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Abstract Herpes simplex viruses are ubiquitous human path-
ogens represented by two distinct serotypes: herpes simplex
virus (HSV) type 1 (HSV-1); and HSV type 2 (HSV-2). In the
general population, adult seropositivity rates approach 90 %
for HSV-1 and 20–25 % for HSV-2. These viruses cause
significant morbidity, primarily as mucosal membrane lesions
in the form of facial cold sores and genital ulcers, with much
less common but more severe manifestations causing death
from encephalitis. HSV infections in humans are difficult to
study in many cases because many primary infections are
asymptomatic. Moreover, the neurotropic properties of HSV
make it much more difficult to study the immune mechanisms
controlling reactivation of latent infection within the corre-
sponding sensory ganglia and crossover into the central ner-
vous system of infected humans. This is because samples from
the nervous system can only be routinely obtained at the time
of autopsy. Thus, animal models have been developed whose
use has led to a better understanding of multiple aspects of

HSV biology, molecular biology, pathogenesis, disease, and
immunity. The course of HSV infection in a spectrum of
animal models depends on important experimental parameters
including animal species, age, and genotype; route of infec-
tion; and viral serotype, strain, and dose. This review summa-
rizes the animal models most commonly used to study HSV
pathogenesis and its establishment, maintenance, and reacti-
vation from latency. It focuses particularly on the immune
response to HSV during acute primary infection and the initial
invasion of the ganglion with comparisons to the events
governing maintenance of viral latency.
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Introduction to herpes simplex virus

He r p e s s imp l e x v i r u s e s a r e membe r s o f t h e
Alphaherpesvirinae subfamily within the Herpesviridae virus
family. There are two serotypes of herpes simplex virus
(HSV): HSV type 1 (HSV-1), which is more frequently found
in the oral mucosa and ocular areas, and HSV type 2 (HSV-2),
which is most commonly encountered as the causative agent
of genital tract HSV infections. HSV is a ubiquitous human
pathogen, with worldwide prevalence rates approaching 90 %
for HSV-1 and up to 25 % for HSV-2, depending on socio-
economic class. The virus contains a large, linear double-
stranded DNA (dsDNA) genome of 150 kbp, which encodes
at least 84 polypeptides and is approximately 83 % homolo-
gous between HSV-1 and HSV-2 in the coding regions (Liu
2007; Whitley and Roizman 2001). The glycoproteins gB and
gC bind glycosaminoglycans within heparan sulfate moieties,
which results in initial virion attachment to epithelial cells and
keratinocytes at mucocutaneous sites including the mouth,
eyes, and genitalia (Laquerre et al. 1998). Subsequently, gD
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binds one of the HSV receptors: herpes virus entry mediator
(HVEM), also known as tumor necrosis factor (TNF) receptor
superfamily member 14 (TNFRSF-14), nectin 1, or nectin 2
and recruits accessory glycoproteins gB, gH, and gL, which
are all involved in executing membrane fusion. Upon com-
pletion of the fusion process, the nucleocapsid enters the
cytoplasm and is transported to the nuclear membrane via
interactions with the microtubule network. The DNA is then
injected into the nucleus through nuclear pores, where it
becomes a template for viral transcription and DNA synthesis
(Campadelli-Fiume 2007). Following the production of HSV
immediate-early regulatory proteins, a number of early enzy-
matic activities, and an array of early and late structural
proteins, virions assemble and bud from infected cells (caus-
ing their lysis) and then spread to neighboring cells for further
propagation. HSV subsequently accesses neighboring sensory
nerve endings via viral envelope fusion with the neuronal
plasma membrane and the nucleocapsid is transported via
retrograde mechanisms to neuronal cell bodies in the corre-
sponding ganglia (Smith 2012). From there, the virus can
either initiate productive replication, which ultimately leads
to destruction of the neuron, or the virus can establish a latent
infection in the peripheral nervous system (PNS) neurons
characterized by circularization of the viral genome and only
very limited gene expression (Margolis et al. 2007). The only
abundant viral RNA detected during latency is the latency-
associated transcript, which is involved in maintaining viral
latency (Ahmed et al. 2002). After any of a number of acti-
vating events or stimuli including stress, exposure to ultravi-
olet light, termination of antiviral treatment, immunosuppres-
sion, or alteration in hormonal levels, the virus reactivates
from the latent state and begins transcriptional and translation-
al processes leading to the production and release of infectious
virus from the previously latently infected neuron.
Reactivation events are characterized by anterograde capsid
movement down the axon and productive infection at sites
innervated by the same dermatome, or occasionally spread of
the virus to the central nervous system (CNS). Primary HSV-1
infections are typically acquired within the first two decades
of life and are usually asymptomatic. Approximately 25 % of
infected individuals exhibit periodic viral reactivations from
the trigeminal ganglia, which manifest as cutaneous and mu-
cocutaneous lesions including facial herpes, cold sores in and
around the mouth, and ocular involvement that can result in
blindness (Piret and Boivin 2010; Simmons 2002). HSV
infection of the genital tract leads to a latent infection in the
sacral ganglionic neurons, from which reactivation can cause
genital ulcers or asymptomatic shedding episodes. Severe
cases of disease include systemic spread and infection of the
CNS, which can lead to herpes simplex virus encephalitis
(HSE) that can prove to be fatal. A schematic representation
of the major events of HSV infection, disease, latency, and
reactivation is summarized in Fig. 1.

