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Abstract
Climate and land use changes re-shape the distribution of species around the world, so understanding biogeographical pat-
terns is key to protect and manage wildlife, particularly in the case of threatened or declining species. Species with wide 
ranges are usually considered as common, yet the occurrence of intraspecific variability and adaptation to local conditions 
may pose serious challenges to their conservation. In this paper, we selected the harvest mouse Micromys minutus as a model 
species to assess the role of intraspecific genetic variability in shaping the environmental preferences and distribution of a 
widely distributed mammal across Europe. By applying an integrative approach combining species distribution modelling 
and phylogenetic reconstruction, we assessed the clade-specific habitat suitability of all mitochondrial clades of the spe-
cies occurring in Europe, unveiling distinct bioclimatic niches. Most of Central Europe results as suitable to M. minutus, 
whereas different clades showed distinct distributions of suitable areas across Europe, with limited overlap. We then com-
bined mitochondrial analyses with clade-specific suitability maps to determine the geographic delimitations of Italian and 
central European clades. We showed that individuals from the northernmost Italian regions actually belong to the central 
European clade, consistent with the biogeographical patterns of other small mammals, and indicating potential past dispersal 
between the Italian Peninsula and Central Europe, or human-assisted translocations. Our results highlight the importance of 
intraspecific variability in shaping biogeographical patterns of widely distributed species, also representing a reproducible 
exercise to understand their environmental preferences and eventually fostering their conservation.

Keywords Indicator species · Micromys minutus · Mitochondrial DNA · Potential distribution · Rodentia · Species 
distribution models

Introduction

Climatic changes occurred across time on Earth generated 
habitat contractions with huge consequence for, e.g., spe-
cies genetic structures, as being listed as one of the factors 
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determining faunal spontaneous migrations and range con-
tractions, expansions, or shifts (Hansen et al. 2001; Banguera-
Hinestroza et al. 2010; Ali et al. 2021; Smeraldo et al. 2021). 
Particularly, the geology of the Pleistocene, which lasted from 
2.6 million years ago to 11,700 years ago, shaped the present-
day wildlife biogeography (Vuilleumier 1971; Cohen et al. 
2013). In this context, peninsular areas of the Mediterranean 
basin (i.e., Iberian, Balkan, and Apennine Peninsula) have 
played a key role as a life preserver—or refuge—for several 
species during the last glaciation (e.g., Di Pasquale et al. 2020). 
In particular, peninsular areas represented an important hub 
for the subsequent recolonization of temperate animal spe-
cies in the after-glacial era (Sommer and Nadachowski 2006;  
Colangelo et al. 2012). As such, the recolonization process has 
often led to genetic divergence in expanding population after 
the glacial period, e.g., due to genetic bottlenecks and genetic 
drifts (or even speciation) by newly colonizing populations at 
the range margins (Gaytán et al. 2020; Ladurner et al. 2021). 
Consequently, our understanding of species environmental 
niche across Europe, and particularly in the case of taxa with 
wide ranges, may be hampered by such intraspecific varia-
tion and potential ecological specialization at local levels, with 
obvious consequences for conservation or management of such 
species (e.g., reintroductions and rewilding).

Modelling species suitable or potential ranges has become 
a key tool for conservation planning, species assessment, and 
for addressing the search for rare or threatened species, beside 
predicting taxa’s spatial responses to climate change under dif-
ferent scenarios (Di Febbraro et al. 2019; Falaschi et al. 2019). 
Intraspecific variation may though impede our ability to prop-
erly predict species’ responses, since distinct sub-specific 
biological entities (e.g., subspecies, evolutionary significant 
units (ESUs) or clades) may feature different environmental 
preferences, so that any approach ignoring such variability 
will inevitably result in biased or partial predictions (Mori 
et al. 2019). Since the last glaciation, peninsular areas of the 
Mediterranean basin (i.e., Iberian, Balkan, and Apennine Pen-
insula) have shown the highest proportion of endemic taxa in 
Europe, and still exhibit intriguing concentrations of genetic 
diversity. Genetic diversity is much stronger and more defi-
nite for small mammals (Rodentia and Eulipotyphla), which 
were historically isolated from other European conspecific 
populations, with respect to large ones (e.g., Garrido-García 
and Soriguer-Escofet 2012; Loy et al. 2019), a by-product of 
their usually lower mobility and stronger dependence upon 
specific microhabitats (Lo Brutto et al. 2011; Castiglia et al. 
2016). As a result, small mammals compose the bulk of the 
endemic mammal species in Italy (8 out of 10 endemic spe-
cies: Amori and Castiglia 2018; Loy et al. 2019). Besides, 
several divergent lineages in Italian small mammals may rep-
resent well-supported subspecies or ESUs (e.g., edible dor-
mouse Glis glis, Lo Brutto et al. 2011; bank vole Clethriono-
mys glareolus, Colangelo et al. 2012, Chiocchio et al. 2019; 

