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Abstract
The habitat accommodation model (HAM) is a theoretical framework that predicts wildlife community recovery based on 
their habitat requirements. While post-fire habitat-related research is well documented in the Mediterranean basin, studies 
specifically focusing on HAM are scarce. Here, we described the small mammal assemblage in a Mediterranean area ~3 years 
after a fire, specifically examining three functional small mammalian categories: ground-foraging insectivorous, ground-
foraging herbivorous/granivorous, and arboreal-foraging species. The study was conducted in Monte Pisano (Italy), where 
fire burnt ~12  km2 in September 2018. A stratified random sampling was adopted, basing on burnt status and forest type. In 
each of the 50 sites, during late spring-summer 2021, 12 hair-tubes were deployed, and collected hairs were taxa-attributed 
based on morphology. A presence/absence dataset was built, and db-RDA was used to explore assemblage composition, 
and single-species occupancy models to test specific hypotheses. The relative abundance of ground-foraging herbivorous/
granivorous was higher in the burnt area, characterised by a dense undergrowth, which could be related to anti-predatory 
strategies and food opportunities. Insectivorous could be in a recolonisation phase, masking their earlier absence, which could 
explain why their abundance was not associated with any factor tested. Arboreal-foraging species were associated with forest 
type, indicating a primary role for tree cover and other factors such as rocky cover and likely in situ survival. The HAM was 
overall confirmed also in Mediterranean basin ecosystems. This may facilitate predictions about post-fire animal successions, 
which in turn may provide valuable insights into post-fire management practices and biodiversity conservation strategies.

Keywords Disturbance · Habitat accommodation model · Hair-tube sampling · Post-fire recovery · Rodents · Wildfire

Introduction

From time immemorial, fires have profoundly shaped eco-
systems globally (Prodon 1987; Bowman et al. 2009; Pausas 
and Keeley 2009; Kelly et al. 2020). In recent decades, as a 
consequence of climate change, accumulation of biomass, 

and agricultural land abandonment (Moreira and Russo 2007; 
Fernandes et al. 2013; Bowman et al. 2020; Jones et al. 2020), 
fires have become even more frequent and intense, and this 
pattern is expected to become increasingly pronounced (Flan-
nigan et al. 2009; Bowman et al. 2020; Jones et al. 2020). It 
is therefore increasingly necessary to understand the multiple 
and complex impacts on ecosystems and wildlife (Pausas and 
Parr 2018; González et al. 2022). There are both direct and 
indirect effects of fires on wildlife (Engstrom 2010).

Direct effects can cause injury or death of individuals 
by flames, smoke inhalation, or heat stress (Whelan et al. 
2002; Nimmo et al. 2021). Fire-induced mortality rates are 
considered to be low for wildlife (∼3%, Jolly et al. 2022), 
although it is assumed to vary widely among taxa, due to 
features such as species vagility, adaptive traits, and shelter 
location (Pausas and Parr 2018; Nimmo et al. 2019). Small 
mammals, for instance, are typically thought to be highly 
vulnerable to fires. However, some burrowing species are 
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known to experience little direct mortality from fires (Vernes 
2000; Letnic et al. 2005). Conversely, mortality is typically 
higher in species that take refuge above ground (Simons 
1991; Koprowski et al. 2006). Understanding these dynam-
ics is essential as they play a key role in shaping the overall 
post-fire recovery process (Puig-Gironès et al. 2018; Hale 
et al. 2022). Indirect effects include changes in vegetation 
structure and composition. For instance, early post-fire con-
ditions may involve increased prey mortality due to higher 
predation rates resulted to increased predation risk, and a 
limited availability of food resources (Banks et al. 2011; 
Morris et al. 2011; Leahy et al. 2016).

After a fire, communities go through secondary ecological 
succession that re-colonises the disturbed ecosystem (Fox 
1982; Monamy and Fox 2000). In fire-prone areas such as 
those of Mediterranean ecosystems, many plant species 
have evolved adaptive traits that enable them to survive 
and take advantage of fires (Pausas et al. 2004; Pausas and 
Keeley 2009; Keeley et al. 2011). Due to these adaptations 
(e.g., seed germination triggered by fire, Keeley and Pausas 
2018) and post-fire environmental conditions (e.g., increases 
in light and soil nutrients, Keeley and Babr-Keeley 1999), 
post-fire vegetation recovery in Mediterranean ecosystems 
is usually quick, and within 2 or 3 years, the undergrowth 
may  become denser than surrounding unburnt areas 
(Trabaud 1994; Torre and Díaz 2004; Kayes et al. 2010; 
Tessler et al. 2016). By contrast, reestablishment of the tree 
canopy may take decades (Keeley et al. 2011; Senf and Seidl 
2022).

One of the theoretical frameworks used to understand 
how faunal communities adapt and respond to changing 
environmental conditions after fire is the Habitat 
Accommodation Model (HAM; Fox 1982; Monamy and 
Fox 2000, 2010). The HAM makes it possible to predict 
the successional sequence of faunal communities after fire, 
taking into account crucial habitat requirements for species. 
According to the HAM, species have a range of tolerance 
to certain environmental factors, including food availability, 
temperature, humidity, and other critical parameters that 
directly affect their survival and reproductive success. These 
factors are closely linked to different features of vegetation 
structure, such as height, species composition and density, 
which in turn affect cover and food availability. As a result, 
species would enter the post-fire successions when the local 
vegetation structure meets their environmental requirements, 
and leave or undergo a numerical reduction when the 
conditions are outside of their optimal range (Fox 1982, 2022; 
Monamy and Fox 2010). Among mammals, the model has 
been confirmed for small mammal assemblage of temperate 
environments (e.g., Monamy and Fox 2000, 2010; Fox et al. 
2003). The HAM is also indirectly supported by additional 
studies (e.g., Torre and Díaz 2004; Swan et al. 2015; Torre 
et al. 2022) which, although not directly discussing the HAM, 

highlight the role of vegetation structure in small mammals 
post-fire succession.

Other frameworks have been proposed for different envi-
ronmental conditions, such as the state-and-transition model 
proposed by Letnic et al. (2004) for arid areas.

However, it is essential to recognise that small mammals’ 
succession is a complex process influenced by a number 
of factors. These include the recovery type (i.e., by in situ 
survival or recolonisation; Puig-Gironès et al. 2018; Hale 
et al. 2022), the dispersal capacity of the species (Banks 
et al. 2011, 2017; Swan et al. 2016), and the age and sex of 
the individuals (Banks et al. 2017; Puig-Gironès and Pons 
2023).

Within the small mammal assemblages, ground-foraging 
granivorous and herbivorous are usually the earliest species 
joining post-fire secondary succession (Fox 1982; Haim 
and Izhaki 1994, 2000; Puig-Gironès et al. 2018; Torre 
et al. 2023). Early successional Mediterranean habitats 
typically have abundant quantities of seeds and seedlings 
(Ne’eman et al. 1993), plus dense undergrowth mainly 
composed of pioneer species (Trabaud 1994; Torre 
and Díaz 2004; Keeley et  al. 2011). Therefore, these 
mammals may thrive in these early suitable habitats, from 
both improved feeding conditions and more favourable 
microclimatic ones, characterised by higher humidity 
and lower temperatures (Haim and Izhaki 1994; Keeley 
et al. 2011). However, while overall understorey cover 
may provide reduced predation risk (Torre and Díaz 2004; 
Puig-Gironès et al. 2018), this may not be the case with 
ambush predators (Eby et al. 2013; Gigliotti et al. 2022). In 
addition, predators may actively react to fires, for example, 
by hunting where prey are most abundant (i.e., burnt 
habitats; McGregor et al. 2014; Leahy et al. 2016; Geary 
et al. 2020), triggering complex predator-prey relationships 
(Torre and Díaz 2004; Geary et al. 2020; Doherty et al. 
2022; Puig-Gironès and Pons 2023).