Parameters of HSV biology and disease studied
experimentally

HSV biology and pathogenesis

Through mutagenesis approaches to disrupt gene expression,
the functions of HSV-encoded mRNA species and proteins
have been resolved in vitro and/or in vivo. Research in the past
few decades has led to a deeper understanding of the roles of
HSV-encoded products involved in entry, intracellular traf-
ficking, nuclear import, DNA replication, envelopment, cel-
lular egress, and immune evasion. Briefly, the HSV proteins
comprising the nucleocapsid and tegument region have been
elucidated, as have the multiple viral glycoproteins involved
in coordinating membrane fusion and entry (Atanasiu et al.
2013; Avitabile et al. 2009). Downstream of virion entry, HSV
requires the proteins encoded from the US3, US11, and US31
DNA regions, among others, for proper cellular trafficking
and nuclear import and export (Greco et al. 2012; Mou et al.
2007). After cytoplasmic transport, docking of the capsid at
the nuclear membrane and nuclear import of the viral genome,
the immediate-early infected cell protein (ICP) gene products
ICP0 and ICP4 encoded from the RL2 and RS1 gene segments,
respectively, drive DNA synthesis and progeny virion assem-
bly (Davison and McGeoch 1986; Forrester et al. 2010;
Roizman 1996; Ushijima et al. 2007; Ward and Roizman
1994). Apart from structural and replicative functions, HSV
encodes several proteins that are involved in evading immu-
nologic pressures and influencing cellular viability to
promote survival of the virus in the host. The viral
gene products ICP34.5 and ICP47, encoded from the
RL1 and US12 gene segments, respectively, are among
the most well-characterized HSV proteins, and their
roles in counteracting immunologic pressures and pro-
moting neurovirulence are well appreciated (Leib et al.
2009; Tomazin et al. 1998; Ushijima et al. 2007; Ward
and Roizman 1994). In addition to protein products,
HSV encodes microRNA (miRNA) species that interfere
with other HSV-encoded functions. For example,
miRNAs have been identified that target ICP0 and
ICP34.5 to regulate the replicative cycle and perhaps
contribute toward the establishment of latency (Guo
et al. 2010). Finally, the parameters dictating how
HSV regulates its latency/reactivation cycle have
remained an area of intensive research focus for more
than five decades. As discussed in the subsequent sec-
tions, animal models vary in their suitability for study-
ing these events, which makes effective mechanistic
extrapolation to human disease difficult in many cases
(Armien et al. 2009). Nonetheless, animal model sys-
tems have been used to study different aspects of acute
HSV infection and disease including the establishment,
maintenance, and reactivation of latent infection.
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HSV immunity

Because the virus is so prevalent in the human population, it is
important to understand how each component of the mamma-
lian innate and adaptive immune systems responds to HSV
infection. Avariety of pattern recognition receptors have been
shown to recognize HSV structural proteins and nucleic acid
moieties and trigger essential early proinflammatory re-
sponses. These include Toll-like receptors (TLRs) on cellular
plasma membranes (e.g., TLR2), within endosomes (e.g.,
TLR3 and TLR9), and cytosolic nucleic acid receptors (e.g.,
DAI, IFI16, and Rig-I) (Conrady et al. 2012; Davey et al.
2010; Ishikawa et al. 2009; Kurt-Jones et al. 2004; Lund et al.
2006). A model of cutaneous HSV-1 infection is useful for
studying dendritic cell migration and antigen presentation for
subsequent CD8+ T cell activation. Carbone and colleagues
have highlighted the impact of CD8α+ dendritic cells in this
process (Allan et al. 2006). Other investigators have focused
on studying the characteristics of HSV-specific T lympho-
cytes, including their epitope recognition repertoire and the
necessary parameters to optimize their magnitude and quality.
Contemporary studies are geared toward tracking the migra-
tion patterns of activated T cells to infected nervous system

tissues as well as identifying their mechanisms of blocking
reactivation and virus spread (Knickelbein et al. 2008;
Schachtele et al. 2010). The development of HLA transgenic
mice and rabbits has enabled researchers to examine the
generation of T cell responses specific for HSV epitopes
recognized by human lymphocytes, rather than those epitopes
recognized by cells of the experimental animal host
(Chentoufi et al. 2010; Hu et al. 2006). Several transgenic
animals exist for the study of HSV gB- and gD-specific
lymphocytes: HLA-A*0201 transgenic rabbits and HLA-
A*0201 transgenic mice have been used to assess the devel-
opment of antigen-specific CD8+ T cells, and HLA-DR1 and
HLA-DR4 transgenic mice have been used to study HSV-
specific CD4+ T cell activation (Chentoufi et al. 2010;
Chentoufi et al. 2008; Dervillez et al. 2013; Zhang et al.
2008). Furthermore, studying the conformational determi-
nants of anti-HSV antibodies and their impact on controlling
virus spread is also a major goal of a number of investigators
(Awasthi et al. 2014; Pan et al. 2012; Simmons and Nash
1985, 1987). Indeed, a variety of HSV epitopes have been
used to induce B and Tcell immune responses with the goal of
either preventing new infections or reducing reactivation ep-
isodes to minimize transmission rates (Iyer et al. 2013). A

Fig. 1 Time course of herpes simplex virus (HSV) infection and disease.
HSV causes a productive infection of epithelial cells and keratinocytes at
mucosal surfaces or within abraded skin. From there, the virus can invade
the peripheral nervous system (PNS) and establish latency or crossover to

the central nervous system (CNS) and cause serious disease. Periodically,
in response to various stimuli, latent HSV can reactivate and cause
recurrent disease at mucosal sites (genital ulcers, cold sores, keratitis,
skin disease) or crossover to the CNS and cause serious disease
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detailed analysis of the current state of HSV vaccine develop-
ment is outside the scope of this review; however, recent
comprehensive summaries can be found elsewhere (Chung
and Sen 2012; Dropulic and Cohen 2012; Lee and Ashkar
2012; Roth et al. 2013). These models have proven to be some
of the most useful approaches for studying a causative agent
of an infectious disease, especially from an immunological
viewpoint. It should be noted that much of the knowledge
accumulated over the years concerning the innate and adap-
tive immune systems has been derived from the study of HSV-
1 infections of many different strains of mice.