Calabrian forest dormouse Dryomys aspromontis: Bisconti 
et al. 2018). In particular, the Alps represent a geographical 
barrier—or an isolated stronghold in the case of high-moun-
tain specialists—to small mammals, representing a signifi-
cant discontinuity in their habitat suitability which results in 
the isolation of Italian populations (e.g., Reutter et al. 2003; 
Fløjgaard et al. 2009). Nonetheless, valleys and coastal areas 
may still represent viable corridors for dispersing individuals 
between the Apennine Peninsula and Central Europe, allow-
ing the potential genetic introgression of different clades (e.g., 
Alectoris chukar × Alectoris rufa: Barbanera et al. 2009; Canis 
lupus lupus × Canis lupus italicus: Ražen et al. 2016). Popula-
tions of small mammals (Talpa europaea, Sorex araneus, and 
Arvicola amphibius) from north-eastern Italy (Alto Adige and 
Friuli Venezia Giulia) in fact often show a stronger phyloge-
netically relationship with conspecifics from Central Europe 
than to those from peninsular Italy (Ladurner et al. 2021;  
Colangelo et al. 2022; Solano et al. 2022).

Among small mammals, a recent genetic analysis of the 
harvest mouse Micromys minutus in Italy has shown the 
occurrence of a divergent population in peninsular Italy, 
i.e., in the Po River plain (Mori et al. 2022a), whereas 
it is not known whether populations from northernmost 
regions cluster with either Italian or central European 
clades. The occurrence of populations of this species in 
peninsular Italy has been directly supported by finding 
bones remains into barn owl Tyto alba pellets, for the 
first time in the 1990s, with two isolated populations in 
Tuscany (Padule di Fucecchio and Montepulciano Lake: 
Agnelli and Lazzaretti 1995; Manganelli et al. 2001). 
Recent genetic analyses of populations from central Italy 
suggested them as potentially introduced from Central 
Europe in recent times (Mori et al. 2022a). The harvest 
mouse represents a relatively recent species of the Euro-
pean—and Italian in particular—fauna, with no fossil 
records occurring in Italy before the Holocene. However, 
during the Quaternary, the species apparently underwent 
several cycles of extinction and recolonization events 
(Spitzenberger 1999). Currently, the Italian populations 
of M. minutus are highly fragmented, making it a reli-
able bioindicator species of landscape changes and habitat 
quality (Mori et al. 2022a). Moreover, the harvest mouse 
is the only rodent whose conservation status has worsened 
in the last 10 years in Italy, being now classified as Near 
Threatened (Rondinini et al. 2022).

Here, we aim to evaluate the biogeography and genetic 
intraspecific variability of a widely distributed European 
species by applying a multidisciplinary approach, namely 
combining molecular tools for phylogenetic analysis and 
species distribution modelling (SDM) for environmental 
niche assessment, using M. minutus as a model species. 
Specifically, we assessed the genetic clade of northern-
most Italian populations and we tested for bioclimatic niche 
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divergence among molecularly distinct clades, predicting 
that genetic divergence is coupled to subtle habitat prefer-
ences in a poorly mobile taxon (average dispersal distances 
in Central Europe estimated in 10–50 m, and home range 
sizes of about 350  m2: Cross 1967; Trout 1978; Darinot 
2019). We selected the harvest mouse as a model species 
since it features a very wide geographical range with clearly 
distinct genetic clades (Chen et al. 2023); moreover, the spe-
cies is considered as common but locally threatened and 
in decrease in several countries (Trout 1978; Harris 1979; 
Vecsernyés 2020), so understanding the potential drivers of 
occurrence may be pivotal for preserving and managing the 
species. Given that harvest mice are mostly plain species, 
we predict a clear geographical and genetic isolation of the 
population occurring in the Po River plain, due to the bar-
rier effect of the Alps and the consequent low probability of 
dispersal between the two geographical areas. As a factor 
associated to such geographical isolation, we also predict 
that distinct clades are going to feature at least partially dif-
ferent bioclimatic preferences and therefore will differ in the 
distribution of their potential habitat across Europe.