Insectivores have high requirements in terms of both 
microclimate and food (Torre and Díaz 2004; Greenberg 
et al. 2007; Torre et al. 2023), so they could probably be 
found in mid-successional stages (Fox 1990), although data 
are scarce (Greenberg et al. 2007; Zwolak and Foresman 
2007; Torre et al. 2023). Like herbivorous and granivorous 
species, they also may face lower predation risk in areas 
with a thicker herbaceous cover (Torre and Díaz 2004; 
Puig-Gironès et al. 2018). By contrast, arboreal species have 
distinct habitat requirements. Indeed, they are usually found 
in late-successional forests for feeding and nesting needs 
(Fox 1990; Zwolak and Foresman 2007; Chia et al. 2015; 
Linnell et al. 2018).

It is known that the post-fire response of small mammal 
assemblages depends on the type of ecosystem affected by 
fire and the fire regime (e.g., Diffendorfer et al. 2012; Grif-
fiths and Brook 2014; Chia et al. 2015; Culhane et al. 2022; 
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Puig-Gironès and Pons 2023). Our current knowledge of post-
fire small mammal assemblage dynamics is mostly based on 
studies in Australian and American ecosystems (e.g., Kelly 
et al. 2011; van Mantgem et al. 2015; Culhane et al. 2022; 
Hale et al. 2022). By contrast, in other ecosystems, such as 
the Mediterranean ones in Southern Europe, these dynam-
ics have been poorly studied (Sainz-Elipe et al. 2012; Torre 
et al. 2022; Puig-Gironès and Pons 2023), such as for other 
European animal communities (e.g., invertebrates, Santos 
et al. 2009; Radea and Arianoutsou 2012; reptiles, Santos and 
Poquet 2010; Santos and Cheylan 2013; birds, Rost et al. 2012; 
Puig-Gironès et al. 2017, and large mammals, Soyumert et al. 
2010, 2020). Although HAM performs well for small mam-
malian assemblages, we lack knowledge about how fires shape 
these communities in Mediterranean basin (Puig-Gironès et al. 
2018; Torre et al. 2023), and we cannot predict their future 
impact, when fires are predicted to become more frequent and 
severe (Jolly et al. 2015; Soyumert et al. 2020). Recognising 
and addressing this knowledge gap is essential for the com-
prehensive study of fire ecology, as well as the development 
of effective biodiversity conservation strategies in fire-prone 
Mediterranean regions (Syphard et al. 2009; Van Wagtendonk 
2009).

Our main aim was to describe the assemblage of small 
mammals in a Mediterranean area ~3 years after a fire. In 
addition, we tested specific hypotheses for the three ecologi-
cal functional groups of small mammals (ground-foraging 
herbivorous/granivorous, insectivorous and arboreal), as their 
habitat requirements differ in terms of resources.

Hyp. 1: As food resources and cover provided by restoration 
of the vegetation of the burnt area could make this environ-
ment particularly suitable for ground-foraging herbivorous and 
granivorous (Torre and Díaz 2004; Puig-Gironès and Pons 
2020), we expect ground-foraging herbivorous and granivo-
rous to be more abundant in the burnt areas than in unburnt 
ones.

Hyp. 2: Taxa such as ground-foraging insectivorous requir-
ing late successional microhabitats characterised by the occur-
rence of woody debris, moisture, and leaf litter (Greenberg 
et al. 2007), other than particular food resources (Canova 
and Fasola 1993; Greenberg et al. 2007), are unlikely to find 
burnt areas particularly suitable. Therefore, we predict a lower 
abundance of ground-foraging insectivorous species in burnt 
compared to unburnt areas.

Hyp. 3: Arboreal species require mature forest for hiding, 
feeding, and nesting (Wauters et al. 2000; Linnell et al. 2018). 
In the absence of a canopy, we predict the arboreal species’ 
abundance to be lower in the highly severe burnt area com-
pared to other areas.

Materials and methods

Study area

Our study area of ~18  km2 was located in the Monte Pisano 
mountain system (northern Tuscany, Italy; Fig. 1). The high-
est peak of the mountain chain is Mt. Serra (917 m). The 
climate is typical Mediterranean, humid in winter, and arid 
in summer (Rapetti and Vittorini 1994). The natural veg-
etal associations of Monte Pisano are dominated mainly by 
holm oak Quercus ilex L., European hop-hornbeam Ostrya 
carpinifolia Scop., and common alder Alnus glutinosa L. 
However, these associations are very reduced, as over time 
they have been supplanted by olive groves and vineyards, 
and by introduced chestnut Castanea sativa Mill. and 

Fig. 1  Satellite map of the study area and its location on the Italian 
peninsula (red star). The 50 squares correspond to cells; the red and 
green squares were located in the pine and in the chestnut forests, 
respectively. Triangles correspond to the sampling sites, roughly tri-
angular areas in whose vertices small mammals were sampled. In the 
figure, the sites were coloured according to the sampling period
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maritime pine Pinus pinaster Aiton forests. At the shrub 
layer, Mediterranean scrub is common, with species such 
as tree heather Erica arborea L., green heather E. scoparia 
L., strawberry tree Arbutus unedo L., sage-leaved rock-rose 
Cistus salviifolius L., Montpellier cistus C. monspeliensis 
L., and common gorse Ulex europaeus L. (Bertacchi et al. 
2004).

The small mammal assemblage of Monte Pisano 
included 14 shrews and rodent species (Etruscan shrew 
Suncus etruscus, bicolored shrew Crocidura leucodon, 
lesser white-toothed shrew C. suaveolens, Sorex sp., house 
mouse Mus domesticus, wood mouse Apodemus sylvaticus, 
yellow-necked wood mouse A. flavicollis, Savi’s pine vole 
Microtus savii, Norway rat Rattus norvegicus, black rat R. 
rattus, garden dormouse Eliomys quercinus, hazel dormouse 
Muscardinus avellanarius, edible dormouse Glis glis, and 
red squirrel Sciurus vulgaris (Perfetti 2009; Santini et al. 
2012), in addition to two Talpa spp., the crested porcupine 
Hystrix cristata, and the hedgehog Erinaceus europaeus 
(Perfetti 2009).

Monte Pisano is a fire-prone area, and fires are recur-
rent. In September 2018, a fire burnt ~12  km2 of vegetation 
in the south-eastern part of the mountain chain, belonging 
to the municipalities of Calci, Vicopisano, and Buti (Pisa 
province). The fire was classified as a mixed-severity fire and 
considered the most extensive fire event affecting Tuscany 
in the last 25 years. The portion that burnt at high severity 
consisted mostly of pine forest, whereas the low severity fire 
mostly affected the chestnut forest, which survived (Salbi-
tano et al. 2020).

At the understorey level, the burnt area had an overall 
high density of pioneer plants belonging to the Mediter-
ranean scrub. Conversely, the unburnt areas had a more 
open understorey and were dominated by species such as 
tree heather in the pine forest, and bracken fern Pteridium 
aquilinum (L.) Kuhn and Rubus hirtus Waldst. et Kit in the 
chestnut forest (Bertacchi et al. 2004; Salbitano et al. 2020).

Study species assemblage

Small mammals were used as a model due to their sensitiv-
ity to ecological disturbances, which is attributed to their 
relatively small home ranges and limited dispersal capacity 
(Swan et al. 2016; Puig-Gironès et al. 2018; Nimmo et al. 
2019). Moreover, they are usually highly sensitive to habitat 
alterations (Catling 1991; Haim and Izhaki 1994), and their 
specific life-history traits can lead to diverse responses to 
environmental changes (Grant 1972; Amori et al. 2008).

Shrews and rodents were categorised into ecological 
functional groups, based on their feeding habits and habitat 
use, to relate them to post-fire ecological succession pat-
terns (Fox 1982; Torre and Díaz 2004; Amori et al. 2008; 
Monamy and Fox 2010).

The three functional groups were (i) ground-foraging 
insectivorous, (ii) ground-foraging herbivorous/granivorous, 
and (iii) arboreal-foraging species (Table 1).