Animal species used in experimental models

Multiple animal models have been used to study HSV-
induced immune responses and pathogenesis. The species
most commonly studied are mice, guinea pigs, rats, and rab-
bits. Mice are widely used to study HSV-1-induced immune
responses because their genetic systems have been well char-
acterized; immunologic and molecular biologic reagents are
widely obtainable; and the number of genetic knockout strains
available for analysis is greater than for other species. HSV-1
reproducibly establishes latency in the mouse model within
the earliest stages of acute infection, with the viral genome
reaching the neuronal ganglia within the first 24 h of infection
(Steiner et al. 1990). This provides a useful model system for
studying the interconnectivity of primary infection, the im-
mune response, neuroinvasion, establishment of latent infec-
tion, and the early phase revolving around the maintenance of
viral latency. HSV infection of the mouse brain exhibits a
diffuse pattern of viral spread and neuroinflammatory lesions
compared to the more focal patterns of viral and inflammatory
lesions in the human brain (Fig. 2) (Barker et al. 2014;
Meyding-Lamadé et al. 2003). The strength of the rabbit and
guinea pig models rests in their utility to study the processes of
HSVreactivation, which do not appear to occur spontaneously
in mice (Valencia et al. 2013; Wagner and Bloom 1997). The
guinea pig model closely simulates acute genital tract infec-
tion as well as recurrent ulcerative disease (Hsiung et al.
1984). This model has also been widely used to assess the
efficacy of anti-HSV vaccines with respect to controlling the
recurrent phase of disease (Iyer et al. 2013). Other species less
commonly used to evaluate parameters of HSV disease in-
clude cotton rats, owl monkeys, and rhesus macaques. This
review focuses on the models that are most commonly used to
study the pathogenesis and immune response of HSV infec-
tion and disease, with primary emphasis on HSV-1 mouse
studies and periodic discussion of the experimental results
realized from guinea pig and rabbit infection models.
Table 1 summarizes the specific details relating to the array
of experimental HSV infection models including routes of

infection, animals species used, and commonly assessed pa-
rameters of HSV pathogenesis and immunity. We have not
attempted to review the literature with respect to the many
interesting observations brought to light concerning the dis-
ease pathogenesis and the processes of establishment, main-
tenance, and reactivation of latent infection of endogeneous
herpesviruses of non-human organisms.

Monitoring pain and distress in infected animals

As previously discussed, experimental HSV infections can be
used to study mechanisms governing the establishment and
maintenance of viral latency. These experiments require the
animals to bemaintained for at least 3 to 4 weeks inmost cases
and longer in certain circumstances. In other types of research,
immunodeficient or young animals with reduced HSV resis-
tance are used. Inevitably, for these reasons and others
discussed in the subsequent sections, a portion of infected
animals will experience significant morbidity and may prog-
ress to a fatal outcome, either from the acute spread of the
virus prior to the establishment of latency or from reactivation
of latent virus. For humane and frequently legal reasons,
establishing clear endpoints of the study is imperative in order
to reduce animal pain and suffering (Hawkins et al. 2011; Toth
2000). Importantly, the state of the animal’s welfare may rely
on the investigator’s subjective assessment and opinion; thus,
it has been proposed that concrete interventional endpoint

Fig. 2 Magenetic resonance image (MRI) of an HSV-infected human
brain. Axial brain MRI from a 64-year-old male with confirmed HSV-2
encephalitis. The image shows signal change and swelling of the left
anterior temporal lobe and left gyrus rectus. Reprinted from the Journal of
Clinical Virology, volume 59, Barker et al., Encephalitis in an immuno-
competent man, 1–3, 2014, with permission from Elsevier
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criteria should be formulated and agreed upon by the investi-
gators, veterinarians, and personnel from the institutional an-
imal care and use committee and applied in each unique
experimental design (Hankenson et al. 2013; Hawkins et al.
2011; Toth 2000). The selection of endpoints may also reduce
the number of animals that experience spontaneous mortality
(prior to the investigator’s knowledge), which would preclude
the reliable use of their body tissues for analysis or unknow-
ingly impact the quality of the dataset (Hankenson et al.
2013).

The most widely used approach to assess the health of
experimental animals is to measure their core body tempera-
ture (Toth 2000). Pilot experiments are suggested to establish
the species- and strain-specific baseline temperatures for each
investigation so that deviations may be observed and used to
inform the decision to euthanize specific animals (Hankenson
et al. 2013). Importantly, hyperthermic stress may be
employed to induce HSV-1 reactivation in mice. In this case,
measuring core body temperature would not be informative of
the animal’s well-being. Other components of the animal’s
physical welfare state include its coat appearance, posture,
ability to ambulate, and excessive attention to manipulated
body sites (Hawkins et al. 2011; Toth 2000). Together, these
parameters can be used to visually distinguish moribund ani-
mals from those appearing normal. In our HSV-1 infection
models involving peripheral viral inoculation (namely, the
hind footpad injection and lip scarification methods), we
euthanize mice with ruffled coats, those that have lost the
ability to ambulate, and those scratching or biting their infect-
ed tissues. We also remove any animals that have lost more
than 20 % of their day 0 body weight. For mice infected

directly into the CNS via the lateral ventricle, weight loss is
the sole metric for removing unhealthy animals.
Measurements of physiological and biochemical parameters
including heart rate, respiratory rate, and stress hormones are
also used to assess animal health (Hawkins et al. 2011).
Finally, behavioral signs including aggression and withdrawal
can determine an animal’s psychological condition and inform
a decision leading to euthanasia (Hawkins et al. 2011). In
some cases, these criteria are used to formulate a disease score
to quantitate clinical sickness and remove animals from the
study (Hawkins et al. 2011). Disease presentation can vary
markedly depending on the characteristics of the respective
HSV infection, so investigators should thoroughly understand
each model to avoid inappropriately euthanizing animals or
misinterpreting disease severity.