Materials and methods

Molecular analyses

We used a sequence set (N = 24 sequences) including north-
ern and central Italian samples analyzed by several authors 
(n = 12 sequences: Mori et al. 2022a), one sequence per coun-
try downloaded from Genbank repository (https:// www. ncbi. 
nlm. nih. gov) belonging to Asian, Eastern, and Western Euro-
pean samples (n = 10), and new sequences (n = 2; GenBank 
accession numbers: OP358478, OP358479) from an Alpine 
area of northern Italy. We were able to collect two harvest 
mouse samples from Alto Adige (South Tyrol), where reli-
able records of this species have been reported in 2012 (Bio-
topo “Lago di Caldaro” – IT3110034: 46.379°N—11.262°E). 
We extracted total DNA from 25 mg of tissue samples previ-
ously preserved in absolute ethanol using the QIAGEN Blood 
and Tissue kit (Qiagen®, Hilden, Germany), following the 
manufacturer’s instructions. We conducted mitochondrial 
cytochrome-b PCR amplifications (1140 base pairs, hereafter 
cytb) using primers and PCR protocols already used for this 
species (Mori et al. 2022a). PCR products were purified using 
the ExoSAP-IT PCR clean-up Kit (GE Healthcare®, Pis-
cataway, New Jersey, USA) and then sequenced via Sanger 
method (3730xl DNA Analyzer, Applied Biosystems™).

We conducted phylogenetic reconstruction applying 
neighbor-joining (NJ), Bayesian (BI), and maximum like-
lihood (ML) methods (see Mori et al. 2022a). The TN93 
(Tamura-Nei) nucleotide substitution model was selected 
by jModelTest 2 (Darriba et  al. 2012) with the Akaike 

Information Criterion (AIC) and corrected for rate hetero-
geneity among sites with a Gamma distribution. The NJ was 
performed by MEGA 11 software and 1000 bootstrap repli-
cates (Tamura et al. 2021). The BI analysis was performed 
with MrBayes v.3.12 (Ronquist and Huelsenbeck 2003), 
using the best model selected. Four chains of Markov Chain 
Monte Carlo were simultaneously run and sampled every 
1000 generations for 4 million generations. We discarded 
the first 1000 sampled trees from each run as burn-in. The 
ML phylogenetic analysis was conducted utilizing SeaView 
(Gouy et al. 2010).

Species distribution modelling

We defined our study area a posteriori as the spatial extent 
encompassing all the selected occurrence records. The area 
comprised the entire Mediterranean Basin and central/
eastern European territories, extending north to the UK 
and Scandinavia, east to Kazakhstan, west to the Iberian 
Peninsula (longitudinal range: − 10.0–60.0° E, latitudinal 
range: 35–71.5° N). We did not include any buffer around 
records, since these were already well distributed across the 
study area, which thus captured the environmental variabil-
ity of both presence and absence areas. Presence records 
were collected from several sources, including for GBIF 
(Global Biodiversity Information Facility) via the rgbif 
package (Chamberlain et al. 2017), authors’ own data, and 
published references, totalling 25,646 records. All records 
were then filtered and selected if georeferenced with < 5 km 
accuracy, and controlled for duplicates, which were removed 
before further analyses. The remaining presence records 
were thinned at 5 km distance by using the spThin package 
(Aiello-Lammens et al. 2015), i.e., multiple records were 
reduced to a single presence within this distance, in order 
to limit spatial biases towards the environmental conditions 
of intensively sampled areas, and maintaining a resolution 
comparable to that of climate data. In order to assess the 
environmental preferences of the species, also considering 
its intraspecific genetic variability, we built four distinct 
datasets, one including all the selected record of the species 
and the others considering only records with known genetic 
identity. As such, all the 1283 independent records across 
its entire European range were used as the “full” species 
dataset. We then used published evidence on the genetic 
intraspecific variation of M. minutus to further split our 
records into clade-specific datasets (Fig. 1).