Sampling design

A synchronic design was used, comparing the burnt area to a 
neighbouring undisturbed area. A stratified random sampling 
(Krebs 1989; MacKenzie and Royle 2005) was used, with 
two factors: “affected by the September 2018 fire” (hereafter 
“fire”: “yes” vs “no”) and “forest type” (“pine forest” vs 
“chestnut forest”). Combinations of the two factors resulted 
in four habitat categories (UP, unburnt pine forest; BP, burnt 
pine forest; UC unburnt chestnut forest; BC, burnt chestnut 
forest). A 200 × 200-m grid was superimposed to the area, 
although only the cells composed by the four habitats were 
considered for sampling (N = 168). Among them, 50 cells 
were chosen at random in proportion to the surface area 
occupied by habitat category (n UP = 11, n BP = 21, n UC 
= 12, n BC = 6) (Supplementary 1).

Within each cell, a sampling site (hereafter, site) was 
selected to be sufficiently distant (>200 m) from all others 
to be considered independent for target species (Mortelliti 
et  al. 2010) (Fig. 1). The sites consisted of three trees 
with ∼20 m spacing between them, and approximately at 
vertices of an equilateral triangle (V1-V2-V3) (Fig. 2A). 
To survey small mammal assemblage, in each vertex, there 

Table 1  Grouping of species into the three functional groups, based 
on the main feeding habits and habitat use criteria (Amori et  al. 
2008), for which the three hypotheses were formulated

*Although omnivorous, in this paper we have classified the house 
mouse as an herbivorous/granivorous species, due to the predomi-
nance of plants and seeds in its diet (Tann et al. 1991; Morris et al. 
2012; Santini et al. 2012).

Common name Binomial name

Ground-foraging insectivorous
 Etruscan shrew Suncus etruscus
 Bicolored shrew Crocidura leucodon
 Lesser white-toothed shrew Crocidura suaveolens
  - Sorex sp.

Ground-foraging herbivorous/granivorous
 House mouse* Mus domesticus
 Wood mouse Apodemus sylvaticus
 Yellow-necked wood mouse Apodemus flavicollis
 Savi’s pine vole Microtus savii
Arboreal-foraging species
 Black rat Rattus rattus
 Garden dormouse Eliomys quercinus
 Hazel dormouse Muscardinus avellanarius
 Edible dormouse Glis glis
 Red squirrel Sciurus vulgaris
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was a placement of a set of three hair-tubes (T1-T2-T3), 
i.e., simple PVC open tubes whose upper internal surface 
was coated with adhesive tape, containing bait (hazelnut 
cream, sunflower seeds and mackerel fillets) (Fig. 2D). Hair 
sampling is an indirect monitoring technique suitable for 
sampling small mammals (Mortelliti et al. 2010; Chiron 
et al. 2018; Bertolino et al. 2009). When a small mammal 
enters the tube, its dorsal hairs adhere to the sticky tape, 
and are sampled (Suckling 1978; Lindenmayer et al. 1999). 
These hairs can be examined with an optical microscope to 
identify species or species-groups (De Marinis and Agnelli 
1993; Teerink 2003; Tóth 2017).

To optimise sampling, we used tubes of different size for 
each set: two tubes of 2.5 (T1) and 3.5 cm in diameter (T2), 
tied together to form a pan-pipe were placed on the ground 
(Fig. 2B, D), whereas one tube 6 cm in diameter (T3) was 
horizontally fixed to a trunk at height ∼1.80 m from the 
ground (Suckling 1978; Pocock and Jennings 2006; Ber-
tolino et al. 2009; Mortelliti et al. 2010; Chiron et al. 2018) 
(Fig. 2C, D).

The 50 sites were then subdivided in two groups of 25 
each, to facilitate sampling and data collection logistics, and 

surveyed for four weeks in each period, from May 19 to June 
18, and from June 23 to July 23, 2021. This sampling period 
was considered suitable for sampling all the target species 
(Boitani et al. 1985; Canova 1992; Pocock and Jennings 
2006; Torre et al. 2010; Mortelliti et al. 2010; Chiron et al. 
2018; Melcore et al. 2020).

During these sampling intervals, each tube was checked 
once weekly to renew the bait and replace the adhesive 
tapes. Consequently, each tube was checked four times. The 
sampling effort amounted to 12,600 days (28 days per tube 
× 9 tubes × 50 sites), during which 1800 tube stripes were 
collected (4 checks × 9 tubes × 50 sites).

Laboratory analyses

Hairs were identified morphologically under an optical 
microscope (250× – 400×). Several atlases (Debrot et al. 
1982; Teerink 2003; Tóth 2017), and a hair library were 
used as references. Hair analysis, together with the known 
geographical distribution of the target species, enabled clas-
sification at the species level (Amori et al. 2008; Santini 
et al. 2012), although there were a few exceptions where 

Fig. 2  Details of the sampling setting used to study the small mam-
mal assemblage ∼3 years after the 2018 fire in Monte Pisano (Tus-
cany, Italy). A General view of the sampling unit, consisting of three 
trees spaced ∼20 m apart and approximately at the vertices of an 
equilateral triangle (V1-V2-V3). Each of the three trees included a 

pan-pipe (T1 + T2) and a T3 tube. B Focus on a pan-pipe, made by 
T1 and T2 tubes tied and fixed on the ground. C Focus on a T3 tube, 
horizontally fixed to a trunk at height ∼1.80 m. D Representation of 
a hair-tube, a baited open PVC cylinder internally coated with a tape 
(drawing courtesy of Andrea Pardini)
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only the genus could be identified (i.e., Crocidura spp. and 
Apodemus spp.).

In addition, although among Arvicolinae subfamily 
only Savi’s pine vole has been reported in the study area 
(Perfetti 2009; Santini et al. 2012), it is possible that one 
other common species, i.e., the bank vole Clethrionomys 
glareolus, have recently colonised the study area. For this 
reason, and because of the difficulty in distinguishing the 
hairs of these species, for these cases, we preferred refer to 
them as “voles”.

Key hair traits, as cuticular scales, medulla, length, and 
colour, were used in hair identification (Debrot et al. 1982; 
Teerink 2003). To minimise the likelihood of misclassifica-
tion, assignments were only made when the different diag-
nostic characters for a given taxon matched exactly.

The hairs were put on a slide that was partially covered 
with a coating of transparent nail polish. When dry, the hairs 
were removed and then soaked in cedar oil. The imprints and 
hairs were examined under an optical microscope to analyse 
medulla types and the cuticular scale patterns. To analyse 
the cross-sections of the medulla, hairs were cut at the shield 
level and then examined under a microscope (Teerink 2003). 
Although species like insectivorous are not easily recognisable 
only by hairs microscopic analysis, we have been able to 
identify them with a deepened analysis of their hair diagnostic 
traits (De Marinis and Agnelli 1993; Teerink 2003).

Ideally, all hairs of the strips should be identified; how-
ever, this was not feasible considering the large number 
of hairs in many strips (up to hundreds). Apparently, this 
consideration has not been reported or discussed, except 
for Pocock and Bell (2011), who assessed just two hairs 
per strip. Therefore, we sought to determine the minimum 
number of hairs from each strip to adequately assess the 
composition of the small mammal assemblage. To address 
this objective, we built accumulation curves for each of the 
eight tube-habitat type combinations (the two tube types of 
the pan-pipes for the four habitats), with four strips chosen 
randomly, for a total of 32 strips. All hairs from these strips 
were analysed to build a presence-absence dataset of the 
species in this sub-sample. Using these data, eight accu-
mulation curves were generated using the “vegan” package 
2.6-2 (Oksanen et al. 2013) in R 4.2.1. By observing inflec-
tion points of the curves, it was determined that 12 was an 
adequate minimum number of hairs to analyse to estimate 
the entire species richness of the strips (Supplementary 2).

Hairs to be identified in the remaining hair-tubes, if more 
than 12, were selected randomly. To perform this selection, 
three rectangles of transparent plastic of the sizes matching 
the three types of strips were prepared. In each rectangle, 12 
numbered points were randomly drawn using R software. 
When retrieving the hairs, plastic rectangles were superim-
posed on the corresponding strip and hairs closest to each 
of the points were selected.