Experimental variables that affect the course of animal
infection

In addition to the animal species selected for establishing an
experimental HSV model, other factors can significantly alter
the course of virus infection and the ensuing immune re-
sponse. The HSV serotype and specific viral strain dictate
the target cells infected, ability to invade the CNS, and the
extent of productive infection in a given cell type, tissue, and
host. HSV-1 and HSV-2 share approximately 83 % homology
in their coding sequences, but their epidemiology and disease
characteristics are certainly not identical (Whitley and
Roizman 2001). Although most orofacial infections are typi-
cally attributed to HSV-1 and genital infections to HSV-2,

Table 1 Versatility of experimental herpes simplex virus (HSV) animal models

Anatomical location of inoculation Commonly studied experimental parameters Species used

Flank skin Antigen uptake by dendritic cells and their migration to draining lymph nodes Mice
T cell activation kinetics and migration

Rear footpads T cell activation kinetics and migration Mice
Mechanisms governing establishment and maintenance of latency

Oral mucosa Host strain susceptibility and HSV spread to CNS Mice
Role of various components of innate immunity in controlling acute infection

Nasal mucosa Host strain susceptibility and HSV spread to CNS Mice
Role of specific inflammatory genes in limiting virus spread

Migration of inflammatory cells to CNS

Corneal epithelium Involvement of neutrophils and T cells in severity of herpetic stromal keratitis Mice, rabbits
Mechanisms governing establishment and maintenance of latency

T cell activation kinetics and migration

Intravaginal Role of various components of innate immunity in controlling acute infection Mice, guinea pigs
Mechanisms of recurrent disease

Vaccine efficacy

Intracranial Role of HSV genes in promoting viral replication and neurotoxicity Mice
Role of CNS-resident cells in controlling/promoting encephalitis

CNS central nervous system

12 J. Neurovirol. (2015) 21:8–23



HSV-1 infection of the genital tract has been increasingly
observed (Roberts et al. 2003). Manifestations of the poten-
tially fatal disease HSE have shown a serotype and human
host age disparity, with HSV-1 accounting for most adult cases
and HSV-2 responsible for most instances involving neonates
and children (Whitley 2006). Other variables that influence
HSV disease severity include host genetics, route of inocula-
tion, and dose of virus used. How each of these variables
affects disease outcome will be illustrated with specific exam-
ples relating to pathogenic outcome.

HSV strains display a spectrum of neurovirulent outcomes

An extensive number of clinical isolates and laboratory-
adapted HSV-1 and HSV-2 strains are available for use in
experimental studies. These strains can vary significantly in
their ability to cause disease and infect the nervous system.
Thus, viruses must be selected carefully for use in different
types of experimental designs (Sprecher and Becker 1987).
Mutational analyses and generation of HSV-1/2 intertypic
recombinants has led to the elucidation of viral determinants
affecting strain pathogenicity and neurovirulence. A selection
of these gene products includes thymidine kinase (UL23),
ribonucleotide reductase (UL39/40), and ICP34.5 (RL1),
which are involved in viral DNA synthesis and evasion of
the immune response (Cameron et al. 1988; Cassady et al.
1998; Field and Wildy 1978; Orvedahl et al. 2007; Ushijima
et al. 2007). Table 2 lists HSV-1 and HSV-2 strains commonly
used for experimental infections as well as the source of their
original isolation and relative virulence in adult mice (Brown
et al. 1973; Duff and Rapp 1971; Ejercito et al. 1968;
Gudnadottir et al. 1964; Irvine and Kimura 1967; Rawls
et al. 1968; Wander et al. 1980).

Mouse strain-dependent spectrum of resistance

Mice represent an important starting point for assessing a
number of experimental parameters of HSV disease. Mice
support productive HSV replication, are relatively inexpen-
sive, and have been manipulated extensively to generate a
multitude of genetically modified strains. The molecular biol-
ogy reagents available for work with mice facilitate a sophis-
ticated analysis of immunological responses following infec-
tion. Inbred strains of mice, however, display a spectrum of
susceptibility to HSV-1 infection, pathogenesis, and disease
(Kastrukoff et al. 1986; Lopez 1975). Table 3 summaries the
seminal studies that have highlighted these significant mouse
strain-dependent resistance phenotypes. Following a systemic
intraperitoneal infection with HSV-1 2391 (a strain known to
be virulent in BALB/c mice), the following susceptibility and
resistance trends were observed: C57BL/6 and C57BL/10
mice showed the greatest resistance to infection (median lethal
dose [LD50]>10

6 plaque-forming units [PFU]); C3H/He and
BALB/c strains demonstrated intermediate susceptibility; and
AKR and SWR mice demonstrated the greatest level of sus-
ceptibility (LD50=10

1 PFU) (Lopez 1975). In support of this
trend, C57BL/6 mice showed restricted access of HSV-1
throughout the CNS, whereas C3H mice and (to an even
greater extent) BALB/c mice exhibited elevated viral spread
throughout the cerebellum and cerebrum following a lip in-
fection (Kastrukoff et al. 1982). Importantly, while the ability
of HSV-1 to access selected regions of the CNS differed
among these groups of mice, the frequency of latent infection
of the trigeminal ganglia was similar in all three groups of
mice, suggesting that the resistant mice restrict viral spread
from the PNS to the CNS more efficiently than do the suscep-
tible strains (Kastrukoff et al. 1982). Involvement of the innate
immune response was suggested by the correlation between
resistance and an early burst of type I interferon (IFN)

Table 2 Herpes simplex virus
(HSV) strains commonly used in
experimental animal models

Strain name Source Relative
virulence
in adult mice

Reference

HSV-1

HSV-1 McKrae Keratitis isolate +++ (Wander et al. 1980)

HSV-1 KOS Recurrent oral lesion + (Rawls et al. 1968)

