonstrating no differences in cognition or structural
neuroimaging when individuals with the Tat C31S substitu-
tion are compared to individuals without the Tat defect (Paul
et al. 2014). Results from the present study align with the
general conclusion that clade C is neurovirulent.

In conclusion, this is the first rs-fMRI to investigate RSFC in
relation to neurocognitive deficits in treatment-naïve clade C
HIV. We found that reduced RSFC was associated with in-
creased global cognitive deficits in the attention and sensorimo-
tor networks, the DMN, and the thalamus. Neurocognitive
functions controlled by these networks are involved in the
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and GDS with r and corrected
p values
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clinical expression of HAND. Future studies using longitudinal
designs are needed to better establish whether RSFC is a dy-
namic biomarker of neuronal well-being and function in HIV.
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