Only tubes from one of the vertices of the sites were 
used, for a total of 600 strips. The chosen vertex was the 
one named V1 at the beginning of sampling. We chose 
the tubes of a single vertex because, in a preliminary 
analysis verified by a concordance test, it was sufficient in 
representing biodiversity of the entire site (Supplementary 
3). To perform the test, we randomly chose ten sites, and of 
these we identified the hairs of all the tubes, for a total of 360 
strips (3 tubes × 3 vertices × 4 checks × 10 sites). To this 
dataset, we applied the Fleiss’ K-test (Fleiss 1971; Hallgren 
2012), by testing the concordance of the three vertices in 
determining the presence or absence of the different taxa, 
for each site and check. Furthermore, this concordance result 
could also be interpreted as a validation: as the concordance 
was significant for all taxa (k = 0.39–0.82, all p < 0.01), it is 
reasonable to state that the probability of misclassification 
was low. The analysis was performed using the “irr” R 
package 0.84.1 (Gamer et  al. 2012). In addition, this 
sampling effort was comparable with that of literature (e.g., 
Suckling 1978; Green and Sanecki 2006; Fontúrbel 2010).

Environmental characterisation

In order to better assess the factors influencing the 
environmental suitability for small mammals in the burnt area, 
a number of environmental variables identified as potentially 
influential were recorded (e.g., Pardini et al. 2005; Greenberg 
et al. 2007; Lee et al. 2008; Mazzamuto et al. 2020; Hale 
et al. 2022). These included herbaceous, shrubby, and arboreal 
coverage (%), as well as deadwood, rock and litter (%), soil 
insolation (lux), soil hardness (cm), and number of trees 
(Table 2). These environmental characteristics were measured 
once in the field within four 5 × 5 m plots randomly placed 
on each site (within the 175  m2 triangular area defined by the 
three vertices) by three operators, and mean values of each 
variable were calculated. Phytosociological surveys followed 
the Braun-Blanquet (1932) method.

In addition, the site distance from burnt area edge (m) 
was also evaluated, through the QGIS 3.20.3 software (QGIS 
Development Team 2022), as it could be important in assess-
ing the potential for external recolonisation (do Rosário and 
da Luz Mathias 2007; Puig-Gironès et al. 2018; Frock and 
Turner 2018) (Table 2).

Furthermore, a number of factors that may affect not the 
occurrence but only the detection of small mammal species 
were also recorded (e.g., McCafferty et al. 2003; Sassi et al. 
2015; MacKenzie et al. 2017; Mori et al. 2020). These included 
the status of recovered tubes (i.e., displaced: yes/no) for each 
check, the check order (i.e., 1:4), and the site group number 
(i.e., I, II). Furthermore, daily temperature and rainfall data 
for the study area were retrieved from the Tuscany Region’s 
weather website (“Monte Serra” weather station), and weekly 
averages were calculated. Finally, the average weekly moon 
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phase was calculated with R software 4.2.1 and “sunCalc” R 
package 0.5.0 (Thieurmel et al. 2019) (Table 2).

Data analyses

Variable selection

In order to include the environmental variables in subse-
quent statistical analyses while avoiding issues of collinear-
ity, it was necessary to assess the correlations among the 
variables and to identify a set of independent variables (Zuur 
et al. 2007, 2009; Borcard et al. 2011). The selection process 
involved a series of steps.

To account for correlation among site-specific numerical 
variables, principal component analysis (PCA) was applied. 
To make our analysis more manageable, we identified a sin-
gle variable for each principal component, i.e., the most rep-
resentative one. This variable acted as a proxy, capturing the 
core information within the group. The first four components 
of the PCA accounted for 81% of total explained variance 
and were retained. Variables chosen as proxies were “arbo-
real cover”, “herbaceous cover”, “deadwood”, and “distance 
from burnt area edge” (Supplementary 4).

Subsequently, to assess the independence among each 
principal component and “fire” and “forest” variables, the 
four PCA proxy variables were used as dependent varia-
bles in Wilcoxon-Mann-Whitney tests, as they did not meet 
requirements for a Student’s t-test. In these tests, the two 
factors “fire” and “forest type” were treated as independent 
variables. From these tests, the only variables not associated 
to both “fire” and “forest type” were “deadwood” and “dis-
tance from burnt area edge”, and then were retained (Sup-
plementary 5, 6).

In addition, we also used Pearson’s coefficient (R) to 
identify and select variables that had low or no correlation 
with each other among the numeric observation variables, 
namely, variables whose values may be changed during 
sampling (i.e., check order, weekly rain, temperature, and 
moon phase) (MacKenzie et al. 2017). In this case, PCA 
was not used due to its unsuitability for this analysis, as 
its Kaiser-Meyer-Olkin (KMO) value was too low (KMO 
= 0.34) (Zuur et al. 2007; Kassambara 2017). As weekly 
mean moon phase and rain variables were correlated 
(R = −0.78, p < 0.05), only weekly mean moon phase, 
temperature, and check order were retained as numeric 
observation variables. Between the weekly moon phase 
and rain, the former was chosen because of its greater 
documented ecological role (Maestri and Marinho 2014; 
Mori et al. 2020).

Through this approach, a number of independent vari-
ables that may represent significant environmental drivers, 
in addition to “fire” and “forest”, were included in the fol-
lowing statistical analyses.

Assemblage analyses (db‑RDA)

Statistical analyses were conducted only for highly sam-
pled taxa (Legendre and Gallagher 2001; Baker et al. 2009; 
Borcard et al. 2011; MacKenzie et al. 2017), i.e., those for 
which the Hair Index (HI, Pocock and Jennings 2006; Chi-
ron et al. 2018), calculated by dividing the number of sites 
where the taxa were recorded by the total number of sites, 
exceed 0.1. These included Crodicura spp., house mouse, 
Apodemus spp., voles, garden dormouse, and red squirrel 
(Supplementary 3).

For them, a site-detection dataset was built, in which 1 
was used if the taxon was recorded in at least one tube per 
site, and 0 if it was not recorded in any tube.

Initially, a comprehensive survey was carried out to 
examine the overall relationships between the small mammal 
assemblage and the four selected environmental variables, 
and to minimise the number of variables to be tested in the 
taxa-specific statistical models. Distance-based Redundancy 
Analysis (db-RDA) was used; it is a constrained ordination 
technique that models linear relationships among environ-
ment predictors and community data (Borcard et al. 2011). 
Starting from the binary detection history dataset, a Jaccard 
dissimilarity matrix was built. This was done using the Jac-
card dissimilarity index, a binary index suitable for our input 
data and commonly used by ecologists (e.g., Lekberg and 
Waller 2016; Ricotta et al. 2016; Stone and Jackson 2016).

The two independent environmental variables were stand-
ardised, and “fire” and “forest type” were added to them 
(fire: 0 = UB, 1 = B; forest type: 0 = C, 1 = P).

The significance of the model, axes, and variables were 
tested with a Monte Carlo permutation test (999 randomisa-
tions). The analysis was done with the “vegan” R package 
2.6-1.

Single species response models

In addition to the assemblage analysis, the small mammal 
taxon-specific response was investigated. This approach 
was chosen because it provides a more in-depth perspec-
tive, allowing us to gain deeper insights into the post-fire 
ecological dynamics within the small mammal assemblage 
(Mata et al. 2017).

As with the assemblage analysis, poorly sampled taxa (HI 
≤ 0.1) were excluded from these investigations (MacKenzie 
et al. 2017). Single-species occupancy models (Dorazio and 
Royle 2005; Kéry and Royle 2008) were used as they are 
suitable for presence-absence data, and they also detach esti-
mation of detection probability (p) from that of true occu-
pancy (ψ) (MacKenzie et al. 2002, 2017).

Since sites were far enough away from each other, in 
order to be considered independent for the target taxa, 
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occupancy was interpreted as a relative abundance estima-
tion (MacKenzie and Nichols 2004).