HSV-1 RE Keratitis isolate ++ (Irvine and Kimura 1967)

HSV-1 17 syn+ Not disclosed +++ (Brown et al. 1973)

HSV-1 F Facial or genital lesion + (Ejercito et al. 1968)

HSV-1 Patton Recurrent oral lesion + (Duff and Rapp 1971)

HSV-2

HSV-2 186 Penile lesion +++ (Rawls et al. 1968)

HSV-2 333 Primary genital lesion +++ (Duff and Rapp 1971)

HSV-2 MS Midbrain of patient with multiple sclerosis ++ (Gudnadottir et al. 1964)
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production (Engler et al. 1981; Engler et al. 1982; Kirchner
et al. 1983; Zawatzky et al. 1982b). This mouse strain resis-
tance spectrum must be considered when interpreting the
results of pathogenicity studies performed by different inves-
tigators because different parameters relative to immune sys-
tem function may be engaged based on the extent and nature
of disease severity. Although it remains possible that factors
other than early production of type I IFN are involved in
determining mouse resistance, the restricted spread of the
virus from the site of inoculation to the nervous system
positively correlated with protection against severe disease
(Kastrukoff et al. 1982; Kastrukoff et al. 1986; Kastrukoff
et al. 2012).

Mouse age-dependent spectrum of resistance

Innate and adaptive immune responses are qualitatively dif-
ferent in neonates compared to adults, making the young
generally more susceptible to developing life-threatening
complications from a number of different infectious diseases.
Animal models of HSV disease have also demonstrated an
increased vulnerability in younger animals. Intranasal, intra-
peritoneal, ocular, and subcutaneous HSV-1 infections in neo-
natal mice have demonstrated reduced early type I IFN pro-
duction and elevated viral replication as compared to older
mice (Ben-Hur et al. 1983; Bukowski and Welsh 1986;
Johnson 1964; Kintner and Brandt 1995; Kopp et al. 2013;
McKendall 1980; Zawatzky et al. 1982a). Neonatal immunity
is biased toward a tolerogenic T helper type 2 (TH2) response
in order to prevent reactivity towardmaternal antigens (Martin
et al. 2011). Underdeveloped TH1 immune responses have
been shown to enhance vulnerability to intracellular patho-
gens (Burl et al. 2011; Hoffmann et al. 2005; Marodi 2006).
Indeed, young laboratory animals have been shown to be

more susceptible to a variety of microorganisms including
Theiler’s virus, HSV, and Salmonella (Blackstock and
Murphy 2004; Rhee et al. 2005; Steiner et al. 1984). Studies
using human cells have corroborated the trend observed in
young experimental animals, with the inflammatory potential
of cells isolated at selected times throughout the first 1.5 years
of life gradually increasing in response to TLR ligation with
the peak response reached at adulthood. Younger mice may be
more susceptible to virus infections (including HSV) for the
same reasons. Studies on neonatal immunity have suggested
that specific components of the innate immune response are
essential for protection against infectious agents in early life.
In contrast, these aspects of the innate immune response may
be less critical for control of infection later in life when other
features of immunity have begun to develop and redundancy
has been shown to exist within the mature immune system.

Routes of inoculation

Depending on the goals of a given infection model, investi-
gators may use one of many different known sites for virus
inoculation to initiate the primary disease syndrome (Fig. 3).
This provides a great deal of versatility to the experimentalist
but introduces complexity when studies are compared across
the literature when multiple inoculation sites are used to study
virologic and/or immunologic events. As will become clear in
the following discussion, certain inoculation approaches are
well suited to establish HSV latency (such as the mouse
corneal scarification model) and a number of infection routes
are preferentially used for reactivation studies (including
intravaginal infection of guinea pigs). In some circumstances,
systemic disease has been caused by intraperitoneal or intra-
venous injections. In contrast, peripheral infections have been
initiated by ocular, vaginal, skin, and nasal/oral tissue

Table 3 Spectrum of mouse resistance to herpes simplex virus (HSV)

Strain name Route of inoculation Results Reference

HSV-1 strain 2391 Intraperitoneal C57BL/6 and C57BL/10 LD50 > 106 PFU (Lopez 1975)
C3H/He LD50 10

3 PFU

Balb/c LD50 10
2.34 PFU

AKR, SWR LD50 10
1 PFU

HSV-1 Laboratory
strain 2

Lip abrasion with
wooden spatula

C57BL/6: HSV-1 restricted at level of pons. 0 % HSV-1+
in cerebellum and cerebrum on day 6 pi

(Kastrukoff et al. 1982)

C3H: 60 % and 40 % HSV-1+ in cerebellum and cerebrum,
respectively, on day 6 pi

Balb/c: 90 % and 70 % HSV-1+ in cerebellum and cerebrum,
respectively on day 6 pi

HSV-1 WAL Intraperitoneal Early interferon production (2–4 h pi) in peritoneal fluid correlated
to resistance. In order of decreasing IFN levels: C57BL/6 >
C3H/HeJ > Balb/c > AKR, SWR

(Engler et al. 1982)

HSV-1 WAL Intravenous C57BL/6 mice displayed 10-fold greater IFN than Balb/c mice (Zawatzky et al. 1982a, b)
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inoculation, whereas encephalitis has been induced by
directly injecting HSV into the brain (Barr et al. 2007;
Eloranta et al. 1996). The subsequent discussion will
address the typical kinetics and characteristics of the
host’s response for each of the inoculation routes used
to establish HSV infection.

