Skip to main content

Advertisement

Log in

Seasonal demography of different black rat (Rattus rattus) populations under contrasting natural habitats in Guadeloupe (Lesser Antilles, Caribbean)

  • Original Paper
  • Published:
Mammal Research Aims and scope Submit manuscript

Abstract

The black rat (Rattus rattus) is one of the most widespread rodents on islands worldwide, introduced over the last five centuries. However, reliable information concerning how biotic or abiotic factors influence key parameters of black rat population biology in insular contexts is currently unavailable. Here we aim to document the relative abundance of rat populations and evaluate how the age structure and the body mass of adult individual vary seasonally in different forest environments under contrasting climatic conditions. Rats were captured during wet and dry seasons in 2017–2018 at one or two sites in each of the four natural forested environments of Guadeloupe, all of which experience widely different annual rainfall (semi-deciduous dry forest, seasonal evergreen forest, mountain rainforest and Pterocarpus officinalis swamp forest). A total of 171 black rats were captured during a 1018 trap-night effort. Overall capture results confirm this species to thrive in all the natural forested environments we investigated. With the exception of the P. officinalis swamp forest, black rat populations reach higher relative abundances during the wet season due to juvenile and sub-adult recruitment at the end of the dry season. In contrast, in the P. officinalis swamp forest, breeding activity continues during both seasons and relative rat abundance appears to fluctuate less seasonally. The relative abundance of adult black rats is also higher in the seasonal semi-evergreen and rainforests that experience little or no water stress. These contexts therefore appear the most favourable for sustaining black rat populations, a pattern that is most likely connected to a combination of climatic and/or edaphic parameters that condition the year-round availability and abundance of food resources.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Availability of data and material

The authors declare that the data supporting the findings of this study are available within the manuscript and its supplementary information.

References

  • Aplin KP, Suzuki H, Chinen AA, Chesser RT, Ten Have J, Donnellan SC, Austin J, Frost A, Gonzalez JP, Herbreteau V, Catzefli F (2011) Multiple geographic origins of commensalism and complex dispersal history of black rats. PLoS One 6(11):e26357

    CAS  PubMed  PubMed Central  Google Scholar 

  • Atkinson IA (1985) The spread of commensal species of Rattus to oceanic islands and their effects on island avifaunas. ICPB Tech Publ 3:35–81

    Google Scholar 

  • Augusteyn RC (2008) Growth of the lens: in vitro observations. Clin Exp Optom 91(3):226–239

    PubMed  Google Scholar 

  • Augusteyn RC (2014) Growth of the eye lens: I Weight accumulation in multiple species Molecular vision, 20, 410

  • Barnett SA (1958) An analysis of social behaviour in wild rats. In Proceedings of the Zoological Society of London Vol. 130 (No. 1, pp. 107-152). Oxford, UK: Blackwell Publishing Ltd

  • Beard JS (1948) The natural vegetation of the Windward and Leeward Island. Oxford Forestry Memoirs 21. Clarendon Press, Oxford

    Google Scholar 

  • Borroto-Páez R (2009) Invasive mammals in Cuba: an overview. Biol Invasions 11:2279–2290

    Google Scholar 

  • Bronson FH (1989) Mammalian reproductive biology. University of Chicago Press

  • Bronson FH (2009) Climate change and seasonal reproduction in mammals. Philos T R Soc B 364(1534):3331–3340

    CAS  Google Scholar 

  • Bürkner P (2017) brms: an R package for Bayesian multilevel models using Stan. J Stat Softw 80(1):1–28

    Google Scholar 

  • Bürkner P (2018) Advanced Bayesian multilevel modeling with the R package brms. R J 10(1):395–411

    Google Scholar 

  • Clark DB (1980) Population ecology of Rattus rattus across a desert-montane forest gradient in the Galapagos Islands. Ecology 61(6):1422–1433

    Google Scholar 

  • Delattre P, Le Louarn H (1980) Cycle de reproduction du rat noir (Rattus rattus) et du surmulot (Rattus norvegicus) dans différents milieux de la Guadeloupe (Antilles françaises). Mammalia 44(2):233–244

    Google Scholar 

  • Delattre P, Le Louarn H (1981) Dynamique des populations du rat noir, Rattus rattus, en mangrove lacustre. Mammalia 45(3):275–288

    Google Scholar 

  • Efford MG, Fitzgerald BM, Karl BJ, Berben PH (2006) Population dynamics of the ship rat Rattus rattus L. in the Orongorongo Valley, New Zealand. N Z J Zool 33(4):273–297

    Google Scholar 

  • Ernest SM, Brown JH, Parmenter RR (2000) Rodents, plants, and precipitation: spatial and temporal dynamics of consumers and resources. Oikos 88(3):470–482