For each taxon, using both site and observation variables, 
best detection probability (p) model was identified in terms 
of Akaike’s information criterion corrected for small sam-
ples (AICc; Burnham and Anderson 2002) through back-
ward selection. By setting the p-related part of the models, 
one-three specific hypotheses were tested per taxon on vari-
ables affecting the probability of occurrence (ψ). For all the 
taxa, we also tested a model with the best detection probabil-
ity (p) and the only intercept for the occupancy (ψ), and the 
null model for p and ψ as a baseline comparison. Variables 
for the models of each taxon were chosen based on Hypoth-
eses 1, 2, and 3 (fire, forest type) and on db-RDA output. 
Specifically, only those variables that were highly correlated 
with at least one taxon (angles between vectors close to 0° or 
180°) were added. In particular, for the house mouse, Apode-
mus spp. and voles, we conducted only a test, with fire as 
the only explanatory variable. Likewise, for the red squirrel, 
we tested only a model with forest as the sole explanatory 
variable. In the case of the Crocidura spp., we tested three 
different models: one with fire, another with deadwood, a 
third with both variables together as explanatory variables. 
Similarly, for the garden dormouse, we tested three different 
models: one relying solely on forest as explanatory vari-
able, another including deadwood, and a third considering 
both variables simultaneously. In total, 22 occupancy models 
were tested.

Model selection was performed through AICc. Only the 
most supported models were considered (ΔAICc < 2.00). 
In the case of equally supported models, the model with the 
highest Akaike weight was selected (Burnham and Anderson 
2002). All analyses used the R software and R “unmarked” 
package 1.2.5 (Fiske and Chandler 2011).

Results

Of the 600 tubes examined, N = 329 (54.83%) tested positive 
for at least one small mammal taxon, and a total of N = 2104 
hairs were identified. The number of tubes and hairs per 
habitat type are only indicative of sampling effort and may 
not reflect the true distribution and abundance of the species 
(Table 3). In fact, the number of tubes reported may refer to 
the same site, and the number of hairs per tube is not reliable 
as abundance index. However, these data can still provide 
some useful information. The 2104 hairs identified indicated 
a sufficient sample size for statistical analysis. On average, 
the ratio of hairs to tubes for each taxon was 5.08. This sug-
gests that the likelihood of misidentification was generally 
low. However, there were few exceptions (e.g., Crocidura 
spp. in UC (ratio = 1), voles in UC (ratio = 1.67)). Black rat, 
hazel dormouse, and edible dormouse were poorly sampled 

overall, but 83.3–100% of the hair-tubes in which they were 
sampled belonged to the same habitat, suggesting a degree 
of habitat selection that should be addressed in further 
research (Table 3).

Small mammal assemblage analysis

Constrained variance explained by the db-RDA model 
amounted to 38.9%. Monte Carlo tests indicated the signifi-
cance of the model (F = 6.68, p < 0.001), the first two axes 
(first: F = 16.98, p < 0.001; second: F = 8.16, p = 0.002), 
and four variables (fire: F = 12.71, p < 0.001; forest type: 
F = 9.98, p < 0.001; deadwood: F = 2.71, P = 0.038; and 
distance from burnt area edge: F = 1.34, P = 0.263) (Fig. 3).

Crocidura spp. appeared to be mainly associated with fire 
and deadwood; house mouse and voles were linked to fire; 
garden dormouse was influenced by forest type and dead-
wood; and red squirrel was related just with forest type. 
However, Apodemus spp. had no associations (Fig. 3).

Single small mammal taxon response

Occupancy models were fitted for five of six taxa, as the 
red squirrel models did not converge. Consequently, our 
inferences for these taxa were based on db-RDA only. The 
occupancy of Crocidura spp. (mean estimated ψ = 0.67 ± 
0.23 (SE), mean estimated p = 0.14 ± 0.06), the only ground 
insectivore modelled, was not significantly dependent on any 
factor tested (Table 4; Table 5).

Nonetheless, there were differences among ground grani-
vores. Occupancy of Apodemus spp. (mean estimated ψ = 
0.95 ± 0.034, mean estimated p = 0.77 ± 0.046) was not 
significantly associated with any factor (Table 4; Table 5). 
By contrast, house mouse (mean estimated ψ = 0.72 ± 0.09, 
mean estimated p = 0.40 ± 0.08) and voles (mean estimated 
ψ = 0.52 ± 0.16, mean estimated p = 0.20 ± 0.07) occu-
pancy values were higher in the burnt area (house mouse: ψ 
= 0.95, CIs = 0.64–0.99, p = 0.02; voles : ψ = 0.86, Cis = 
0.45–0.97, p < 0.01) (Table 4; Table 5; Fig. 4A, B).

Lastly, among arboreal species, for garden dormouse, 
occupancy (mean estimated ψ = 0.39 ± 0.12, mean esti-
mated p = 0.48 ± 0.09) increased in pine forest (ψ = 0.54, 
Cis = 0.31–0.76, p < 0.05) (Table 4; Table 5; Fig. 4C).

Discussion

Overall, the small mammalian assemblage structure mainly 
depended on burnt status and forest type. Ground-foraging 
herbivorous/granivorous were more abundant in the recently 
burnt area, whereas insectivore abundance was not differ-
ent among investigated variables. Arboreal species were 
mainly associated with forest type, albeit in different ways. 
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Consequently, only Hypotheses 1 and 3 were supported, 
albeit partially.

Ground‑foraging herbivorous/granivorous taxa

In general, ground-foraging herbivorous/granivorous were 
more abundant in burnt versus unburnt area; the former had 
denser undergrowth, where ground-foraging herbivorous/
granivorous could hide better from predators and had more 
food availability (Torre and Díaz 2004; Swan et al. 2015; 
Puig-Gironès et al. 2018; Torre et al. 2023). This prefer-
ence for burnt area was evident for house mouse and voles. 
These two taxa colonised the recently burnt area with a 
large number of individuals and fulfilled the predictions of 
HAM for ground-foraging herbivorous/granivorous species 
(Fox 1982; Monamy and Fox 2010). In fact, according to 
the HAM, the availability of post-fire resources, such as 
dense vegetation cover and increased seed abundance, likely 
facilitated the recovery observed in these two taxa. These 

findings regarding house mouse corroborate several studies 
from Australia, where this species is relevant to fire-related 
research (e.g., Kelly et al. 2010, 2012; Fox 2022; Hale et al. 
2022), as well as several studies about other Mus species, as 
the Algerian mouse M. spretus (Puig-Gironès et al. 2018; 
Torre et al. 2023) and the Macedonian mouse M. macedoni-
cus (Izhaki et al. 1993; Haim and Izhaki 1994). In fact, Mus 
sp. are considered to be well adapted to xeric habitats, and 
their opportunistic foraging made them optimal pioneer spe-
cies (Haim and Izhaki 1994; Puig-Gironès and Pons 2023).

However, studies on voles in Mediterranean ecosystems 
are scarce; although, according to Arrizabalaga et al. (1993), 
the Mediterranean pine vole Microtus duodecimcostatus 
occupied a large part of the burnt area 3 years after a fire in 
Catalonia (Spain). Do Rosário and da Luz Mathias (2007) 
supported the role of vegetation structure for the Cabrera 
vole M. cabrerae, which recolonised the burnt area 1 year 
after the fire. Likewise, Puig-Gironès et al. (2020) found 
the common vole M. arvalis abundant in post-fire logged 

Table 3  Summary of the 
number of hair-tubes positive 
for each taxon by habitat type 
(UP, unburnt pine forest; BP, 
burnt pine forest; UC, unburnt 
chestnut forest; BC, burnt 
chestnut forest), hairs identified 
for each taxon sampled by 
habitat type, and the ratio of 
hairs identified per hair-tube, 
for each habitat. The Etruscan 
shrew and the Sorex sp. were 
not included in the table as 
they were not sampled. Total 
estimates were also provided

Taxa Sample UP BP UC BC TOT

Crocidura spp. Hair-tubes 1 12 4 3 20
Hairs identified 11 25 4 9 49
Hairs/tubes 11.00 2.08 1.00 3.00 2.45

House mouse Hair-tubes 11 44 6 8 69
Hairs identified 38 168 22 33 261
Hairs/tubes 3.45 3.82 3.67 4.13 3.78