Cutaneous and subcutaneous HSV infections

HSV is unable to penetrate intact skin; therefore, productive
infection requires compromised skin integrity or mucus mem-
brane access. Teague and Goodpasture initially described a
cutaneous infection model in 1923 in which the flank of
guinea pigs and rabbits was depilated and the epidermis was
irritated with a coal-tar layer for a few days (Teague and
Goodpasture 1923). The animals were subsequently infected
with HSV and local vesicular lesions were observed within
72 h. Notably, a few days after the primary infection, a series
of secondary lesions developed in a band formation running
parallel to the spinal column. These lesions contained infec-
tious virus and were attributed to viral spread to nearby skin
sites innervated by the same nerve root in a “zosteriform”

pattern. Simmons and Nash later adapted this approach to the
mouse model, highlighting the restrictive role of T cells in
controlling the zosteriform spread and studying the processes
of establishment and maintenance of latency (Simmons and
Nash 1984; Simmons et al. 1992). Carbone and colleagues
have used this model to study antigen uptake at the site of
infection by dermal dendritic cells, their migration to the
draining lymph nodes, and their cooperation with lymph
node–resident dendritic cells, which results in antigen presen-
tation to naive T lymphocytes (Allan et al. 2006).
Subcutaneous injection of HSV-1 into the rear footpads rep-
resents another approach to initiate peripheral virus infection.
This method results in a reproducible infection and is useful
for studying the generation of anti-HSV-1 T cell responses.
The virus establishes a latent infection in the lumbosacral
dorsal root ganglia and induces a peak of HSV-1 gB-specific
CD8+ T cells in the draining popliteal lymph nodes on day 5
(Bonneau and Jennings 1989; McNally et al. 1999). Signs of
disease include loss of fur, necrosis and edema of the
foot, and paralysis of the hind limb (Sprecher and
Becker 1987). This model can involve encephalitis
when neurovirulent viruses are used in young, immuno-
deficient, or otherwise susceptible animals.

Fig. 3 Anatomy of natural human herpes simplex virus (HSV) infection
and the corresponding animal models used to mimic human disease. Sites
of primary human HSV-1 and HSV-2 infection are depicted in maroon,
and their corresponding animal model sites (in blue) are highlighted by

the hashed lines. HSV establishes latency in sensory dorsal root ganglia
(DRG) of the peripheral nervous system (PNS) and within neurons of the
central nervous system (CNS) (simplified in orange) (color figure online)
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HSV infections of the head

Lip infections

Although this approach is not widely used in the field, inoc-
ulation of HSV-1 into the oral tissues very closely mimics one
of the routes of primary human HSVexposure. Oral infection
is established by injecting the virus into the lip or tooth pulp or
by compromising the integrity of the lip mucoepithelium and
applying the virus topically. This route of inoculation repre-
sents a simple and quick method to establish a reproducible
primary infection and results in minimal animal discomfort.
After initial replication in local mucosal epithelial cells and
keratinocytes, HSV-1 travels via retrograde axonal transport to
the trigeminal ganglia where it either establishes a latent
infection or spreads centripetally to the brainstem via the
trigeminal nerve root entry zone (Barnett et al. 1995;
Kastrukoff et al. 1982; Kastrukoff et al. 2010; Kastrukoff
et al. 1981; Labetoulle et al. 2000). Erythematous labial ulcers
arise 1 to 3 days after infection and may resolve if the animal
survives the primary infection (Fig. 4). Additionally, HSV-1
can travel down the trigeminal nerve in an anterograde fashion
to infect ocular tissues and cause blepharitis, conjunctivitis, or
keratitis (Labetoulle et al. 2000). Kastrukoff and coworkers
used this model to reveal mouse strain differences in suscep-
tibility to HSV-1 crossover from the trigeminal nerve to the
CNS and to assess the role of T lymphocytes and antibodies in
preventing CNS infection (Kastrukoff et al. 1982, 1986). They
also demonstrated multifocal CNS demyelination and
antigen-positive lesions whose size and frequency were de-
pendent on mouse strain (Kastrukoff et al. 1992, 2012). We
have previously used this model to investigate the role of
TLR2 in restricting virus spread to the CNS and in generating
an antigen-specific CD8+ T cell response. Four-week-old
wild-type C57BL/6J mice were significantly more resistant
to lethal brainstem encephalitis than were TLR2-deficient
animals owing to restricted spread of HSV-1 from the PNS
to the CNS at the level of the trigeminal ganglia (manuscript in
preparation).

Intranasal infections

Intranasal inoculations with HSV-1 or HSV-2 have been widely
used to induce encephalitis and to examine selected correlates of
protection. Infection of young or otherwise susceptible mice
through inhalation of the viral inoculum leads to ocular swelling,
weight loss, shaking movements, and rapid mortality from cere-
bral edema (Boivin et al. 2002; Shimeld et al. 1987). Numerous
studies have confirmed that HSV-1 invades elements of both the
olfactory and trigeminal nerves, with both routes representing
significant tracts of virus spread to the CNS (Armien et al. 2009;
Barnett et al. 1994). Lokensgard and colleagues have shown that
HSV-1 reaches the brain via the olfactory route earlier than
through the trigeminal ganglia-to-brainstem pathway. Early neu-
trophil infiltration was evident in both the olfactory bulb and
brainstem, whereas a lymphocytic infiltrate predominated at later
time points. Moreover, activated resident cells including astro-
cytes and microglia were readily observed throughout the course
of the chronic infection (Armien et al. 2009; Marques et al.
2008). A series of studies using this route of infection has shown
the utility of administering anti-inflammatory therapeutics in-
cluding methylprednisolone and TLR9 antagonists to mice with
HSV-1 CNS infections. Depending on how long after infection
the immune-modulating drugs were given, the severity of HSE
could be reduced by measuring clinical disease visually, through
cranial magnetic resonance imaging and by comparing survival
rates (Boivin et al. 2012; Meyding-Lamadé et al. 2003).
Although intranasal infection is useful for studying multiple
aspects of viral encephalitis, this model can also lead to viral
infection of the lungs and create undesired systemic responses.
Another caveat is the reproducibility of the infection, which can
vary between animals depending on their breathing intensities
and the experimentalist’s skill level.