Namely, three main well-supported clades are known to 
occur in the study area, i.e., central European clade (here-
after, CEc), Italian clade (hereafter, ITc), and Eastern clade 
(hereafter, Ec). A fourth clade, the Korean clade, is endemic 
to Asia (Yasuda et al. 2005; Mori et al. 2022a). We thus 
sub-selected our full dataset for grouping records, spe-
cifically classifying each observation as belonging to one 

https://www.ncbi.nlm.nih.gov
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clade, assigning to a given clade all records from a country 
included in genetic samplings; as such, records from cen-
tral and Western Europe (Spain, France, UK, and Germany) 
were assigned to the CEc, records from the Po River plain to 
the ITc, and those from Russia to Ec. Since no genetic data 
is available from other countries where the species widely 
occurs (Belgium, Austria, Denmark, Ukraine, Hungary, Slo-
vakia, Czech Republic, Finland, Estonia, Poland, Lithuania), 
we excluded records from such areas from clade-specific 
modelling (though they were included in the species’ full 
model). This procedure led us to include 120 records for 
CEc, 21 for ITc, and 43 for Ec.

Environmental variables and SDM building

We downloaded 19 bioclimatic variables as descriptors of cli-
matic conditions from Worldclim2 (Fick and Hijmans 2017), 
with a 1 km (30 arc seconds) resolution. Multicollinearity 
among variables within the study area was controlled by 
running a variance inflation factor (VIF) analysis, retaining 
only variables with VIF values < 5 (Curto and Pinto 2011). 
We conducted the VIF analysis by using the vifstep function 
built in the sdm R package (Naimi and Araújo 2016). This 
procedure identifies a measure for each environmental predic-
tor, as assessed in the entire extent of the study area, of how 
much it can be explained by the others, and removes those with 
values above the threshold set. The stepwise VIF procedure 

was repeated for each clade separately, resulting in 4–6 inde-
pendent variables for each dataset. We built SDMs based on 
a bioclimatic envelope approach (Pearson and Dawson 2004), 
separately for the full dataset and for each clade, by adopting 
a maximum entropy approach as implemented in the sdm R 
package (Naimi and Araújo 2016), performing 30 runs for each 
clade and performing a model averaging procedure to obtain 
a single overall result per clade. Maxent modelling is a well-
established procedure that provides robust and reliable predic-
tions, particularly in the case of small sample sizes as in our 
case (Ancillotto et al. 2019; Kaky et al. 2020). For model train-
ing, we randomly selected 70% of occurrence data, using the 
remaining 30% for model performance testing. We assessed 
model performance in predicting species’ distribution by 
measuring the area under the receiver operating characteristic 
curve (AUC) and the True Skill Statistics (TSS), two validation 
methods widely used in SDMs (Araùjo and New 2007). AUC 
is a threshold-independent statistics which assesses model dis-
crimination ability and ranges between 0 (equal to random dis-
tribution) and 1 (perfect prediction; Allouche et al. 2006). TSS 
is threshold-dependent and compares the numbers of correct 
predictions to those attributable to random guessing, ranging 
from − 1 (a performance no better than random) to + 1 (total 
agreement). The combined use of these validation statistics is 
recommended when assessing the performance of predictive 
distribution models (Bosso et al. 2022). Response of the entire 
species and of each clade to every selected environmental 

Fig. 1  Distribution of occur-
rence records of the harvest 
mouse (Micromys minutus) 
across its range, with indica-
tion of phylogenetic structuring 
into clades. Blue circles, central 
European clade; green circles, 
Italian clade; pink circles, East-
ern clade; black dots, unknown 
clade; yellow triangles, testing 
locations
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predictor was assessed by inspecting the response curves, 
while each variable’s relative importance, quantified as the 
AUC improvement in model performance due to the inclu-
sion of the target variable, was calculated by the specifically 
devoted function in the sdm package (getVarImp).

Testing genetic and environmental similarity

As a last step, we tested whether recent records of M. minutus 
that are outside of the known range within the Po River plain 
(i.e., those from Alto Adige and Padule di Fucecchio wet-
land) and that we did not include in the SDM exercise show 
agreement among molecular clade assignment, geographical 
distance, and environmental suitability. We thus assessed the 
relative position of samples from these two isolated popula-
tions within the entire phylogenetic tree of M. minutus, also 
extracting the clade-specific suitability values (ranging from 
0 to 1) at their occurrence locations, and measuring the geo-
graphic distance to the closest known records belonging to a 
given clade. Estimates for the time to the Most Recent Com-
mon Ancestor (TMRCA) of all clades were obtained for sub-
stitution rates reported in the scientific literature for rodents 
(Martin et al. 2000; Arbogast et al. 2001).