Apodemus spp. Hair-tubes 33 103 49 27 212
Hairs identified 195 576 292 135 1198
Hairs/tubes 5.91 5.59 5.96 5.00 5.65

Voles Hair-tubes 3 16 3 2 24
Hairs identified 7 36 5 4 52
Hairs/tubes 2.33 2.25 1.67 2.00 2.17

Black rat Hair-tubes 0 0 1 0 1
Hairs identified 0 0 9 0 9
Hairs/tubes 0 0 9.00 0 9.00

Garden dormouse Hair-tubes 33 14 5 0 52
Hairs identified 292 105 6 0 403
Hairs/tubes 8.85 7.50 1.20 0 7.75

Hazel dormouse Hair-tubes 4 0 0 0 4
Hairs identified 6 0 0 0 6
Hairs/tubes 1.50 0 0 0 1.50

Edible dormouse Hair-tubes 5 0 1 0 6
Hairs identified 5 0 3 0 8
Hairs/tubes 1.00 0 3.00 0 1.33

Red squirrel Hair-tubes 2 2 12 6 22
Hairs identified 7 9 45 51 112
Hairs/tubes 3.50 4.50 3.75 8.50 5.09

TOT Hair-tubes 96 191 81 46 414
Hairs identified 567 919 386 232 2104
Hairs/tubes 5.91 4.81 4.77 5.04 5.08
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areas, where the cover was dense and food resources were 
abundant. Therefore, our results appeared consistent with 
the literature.

The observed consistency of responses to fire among dif-
ferent Mus species and voles, together with their relevance 
to both Australian and European Mediterranean ecosystems, 
underscores their importance as key agents in early post-
fire community dynamics. This convergence of results rein-
forces the ecological principles underlying the HAM, and 
its applicability to a wide range of fire-prone Mediterranean 
ecosystems. In view of their presumed elevated mortality 
during fires (Griffiths and Brook 2014; Jolly et al. 2022), the 
recovery of these species probably occurred through recolo-
nisation from unburnt areas (Puig-Gironès et al. 2018).

By contrast, Apodemus spp. were widespread through-
out the study area. In the Mediterranean basin, the wood 
mouse usually occurs in a burnt area starting soon after a 
fire (Torre and Díaz 2004; Puig-Gironès et al. 2018), such 
as the yellow-necked wood mouse (Izhaki et al. 1993). Our 
results, in line with literature, can be attributed to the highly 
ecological plasticity and generalist habits of Apodemus spp., 

which allow them to adapt to even the least advantageous 
conditions (Sainz-Elipe et al. 2012; Torre et al. 2023).

In turn, the entering of Apodemus spp. in the post-fire suc-
cession may have influenced the other early species through 
competitive relationships (Monamy and Fox 2010; Fox 
2022). The potential for competition for resources should 
be reduced with voles due to different ecological require-
ments (Amori et al. 2008; Puig-Gironès et al. 2020). How-
ever, competition is known to occur with the house mouse 
(Boitani et al. 1985) and other Mus sp. (Haim and Izhaki 
1994; Bauduin et al. 2013). As Apodemus spp. is regarded 
as dominant over the house mouse and is known to be highly 
adaptable, we predict that as post-fire succession progresses, 
the house mouse population is likely to be gradually dis-
placed by Apodemus spp., in line with the HAM.

Arboreal‑foraging species

Fires have the capability to destroy mature forests, with 
potentially detrimental effects for forest species such as 
arboreal-foraging ones (Zwolak and Foresman 2007; Chia 
et al. 2015). However, these species are able to survive fires 
(Koprowski et al. 2006; Mazzamuto et al. 2020; Mazzella 
and Koprowski 2020).

Both arboreal species investigated depended more on 
the forest type than on fire occurrence. For the red squirrel, 
however, this is easily explained by taking fire severity into 
account.

This species was more abundant in chestnut forest, a habi-
tat characterised by structural complexity, high connectiv-
ity among branches, and dense canopy even in the burnt 
part, as it burnt only at low severity. It is known that the red 
squirrel prefers this type of habitat over more open ones, 
such as burnt and unburnt pine forests, which offer it better 
opportunities for feeding, nesting and hiding (Gurnell et al. 
2002; Amori et al. 2008; Flaherty et al. 2012). In the chest-
nut forest, most of the red squirrels may have survived the 
fire, mainly thanks to their arboreal locomotion (Amori et al. 
2008; Flaherty et al. 2012; Jolly et al. 2022). In addition, 
their recovery in the severely burnt habitat, with scarcity of 
food resources and nesting sites, is likely to be very slow 
(Lee and Rhim 2012; Linnell et al. 2018).

On the other hand, the garden dormouse exhibited higher 
abundance in the pine forest. This was an unexpected finding 
that suggests a complex scenario. In the burnt pine forest, the 
occurrence of the garden dormouse could be attributed to the 
survival to the fire of at least part of its population, which 
could have started the post-fire recovery process (Fons et al. 
1993, 1996). In fact, although small mammals typically face 
high mortality rates during fires, in situ survival can be an 
effective mechanism for recovery (Banks et al. 2011; Hale 
et al. 2022). The survival to the fire by this species may 
have been facilitated by its ability to store food, its capacity 

Fig. 3  Db-RDA triplot, based on Jaccard dissimilarity, indicating the 
small mammal assemblage sampled through hair-tubes. The black 
dots represent sites, arrows represent environmental variables, and 
labels represent taxa. Their positions in the triplot depends on their 
correlation with the two axes. The environmental variables were 
standardised, and the two main factors of the sampling design were 
added: “fire” (0 = UB, 1 = B) and “forest type” (0 = C, 1 = P). The 
graph was drawn with scaling: angles between the vectors (variables 
and taxa) express their correlation (0°: maximum positive correlation, 
90°: no correlation, 180°: maximum negative correlation)
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to hibernation and preference for rocky terrain (Fons et al. 
1993; Bertolino et al. 2003; Bertolino and Cordero di Mon-
tezemolo 2007). In fact, the burnt pine forest was rich of 
rocky habitats, in whose crevices the garden dormouse might 
have survived (Fons et al. 1993).

However, external recolonisation cannot be ruled out, 
especially considering the relatively small size of the burnt 
area and the dispersal ability of the garden dormouse (Ber-
tolino and Cordero di Montezemolo 2007). These two 
hypotheses are not mutually exclusive (Banks et al. 2011; 
Puig-Gironès et  al. 2018). Furthermore, this partially 
ground-foraging species (Bertolino et al. 2003) may have 
opportunistically exploited the dense undergrowth cover 
provided by the burnt canopy-lacking pine forest. However, 
its absence from the chestnut forest was unexpected and war-
rants further investigation.

Ground‑foraging insectivorous taxa

Ground-foraging insectivorous were the least represented 
group, among the three identified, in terms of specific rich-
ness. Indeed, Crocidura spp. was the only sampled and ana-
lysed taxon. For Crocidura spp., abundance was not signifi-
cantly different between burnt and unburnt areas.