Ocular infections

HSV-1 is one of the most common causes of infectious human
blindness in the developed world; therefore, viral pathogenicity
of ocular tissue is an area of intensive research interest. Rabbits

Fig. 4 Model ofmucocutaneous herpes simplex virus (HSV) infection of the
mouse lip. The lower lip of mice is scratched with a needle, and HSV-1 is
painted onto the tissue. On day 4 of infection, a portion of the mice exhibit

normal tissue structure (left panel), whereas a subset of mice display varying
degrees of lip pathology (middle and right panels). Lesions present with
redness and swelling and can resolve in a percentage of animals
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and mice are the most commonly used animals for these studies.
The viral inoculum is painted onto normal or scarified corneas to
facilitate viral uptake and disease progression is measured by
examining corneal opacity and perforation. Hill and colleagues
pioneered the use of the rabbit model to investigate the neural
spread of HSV-1 to the trigeminal ganglia, superior cervical
ganglia, trigeminal nerve, and trigeminal nerve root entry zone
from ocular tissues in rabbits (Shimomura et al. 1985).
Parameters dictating the levels of viral ocular shedding, which
can occur spontaneously in the rabbit model, were also examined
(Berman and Hill 1985). After initial replication in the periphery,
HSV-1 infects the ophthalmic branch of the trigeminal nerve and
can be detected in the trigeminal ganglia within 2 to 3 days of
infection (Decman et al. 2005). In response to ganglionic inva-
sion, macrophages and T cells infiltrate the ganglia and produce
nitric oxide and TNF-α to help contain viral replication and
promote the establishment of latency. In this regard, Hendricks
and colleagues have examined the activation and migration
patterns of HSV-1-specific CD8+ T lymphocytes to the eye and
trigeminal ganglia and their involvement in the maintenance of
latency and protection against reactivation (Dennis et al. 1995;
Knickelbein et al. 2008). Alternatively, the virus can spread to the
CNS if these repressive processes are not generated prior to
crossover from the PNS. Ocular infection has also been used
effectively to study mechanisms responsible for ocular immuno-
pathology and resolution including chemokine and cytokine
production, activation of TH1-biased CD4+ T cells, and genera-
tion of protective regulatory T cell responses. The severe disease
herpetic stromal keratitis is a consequence of both virus-mediated
destruction of the epithelium as well as neutrophil- and CD4+ T
lymphocyte-mediated stromal tissue cytotoxicity (Hendricks
et al. 1992; Ksander and Hendricks 1987; Russell et al. 1984).
Elevated levels of interleukin (IL)-6, IL-10, IL-12, and IFN-γ
have been observed within a few days of infection in corneal
tissues and their sustained production has been implicated in
disease severity (Banerjee et al. 2005; Biswas et al. 2005;
Daheshia et al. 1998; Kanangat et al. 1996; Sarangi et al. 2008;
Sehrawat et al. 2008; Stumpf et al. 2002). The transgenic rabbit
model of herpetic conjunctivitis has been utilized to study the
activation of CD8+ T cells specific for human HLA-presented
HSV-1 antigens. This model has been preferred over the trans-
genic mouse model because production of neutralizing antibod-
ies can help control HSV-1 replication within the mouse eye but
may prevent complete investigation of the T cell arm of immu-
nity (Chentoufi et al. 2010). The ocular infection model leads to
significant discomfort in the animals and requires frequent ad-
ministration of analgesics.

Inoculation of HSV directly into the CNS

HSV can be injected directly into the CNS in order to bypass
peripheral immune events and reduce the confounding vari-
ables of age and genetic determinants of disease susceptibility.

This approach has been useful for determining a gene’s role
specifically within the brain as well as the contribution of
resident brain cells with respect to neuroinflammation (Kopp
et al. 2009; Vilela et al. 2011;Wang et al. 2011). HSV-1 can be
introduced directly into specific regions of the brain including
the olfactory bulb, hippocampus, lateral ventricle, and conflu-
ences of the sinuses (Boggian et al. 2000; Conrady et al.
2013). Once the virus is inoculated into the CNS, resident
cells initiate robust inflammatory responses to limit viral
replication and attract peripheral blood cells for additional
support in controlling viral spread.

The cellular responses of individual brain cell populations
can be assessed after the cells are removed from the host,
purified, and infected in vitro. Astrocytes have been shown to
sustain productive HSV-1 infection and respond by upregulating
TLR2 and TLR4 expression and by activating TLR-dependent
signaling pathways (Ecob-Johnston andWhetsell 1979; Villalba
et al. 2012). Oligodendrocytes have also been shown to support
HSV-1 replication in organotypic cultures of mouse spinal cords
(Ecob-Johnston and Whetsell 1979). Specifically, oligodendro-
cytes responded in a host genetic strain-dependent manner, with
resistant C57BL/6J mouse cells yielding less infectious HSV-1
compared with cells from the more susceptible mouse strains
BALB/cByJ and A/J (Kastrukoff et al. 1987; Thomas et al.
1991). These observations have been corroborated using prima-
ry human oligodendrocytes and human cell lines, which exhib-
ited increasing HSV-1 titers throughout the course of infection
(Bello-Morales et al. 2005; Kastrukoff and Kim 2002). In
contrast, the virus successfully enters microglia but is efficiently
eliminated before progeny virions are produced (Lokensgard
et al. 2001). To restrict HSV-1 replication, microglia initiate a
robust inflammatory response characterized by elevated IL-1β,
IL-6, TNF-α, and nitric oxide production that is partially TLR-
dependent (Aravalli et al. 2005). A number of research investi-
gators have examined the contribution of microglia-mediated
inflammation toward controlling HSV-1 replication and exacer-
bating encephalitis through activation of other brain cells and
recruitment of inflammatory cells from the circulation (Esaki
et al. 2010; Schachtele et al. 2012; Wang et al. 2011). The
interaction of HSV with the neuronal population is more com-
plex. Some neuronal subpopulations are not susceptible to HSV
infection, whereas other subpopulations support productive
HSV infection. Some neuronal subsets exhibit necrotic or apo-
ptotic endpoints following infection, whereas other neuronal
subsets are differentially responsive to HSV gene expression
and the subsequent cellular responses. In the latter subsets,
cellular responses guide the virus into the latent state and control
the genomic activation and gene expression pathways leading to
viral reactivation and recurrent peripheral disease. The interplay
between neuronal and glial cell types in response to HSV
infection and bystander inflammation is complex, and the intra-
cranial model has helped to tease apart some of the intricate
cellular processes and responses.
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Genital herpes models