Results

Clade assignment

The alignment of the cytb gene consisted of 1108 nucleo-
tides, 42 of which are variable and 15 parsimony-inform-
ative. The average ratio of TS/TV is 1.56. Nucleotide 
genetic diversity was 0.00898 (± 0.0017) and the average 
number of divergences was found to be 7.773. The Most 

Recent Common Ancestor of all the clades dates back to 
100,000–150,000 years ago (see Mori et al. 2022a).

Our analyses showed that samples from Alto Adige 
(Caldaro, Bozen) clustered with those of Padule di 
Fucecchio wetland and central-northern Europe in the 
European clade, mostly similar to German and French 
ones (Fig. 2).

Species distribution models

The obtained models all reached good prediction perfor-
mances, with AUC values > 0.96 and TSS values > 0.75. 
The retained variables and their relative importance differed 
among the full and clade-specific models (Table 1), and no 
subset of selected variables covered the intraspecific variation 
among all models. The main drivers identified within the full 
species model were isothermality (bio3) and mean diurnal 
temperature (bio2), both with a negative effect on the species’ 
occurrence, followed by bio10 and bio18 (mean tempera-
ture and precipitation of warmest quarter, respectively), both 
showing a positive effect. More specifically, the CEc showed 
strongest associations with both bio3 (positive effect) and 
bio4 (negative effect), i.e., isothermality and yearly tempera-
ture seasonality, indicating a preference for lower temperature 
variations throughout the year. Similarly, the occurrence of 
ITc was mostly predicted by bio17 (precipitation of driest 
month), followed by bio15 and bio7 (precipitation seasonal-
ity and temperature annual range), indicating a preference 
for higher summer precipitation levels, low seasonality, and 
higher temperature annual ranges. Lastly, the Ec was strongly 
and negatively associated to isothermality and mean tempera-
ture of warmer quarter (positive/negative effect), positively 
associated to lower precipitation seasonality and negatively 
to the mean temperature of wettest season (Table 1).

Fig. 2  Maximum likelihood phylogenetic tree obtained from the 
analysis of cytb for 1108 nucleotides of the harvest mouse (Micromys 
minutus). Samples from Alto Adige are highlighted in red. The sta-

tistical support of major clades is shown at their nodes (NJ Bootstrap 
support/Bayesian probabilities/ML Bootstrap support). We used M. 
erythrotis and Mus musculus as outgroups
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As a consequence of such differences in their associa-
tion to environmental predictors, the three clades showed 
distinct distributions of their suitable ranges, also compared 
to the full species (Fig. 3), with little to no overlap among 
all three clades.

The two test records from peninsular Italy, both belong-
ing to the CEc, show higher suitability values for CEc than 
for ITc (Padule di Fucecchio: 0.70 vs 0.23; Caldaro, Bozen: 
0.55 vs 0.09), despite their close proximity to populations 
belonging to ITc (Padule di Fucecchio: approx. 95 km; Cal-
daro, Bozen: approx. 90 km) in comparison to the closest 
records of CEc (Padule di Fucecchio: ca. 400 km; Caldaro, 
Bozen: ca. 280 km); the distance from the Ec records was 
not assessed since this clade’s suitability approached 0 for 
both the two test records.

Discussion

We provide evidence of the importance of intraspecific phy-
logenetic structuring paired with environmental niche dif-
ferentiation in a widely distributed species, highlighting how 
different clades within a species may feature consistent dif-
ferences in their ecological preferences and, as such, potential 
distributions. Namely, we evidenced how distinct clades of the 
harvest mouse are associated to different sets of bioclimatic 
conditions, with central European populations being mainly 
associated to stable yearly climates, Mediterranean ones 
strongly depending upon water availability in dry months, 