In the immediate post-fire period, relative abundances 
of insectivorous are usually higher in unburnt versus burnt 
areas (Buech 1977; Zwolak and Foresman 2007). Regard-
less of this, microclimate is decisive, as in burnt litter-free 
areas, the soil would be too dry to meet a insectivorous 
high water requirements (Kirkland Jr 1991; Greenberg 
et al. 2007; Zwolak and Foresman 2007). In the forests of 
Mediterranean basin, there was evidence supporting this 
fact for the greater white-toothed shrew Crocidura russula 
(Arrizabalaga et al. 1993; Fons et al. 1993; Torre et al. 
2023) and for the lesser white-toothed shrew C. suaveolens 
(Haim et al. 1997). However, the hypothesis of a lower 
abundance of ground-foraging insectivorous in the burnt 
area was not supported by the data. This could be due to 
ongoing recolonisation, perhaps accelerated by the rela-
tively small size of the burnt portion of the study area, as 
reported by Haim (2002) for Mount Carmel (Israel). This 
interpretation was consistent with pilot sampling that we 
conducted in the burnt part of the study area, 1 year after 
the fire. Live-trapping sampling was performed with Sher-
man and Heslinga trap models, targeting ground-foraging 
herbivorous, granivorous, and insectivorous. Of 137 small 
mammals captured, not a single insectivorous was caught 
(Tomassini et al., unpubl. data), suggesting their lack from 
the early successional phases, in accordance with HAM 

Table 4  Summary of the 
single-species occupancy (ψ) 
and detection probability (p) 
models of the small mammals’ 
taxa. Data were collected 
through hair-tube sampling in 
Monte Pisano (Tuscany, Italy) 
from May 19 to July 23, 2021. 
Models were ranked based on 
AICc; those within ΔAICc < 
2.00 were rated as equally best 
supported. In these cases, the 
model with the highest Akaike 
weight (Wi) was selected. *: 
model that has not converged; 
K: number of parameters

Model K ΔAICc Wi R2
adj

Crocidura spp.
 M1: p (fire + moon ph.) ~ ψ (1) 4 0.00 0.50 0.19
 M4: p (fire + moon ph.) ~ ψ (deadwood) 5 0.75 0.35 0.22
 M3: p (fire + moon ph.) ~ ψ (deadwood + fire) 6 3.08 0.11 0.22
 M2*: p (fire + moon ph.) ~ ψ (fire) 5 - - -
 M0: p (1) ~ ψ (1) 2 0.00 0.50 0.19
House mouse
 M2: p (fire + tubes + T) ~ ψ (fire) 6 0.00 0.80 0.44
 M1: p (fire + tubes + T) ~ ψ (1) 5 2.78 0.20 0.37
 M0: p (1) ~ ψ (1) 2 18.80 0.00 0.00
Apodemus spp.
 M1: p (fire + moon ph.) ~ ψ (1) 4 0.00 0.74 0.27
 M2: p (fire + moon ph.) ~ ψ (fire) 5 0.00 0.26 0.27
 M0: p (1) ~ ψ (1) 2 8.46 0.00 0.00
Voles
 M2: p (moon ph. + check + moon ph. : check + deadwood + T) ~ ψ (fire) 6 0.00 1.00 0.50
 M1: p (moon ph. + check + moon ph. : check + deadwood + T) ~ ψ (1) 11.56 0.00 0.31
 M0: p (1) ~ ψ (1) 2 16.41 0.00 0.00
Garden dormouse
 M4: p (fire + dist. burn edge) ~ ψ (forest + deadwood) 6 0.00 0.58 0.43
 M3: p (fire + dist. burn edge) ~ ψ (forest) 5 1.19 0.32 0.39
 M2: p (fire + dist. burn edge) ~ ψ (deadwood) 5 3.97 0.08 0.35
 M1: p (fire + dist. burn edge) ~ ψ (1) 4 7.20 0.02 0.26
 M0: p (1) ~ ψ (1) 2 16.92 0.00 0.00
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(Fox 1982; Monamy and Fox 2010; Torre and Díaz 2004). 
In addition, it must be acknowledged that burnt habitat 
may not be still so unsuitable, 3 years after the fire. Factors 
such as increased vegetation cover and the accumulation 
of deadwood on the ground can potentially compensate 
for other unfavourable microhabitat characteristics, such 
as moisture, that may have initially posed a challenge to 
recolonisation (Kirkland Jr 1991; Greenberg et al. 2007). 
Moreover, recolonisation by arthropods, an essential 
component of the shrew’s diet, may have occurred at an 
enhanced rate, likely influenced by the relatively small 
size of the fire (Radea and Arianoutsou 2012; Ferrenberg 
et al. 2019).

Small mammal assemblage

Results obtained from habitats investigated indicated almost 
the same taxa composition. Nevertheless, we detected dif-
ferences in the abundances of the assemblage, and, in some 
cases, even within functional groups. Therefore, the com-
munity structure of small mammals was differentiated in 
the four habitats. Differences of abundances in burnt and 
unburnt areas have been reported, and they usually reflect 
secondary successional stages (Fox 1982; Torre and Díaz 
2004; Monamy and Fox 2010). However, the extent of these 
differences across the Mediterranean basin is poorly known, 
and may depend on fire regime features (Diffendorfer et al. 
2012; Culhane et al. 2022), post-fire interval (Kelly et al. 
2011; Torre et al. 2022), and features of local fauna (Grif-
fiths and Brook 2014; Chia et al. 2015).

That the fire was relatively small may have favoured 
recovery phenomena in all habitats (Haim 2002; van Man-
tgem et al. 2015), even if we cannot exclude species in situ 
that survived in underground shelters (Arrizabalaga et al. 
1993; Puig-Gironès et al. 2018; Hale et al. 2022). The four 
investigated habitats differed significantly in terms of under-
growth and tree cover; this difference may have had a key 
role in small mammals’ succession and abundance diver-
gences (Fox 1982; Torre and Díaz 2004; Monamy and Fox 
2010; Culhane et al. 2022; Torre et al. 2023).

From an ecological perspective, these differences in abun-
dance have notable implications. Arboreal species and most 
of the ground-foraging herbivorous/granivorous exhibited 
greater differences in abundance among habitats, indicating 
potential sensitivity to microhabitat variation. In contrast, 
ground-foraging insectivorous species and Apodemus spp. 
showed a more homogeneous distribution. These results sug-
gest that post-fire habitat heterogeneity may exert selective 
pressures on small mammal assemblages, potentially driving 
shifts in their composition and structure (Haim and Izhaki 
1994; Fox 2022; Torre et al. 2022). Such insights are essen-
tial for understanding the complex interactions among fire 
regimes, habitat characteristics, and small mammal popu-
lation dynamics, ultimately contributing to more informed 
conservation and management strategies in fire-prone areas 
(Whelan et al. 2002; Syphard et al. 2009; Van Wagtendonk 
2009; Puig-Gironès and Pons 2023).

Detectability effects

The statistical models used revealed interesting effects of 
different variables on the detection of several taxa. Fire 
also played a key role in the detection of four of the five 
taxa tested, with three of them showing increased detect-
ability in burnt areas (i.e., Crocidura spp., house mouse, 
Apodemus spp.). It is reasonable to assume that in post-fire 
environments with denser undergrowth, individuals of these 

Table 5  Parameter estimates of the best-supported models of small 
mammals’ taxa occupancy (ψ) and detection probability (p) models. 
Data were collected by hair-tube sampling in Monte Pisano (Tuscany, 
Italy) from May 19 to July 23, 2021

Parameter β SE Z p

Crocidura spp. (M1)
 ψ (intercept) 1.11 1.55 0.72 0.472
 p (intercept) −2.67 0.55 4.83 <0.001
 p fire (B) 1.33 0.62 2.14 0.032
 p moon ph. 0.64 0.28 2.28 0.023
Apodemus spp. (M1)
 ψ (intercept) 2.47 0.83 2.98 <0.01
 p (intercept) 0.73 0.26 2.82 <0.01
 p fire (B) 1.00 0.38 2.65 <0.01
 p moon ph. 0.52 0.19 2.69 <0.01
Garden dormouse (M4)
 ψ (intercept) −1.92 0.77 −2.48 0.013
 ψ forest (P) 2.08 0.91 2.29 0.022
 ψ deadwood 0.76 0.43 1.76 0.078
 p (Intercept) 1.34 0.53 2.55 <0.05
 p fire (B) −2.59 0.74 −3.49 <0.001
 p dist. burnt edge −0.40 0.26 −1.55 0.122
House mouse (M2)
 ψ (intercept) −0.24 0.57 −0.41 0.681
 ψ fire (B) 3.20 1.33 2.41 0.016
 p (intercept) −1.06 0.49 −2.17 0.030
 p fire (B) 0.82 0.54 1.52 0.130
 p tubes (yes) 0.98 0.46 2.15 0.032
 p T 0.42 0.21 1.99 0.047
Voles (M2)
 ψ (intercept) −1.94 0.801 −2.42 0.015
 ψ fire (B) 3.75 1.847 2.03 0.042
 p (intercept) 1.37 0.422 −3.25 0.001
 p moon ph. 1.20 0.417 2.87 <0.01
 p check 0.93 0.45 −2.07 <0.05
 p moon ph. : check 1.23 0.573 −2.15 <0.05
 p deadwood −1.41 0.544 −2.59 <0.001
 p T 0.80 0.462 1.73 <0.01
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species may perceive reduced predation risk (Mandelik et al. 
2003), resulting in increased locomotory activity and lead-
ing to more frequent visits to the hair-tubes. Conversely, the 
garden dormouse showed increased detectability in unburnt 
areas, may be due to increased tree connectivity (Mazzamuto 
et al. 2020), potentially favouring locomotion and visits to 
the hair-tubes. Similarly, detectability for Crocidura spp., 