Female mice and guinea pigs can be infected vaginally with
HSV-1 or HSV-2 to closely mimic human genital HSV dis-
ease. Mice must be pretreated with the hormone
medroxyprogesterone to synchronize estrous cycles and pro-
mote virus uptake. As this treatment thins the uterine lining,
interpretation of viral pathogenicity is altered significantly
(Baeten et al. 2007). Nonetheless, the virus is introduced
directly into the vagina whereby it infects epithelial cells and
causes ulcers to appear as early as day 2 after infection (Shin
and Iwasaki 2013). Additionally, HSV can spread to the
vulva, urethra, bladder, rectum, and perineal tissues (Parr
and Parr 2003). Vaginal lavage is used to measure local viral
shedding and inflammation, allowing removal of uninfected
animals from the study (Lund et al. 2006; Skoberne et al.
2013). After initial infection, the virus accesses the sacral
ganglia to establish latency. A fraction of infected animals
progress to fatal encephalitis, especially if a large dose of a
neurovirulent virus strain is used. The genital herpes model is
frequently chosen to investigate the role of innate immune
responses, vaccine efficacy, and correlates of immunity direct-
ed against recurrent disease, which occurs spontaneously in
guinea pigs (Bernstein et al. 1991; Lund et al. 2006; Svensson
et al. 2007;Wagner and Bloom 1997). The genital HSVmodel
has also been used recently to examine the mechanisms by
which genital HSV disease may enhance susceptibility to HIV
transmission (Rollenhagen et al. 2014).

Conclusions

Multiple experimental animal models are available to study
parameters of acute, latent, and recurrent HSV-1 and HSV-2
disease. The outcome of these asymptomatic or pathogenic
interactions is dictated by numerous factors including host
age, genetics, virus strain, inoculum size, and route of infec-
tion (Tables 1, 2, and 3). Because different studies have
utilized divergent HSV infection methods, care must be taken
when integrating experimental results. We hope that research
using these models will help in developing a mechanistic
understanding to prevent the establishment of latent HSV
infection, irreversibly block viral reactivation, and/or elimi-
nate the HSV genome from latently infected cells. Current
studies focused on bolstering protective immune responses,
preventing reactivation events, and reducing disease se-
verity will undoubtedly reduce the morbidity associated
with this ubiquitous human pathogen. Efficient use of
the available animal model systems will likely play a critical
role in this interdisciplinary and translational research
initiative.

Perhaps the most important guiding principle when
selecting an appropriate animal model for the study of any

human disease, whether it be to recapitulate HSV-induced
disease or any other infectious, oncogenic, inflammatory,
metabolic, or genetically inherited disease, is that the patho-
genesis and disease observed in a given animal model closely
resemble the human disease in all aspects from the initial
phase of disease to the final endpoint. Clearly, it is known
from many decades of studying a vast number of diseases that
this is rarely possible in most, if not all model systems, due to
basic differences in anatomy, physiology, immune system,
nervous system, and other organ-specific differences.
Nevertheless, the knowledge gained from a particular physi-
ologic process in a given animal species has provided a basis
to leverage this understanding to more closely examine the
pathogenesis of a number of infectious disease pathogens.
With respect to HSV infections, the understanding of the
genes and gene products involved in the murine immune
response and in the definition of their role(s) in defense against
viral infection can be applied to human infections, and vice
versa. The ever-growing availability of genetically modified
mice that can be utilized to define the role of various immune
response genes within the context of host defense against
numerous pathogens has defined the role of pattern recogni-
tion receptors of the innate immune response (Davey et al.
2010; Kurt-Jones et al. 2004; Lund et al. 2006), and it is now
clear that the genetic susceptibility to HSV infections in
humans can be similarly linked to such receptors (Casrouge
et al. 2006; Herman et al. 2012; Perez de Diego et al. 2010;
Sancho-Shimizu et al. 2011; Zhang et al. 2007). Furthermore,
the seminal studies in mice by the Hendricks group defining
the role of the adaptive immune response, particularly the
class I MHC-restricted CD8+ T cell population (Khanna
et al. 2003; Liu et al. 2001; Liu et al. 2000; Liu et al. 1996),
have now been confirmed to have their counterpart in human
infections by either HSV-1 (Chentoufi et al. 2008; Theil et al.
2003; Verjans et al. 1998; Verjans et al. 2007) or HSV-2
(Laing et al. 2010; Peng et al. 2012; Tigges et al. 1992). A
similar wealth of knowledge is derived from the anatomy and
neurobiology of the rat nervous system, which has well-
established correlations to the human nervous system and
can be applied directly to human infections. This knowledge
serves as the basis to define protective and inflammatory cell
populations and signal pathways involved in response to viral
infection of the brain. Nevertheless, the desire to have every
aspect of human disease be accurately reflected within the
context of a single animal model remains difficult. As most
disease processes involve multiple cells, tissues, and/or or-
gans, modeling every aspect of a particular disease process
from beginning to end is rendered difficult. The multi-faceted
differences between human and animal physiology often lead
to variances in pathogenic outcome between humans and the
given animal model. Therefore, the primary focus in the
selection and design of a model system is to answer highly
specific and focused questions.
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