and eastern ones to non-extreme temperatures in summer. 
As such, environmental preferences by all clades converge in 
depicting the species as sensitive to climate-change-induced 
events (e.g., droughts) that alter the predictability of both tem-
perature and precipitation patterns, in line with the depend-
ence of M. minutus upon wetlands and their associated veg-
etation (Chen et al. 2023). The differences we found among 
clades may be related to local climate and relevant limiting 
resources or conditions: as an example, summer months are 
typically dry in Mediterranean countries, thus precipitation at 
this time of the year is low and likely to affect the persistence 
of water-related habitats (Drobinski et al. 2020). Conversely, 
in Eastern Europe, the warmest quarter, i.e., summer months, 
is characterized by relatively high temperatures (16–20 °C: 
Lebedeva et al. 2016) that seem to limit the environmental 
suitability for the harvest mouse, as also seen for other small 
mammals, particularly during the delicate time of reproduc-
tive season (Zhao et al. 2020), i.e., summer, in the case of M. 
minutus (Harris 1979). Understanding biogeographical pat-
terns including intraspecific variation is mandatory to identify 
and anticipate potential changes in distribution ranges (Mori 
et al. 2019; Martínez‐Meyer et al. 2021; Khattak et al. 2022), 
as well as to plan and properly implement captive breeding 
and reintroduction programs (Rees 2001), particularly in the 
case of widely distributed and genetically structured species.

Our modelling exercise also highlights how clade-specific 
SDMs actually fail to fully predict habitat suitability of the 
species across its entire range; for example, no clade-spe-
cific model actually predicted some regions known to host 

Table 1  Bioclimatic variable importance and influence for species distribution models of the harvest mouse (Micromys minutus) across its Euro-
pean range, for the entire species (full range model) and for distinct phylogenetic clades (central European, Italian, and Eastern clade)

Variable importance is calculated as the relative AUC improvement in model prediction. Only significant variables are reported. Numbers in 
brackets indicate sample sizes. Direction of each predictor on the suitability value is indicated as either positive, negative, or bimodal

Bioclimatic variable Full range model 
(n = 1238)

Central European 
Clade (n = 120)

Italian Clade (n = 17) Eastern European 
Clade (n = 43)

Bio2
Mean of monthly temperature

7.4%
(Positive)

- - -

Bio3
Isothermality

11.8%
(Positive)

6.0%
(Positive)

- 57.5%
(Negative)

Bio4
Temperature seasonality

- 11.2%
(Negative)

- -

Bio7
Temperature annual range

- - 5.8%
(Positive)

-

Bio8
Mean temperature of the wettest quarter

- - - 3.6%
(Negative)

Bio10
Mean temperature of the warmest quarter

6.3%
(Positive)

- - 38.9%
(Bimodal)

Bio15
Precipitation seasonality

- - 12.1%
(Negative)

11.4%
(Positive)

Bio17
Precipitation of driest quarter

- - 64.9%
(Positive)

-

Bio18
Precipitation of warmest quarter

5.0%
(Positive)

- - -
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populations, e.g., Denmark and eastern Romania, from which 
no genetic information was available. The full-range model 
we built, i.e., the one ignoring any genetic structuring, though 
successfully predicted the potential distribution of M. minu-
tus across Europe. These apparent discrepancies in suitable 
range predictability among models may stem from different 
processes, namely (i) the potential occurrence of undisclosed 
clades in unsampled areas, and (ii) a genuine underestimation 
of the environmental niche of some clades due to a lack of 
genetic sampling (and consequent inclusion within the model) 
from areas with specific bioclimatic characteristics. Both phe-
nomena may in fact affect the ability of clade-specific models 
to fully predict the suitable range and deserve further investi-
gation by, e.g., sampling in new areas to capture the full niche 
variability of each clade of this species. Nonetheless, higher 
suitability in the mentioned unsampled regions was predicted 
by the CE model, suggesting that this may be likely be the one 
occurring in these areas.

The application of SDMs paired to phylogenetic analysis 
with a genetic marker under selection suggests that differ-
ences in the environmental association found among clades 

of M. minutus may genuinely stem from adaptation to local 
conditions, yet the use of a single marker (cytb) and of cor-
relative modelling approaches suggests caution in inferring 
evolutionary adaptation (Warren et al. 2014). Nonetheless, 
our exercise indicates that clade-specific suitability maps 
may improve our ability to assess—and predict—species’ 
potential occurrence at local scales, thus representing a 
potentially repeatable approach for this and other taxa. We 
may also expect Balkan populations to be more likely con-
nected to Italian ones, not European or Eastern ones, as the 
location of suitable areas suggests the occurrence of eco-
logical corridors, whereas other populations are presumably 
fragmented by stretches of unsuitable areas.