Apodemus spp. and voles increased with increasing moon 
phase, indicating greater nighttime brightness. This effect 
was unexpected, but could be explained by improved vis-
ual acuity resulting in increased foraging activity, leading 
individuals into the baited hair-tubes (Prugh and Brashares 
2010; Maestri and Marinho 2014). However, lunar phases 
could mask another effect related to rainfall. Indeed, periods 

Fig. 4  Predicted occupancy probability (ψ) of small mammal’s taxa, 
sampled through hair-tube sampling in Monte Pisano (Tuscany, Italy) 
between May 19 and July 23 2021. Predictions were carried out on 
the best-supported model of each taxon. A House mouse occupancy 
probability (ψ) in relation to fire; B voles occupancy probability (ψ) 

in relation to fire; C garden dormouse occupancy probability (ψ) in 
relation to forest type. Values were back-transformed in probability 
scale. The dots and solid lines are predicted mean values, whereas the 
vertical bars are 95% confidence intervals (95% CIs)
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with brighter nights coincided with more rainfall. The 
hypothesised increase in activity could therefore be due to a 
reduced predation risk, which is typically lower during rainy 
periods (McCafferty et al. 2003). Furthermore, some studies 
support an increase in invertebrates activity during these 
periods (Naxara et al. 2009; Maestri and Marinho 2014), 
possibly leading to synchronisation with small mammals, 
especially insectivores such as Crocidura spp. Unfortunately, 
due to the high correlation between lunar phases and rainfall 
during our study period, it was not possible to disentangle 
their effects. Further research is therefore needed. Finally, 
the house mouse and voles showed higher detectability at 
higher environmental temperatures, which could be due to 
an increase of locomotory activity levels. The opposite effect 
is more commonly observed in rodents (Sassi et al. 2015; 
Wróbel and Bogdziewicz 2015); however, the effect found 
could be due to an anti-predatory strategy, to reduce the 
temporal overlap with predators (Cavallini and Lovari 1991; 
Zalewski 2000).

In conclusions, several variables, both environmental and 
meteorological, showed an effect on the detection probabil-
ity (p) of small mammals sampled with hair-tubes. There-
fore, a statistical approach that takes this into account (e.g., 
occupancy models; MacKenzie et al. 2002, 2017) should be 
used, also in future studies.

Limitations of the study

To test the hypotheses related to the HAM, our study focused 
exclusively on a single post-fire period, nearly 3 years after 
the fire, and no data were available prior to this period. 
Consequently, it is crucial to acknowledge that our findings 
could potentially be affected by population trends. Indeed, 
elucidating the role of population dynamics in shaping these 
associations remains a major challenge. Some taxa may have 
survived the fire event, starting an in situ recovery, whereas 
others may have colonised the burnt area at a later stage 
(do Rosário and da Luz Mathias 2007; Banks et al. 2011; 
Puig-Gironès et al. 2018; Hale et al. 2022). In addition, 
unsampled species may have occupied earlier post-fire suc-
cessional stages and potentially influenced the small mam-
mal assemblage, for example through competitive interac-
tions (Monamy and Fox 2010; Fox 2022). Hence, the main 
limitation of the study was to not investigate also earlier 
post-fire intervals.

Likewise, we encourage future investigations to broaden 
the focus to encompass later successional stages over both 
medium and long-term periods (Kelly et al. 2011; Torre 
et al. 2022). Combining these analyses with evaluations of 
the role of environmental variables (e.g., habitat structure), 
and with an exploration of post-fire successional dynamics 
across diverse ecosystems around the world, represents, in 
our view, the most comprehensive approach for advancing 

our understanding of the intricate interplay between wildfire 
events and small mammal assemblages.

Concluding remarks

The HAM, supported in the Mediterranean ecosystems of 
Australia, California (USA), and South Africa (Fox et al. 
1985; Monamy and Fox 2010; Culhane et al. 2022; Torre 
et al. 2022), was also supported in a Mediterranean basin 
area, probably due to the shared temperate climate.

In Mediterranean-type ecosystems (MTEs), which are 
characterised by a strong climatic seasonality with rainy 
winters and dry summers (Aschmann 1973; Keeley et al. 
2011), the key to understanding the support for the HAM 
may lie in the complex interplay between climatic condi-
tions, vegetation dynamics and ecological interactions. 
These ecosystems exhibit a unique ecological pattern in 
which the winter-spring vegetation period is particularly pro-
longed, resulting in exceptionally high primary productivity 
during the first springs after fire (Trabaud 1994; Keeley et al. 
2011). As a consequence, there is usually a marked increase 
in the early post-fire understorey cover, which is shared by 
the different MTEs (e.g., Kayes et al. 2010; Tessler et al. 
2016; Nalliah et al. 2022). This increased understorey cover 
should, in turn, affect microhabitat features and resource 
availability, which in turn might affect the secondary suc-
cession of specific ecological groups (e.g., ground-foraging 
herbivorous, insectivorous, and arboreal species). Confirm-
ing this, HAM did not find support in semi-arid ecosystems, 
which are different in terms of climate (Bradstock and Cohn 
2002; Letnic et al. 2004; Kelly et al. 2011). Other theoreti-
cal frameworks may therefore be more appropriate in these 
circumstances (Letnic et al. 2004; Kelly et al. 2011).

However, unexpected patterns emerged related to diver-
gences from HAM, e.g., for Crocidura spp. and garden dor-
mouse. Clearly, there are still knowledge gaps regarding the 
effects of fires on animal communities. For instance, the 
role of recovery type (i.e., through in situ survival or exter-
nal recolonisation; Banks et al. 2011; Puig-Gironès et al. 
2018; Hale et al. 2022) and its interactions with microhabi-
tat features (Bertolino and Cordero di Montezemolo 2007; 
Greenberg et al. 2007; Frock and Turner 2018), resources 
availability (Radea and Arianoutsou 2012; Ferrenberg et al. 
2019) and population dynamics (Haim and Izhaki 1994; 
Bauduin et al. 2013; Fox 2022) remain to be disentangled.

To our knowledge, this was the first study conducted in 
Italy that evaluated the post-fire successional status of an 
assemblage of small mammals, and one of the few con-
ducted in the Mediterranean basin (Torre and Díaz 2004; 
Torre et al. 2022; Puig-Gironès and Pons 2023). By shed-
ding light on the dynamics of post-fire recovery in this 
region, our study provides valuable insights into fire man-
agement practices and biodiversity conservation strategies.
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The urgency of this research is highlighted by the increas-
ing frequency and severity of wildfires worldwide, especially 
in the Mediterranean area (Bowman et al. 2020; Flannigan 
et al. 2009; Turco et al. 2018). With climate change exacer-
bating these trends, the effects of fire on animal communities 
are expected to escalate.

However, there is a significant geographical gap in this 
area of research, with many studies conducted primarily in 
Australia and North America (Geary et al. 2020; Jolly et al. 
2022). While these regions have provided useful informa-
tion into the effects of wildfires on wildlife, it is crucial to 
broaden our understanding by focusing on less studied, but 
ecologically relevant, high-fire-risk ecosystems such as 
those of the Mediterranean basin. Studying the effects of fire 
on wildlife in the Mediterranean basin can provide impor-
tant insights into adaptation, conservation, and management 
strategies specific to this increasingly fire-prone region.
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