Land use and climate alterations are currently reshap-
ing the distribution of species around the world, some of 
which are considered as sentinel species of global change 
(Hansen et al. 2001; Steen et al. 2010; Wolf et al. 2010; 
Wilkening et al. 2015). Our work supports the isolation 
of the Italian clade as suggested by Mori et al. (2022a), 
confirming the Alps as an important barrier isolating con-
specific populations. Particularly, the limited dispersal 
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abilities of small mammals have promoted rapid genetic 
divergences over time (Amori and Castiglia 2018; Loy 
et al. 2019; Ladurner et al. 2021). Nonetheless, Alpine 
populations of the harvest mouse showed a higher genetic 
similarity with those from Central Europe than to Italian 
peninsular ones, a pattern consistent with those of other 
small mammals (cf. Colangelo et al. 2022; Solano et al. 
2022), and suggesting gene flow through active dispersal 
between the two clades.

According to our models, most of the western Palearc-
tic is climatically suitable for the harvest mouse, although 
remarkable differences occur in the suitability of single 
clades. Particularly, the central European clade finds 
most suitable areas from northern Spain to Germany, 
throughout France, the UK, and northern Italy. Suitable 
areas for the Italian clade mostly occur in Mediterranean 
countries, i.e., southern France, some parts of peninsular 
Italy, and Balkan peninsula. To conclude, the Eastern 
European clade is apparently mostly associated to the cli-
mate characterizing humid open areas of Eastern Europe. 
Based on the predicted suitability, the contact zone 
between Ec and CEc is likely to lay along the geographi-
cal stretch of territories laying across Ukraine, Belarus, 
and the Baltic Republics, at least according to clade-
specific suitability maps, highlighting these regions as 
key areas to further assess potential hybridization and/or 
introgression between these clades by future studies (see 
Demuzere et al. 2019). Extensive potential co-occurrence 
between CEc and ITc is predicted across a great part of 
the Italian Peninsula, particularly in the central Apen-
nines and the northern Adriatic coast, as well as along 
the Pyrenees and southern France, in the Balkans and 
along the southern and eastern coasts of the Black Sea 
(where occurrences of the species are not available on 
the main online platforms of biodiversity distribution, 
e.g., GBIF www. gbif. org, iNaturalist www. inatu ralist. 
org, Portal “Mammals of Russia” www. rusmam. ru/ atlas/ 
map, all accessed on 12.04.2023). Surprisingly, harvest 
mice from the Padule di Fucecchio wetland (central Italy) 
and from northeastern Italy (Alto Adige) both belonged 
to the Central Europe clade, which also showed a higher 
environmental suitability in this area with respect to 
the Italian clade; such apparent discrepancy in the bio-
geographical pattern of the species points at potential 
human-assisted unintentional translocations, as suggested 
by several authors before (Agnelli and Lazzeretti 1995; 
Rowe and Taylor 1964).

The ongoing increasing frequency of droughts due 
to climate change may dramatically reduce the extent 
of the habitat suitable to M. minutus and particularly 
to the Italian clade for which summer precipitation is a 

key driver of occurrence, thus sharpening its population 
decline recorded throughout Italy and Europe (Stirling  
et  al. 2020; Mori et  al. 2022b), as also evidenced for 
other Mediterranean taxa (e.g., Ancillotto et al. 2021; 
Labadessa and Ancillotto 2022). Small mammals are often 
neglected in biological conservation by the fact that they 
are often treated as pests or considered as common species  
(Bertolino et al. 2015). Among those, the harvest mouse 
is an important sentinel or bioindicator due to its strong 
dependence upon wetlands and grasslands, both habitat 
types that are strongly threatened by both climate altera-
tions and land use changes. The negligible research effort 
so far exerted on this species in Europe, together with the 
lack of records and samples in museums and private col-
lections, may bring researchers to overlook the population 
decline of this locally imperiled species. Taken together, 
these considerations highlight the potential of M. minu-
tus as a suitable candidate target for a large-scale—Euro-
pean—monitoring network for both tracking land use and 
climate change, as well as securing its long-term conserva-
tion across the continent in the near future.
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