    Google Scholar 

  • Ewer RF (1971) The biology and behaviour of a free-living population of black rats (Rattus rattus). Animal behaviour monographs

  • Feagin RA, Toledo-Rodriguez F, Colón-Rivera RJ, Smeins F, Lopez R (2013) Species composition and differences in diversity among the Pterocarpus offi-cinalis forested wetlands of Puerto Rico. Caribb Nat 1(4)

  • Feng AY, Himsworth CG (2014) The secret life of the city rat: a review of the ecology of urban Norway and black rats (Rattus norvegicus and Rattus rattus). Urban Ecosyst 17(1):149–162

    Google Scholar 

  • François-Lubin V (2005) Les peuplements de poissons des canaux et des riviéres de mangroves: le cas du canal Belle-Plaine:(Grand Cul-de-Sac Marin, Guadeloupe). Doctoral dissertation, Antilles-Guyane University, Pointe-à-Pitre

  • Goedert J, Cochard D, Lorvelec O, Oberlin C, Cuzange M-T, Royer A, Lenoble A (in press) Isotopic ecology of the extinct Lesser Antillean rat Antillomys rayi. Quat Sci Rev

  • Gomez N (1960) Correlation of a population of roof rats in Venezuela with seasonal changes in habitat. Am Midl Nat 63:177–193

    Google Scholar 

  • Harper GA (2006) Habitat use by three rat species (Rattus spp.) on an island without other mammalian predators. N Z J Ecol 30(3):321–333

    Google Scholar 

  • Harper GA, Bunbury N (2015) Invasive rats on tropical islands: their population biology and impacts on native species. Glob Ecol Conserv 3:607–627

    Google Scholar 

  • Harper GA, Cabrera LF (2010) Response of mice (Mus musculus) to the removal of black rats (Rattus rattus) in arid forest on Santa Cruz Island, Galapagos. Biol Invasions 12:1449–1452

    Google Scholar 

  • Harper GA, Rutherford M (2016) Home range and population density of black rats (Rattus rattus) on a seabird island: a case for a marine subsidised effect? N Z J Ecol 40(2):219–228

    Google Scholar 

  • Harper GA, Dickinson KJ, Seddon PJ (2005) Habitat use by three rat species (Rattus spp.) on Stewart Island/Rakiura, New Zealand. N Z J Ecol:251–260

  • Harper G, Van Dinther M, Bunbury N (2014) Black rats in mangroves: successful and intractable. In Proceedings of the Vertebrate Pest Conference (Vol. 26, No. 26)

  • Harper GA, van Dinther M, Russell JC, Bunbury N (2015) The response of black rats (Rattus rattus) to evergreen and seasonally arid habitats: informing eradication planning on a tropical island. Biol Conserv 185:66–74

    Google Scholar 

  • Hill MJ, Vel T, Shah NJ (2003) The morphology, distribution and conservation implications of introduced rats, Rattus spp. in the granitic Seychelles. Afr J Ecol 41(2):179–186

    Google Scholar 

  • Himsworth CG, Jardine CM, Parsons KL, Feng AY, Patrick DM (2014) The characteristics of wild rat (Rattus spp.) populations from an inner-city neighborhood with a focus on factors critical to the understanding of rat-associated zoonoses. PLoS One 9(3):e91654

    PubMed  PubMed Central  Google Scholar 

  • Imbert D, Bonhême I, Saur E, Bouchon C (2000) Floristics and structure of the Pterocarpus officinalis swamp forest in Guadeloupe, Lesser Antilles. J Trop Ecol 16(1):55–68

    Google Scholar 

  • Innes J (1979) Diet and reproduction of ship rats in the northern Tararuas. N Z J Ecol 2(8)

  • Innes JG, King CM, Flux M, Kimberley MO (2001) Population biology of the ship rat and Norway rat in Pureora Forest Park, 1983–87. New Zealand Journal of Zoology 28(1):57–78

    Google Scholar 

  • Lasserre G (1961). La Guadeloupe, étude géographique. Union française d’impression, Bordeaux, 2 vol., 1135 p

  • Lefebvre LW, Engeman RM, Decker DG, Holler NR (1989) Relationship of roof rat population indices with damage to sugarcane. Wildl Soc Bull 17(1):41–45

    Google Scholar 

  • Lord RD (1959) The lens as an indicator of age in cottontail rabbits. J Wildl Manag 23(3):358–360

    Google Scholar 

  • Lorvelec O, Pascal M, Paris C (2001) Inventaire et statut des Mammifères des Antilles françaises (hors Chiroptères et Cétacés), pp. 1-21. Association pour l’Etude et la protection des Vertébrés et végétaux des petites Antilles (AEVA), Petit-Bourg, Guadeloupe

  • Lorvelec O, Delloue X, Pascal M, Mège S (2004) Impacts des mammifères allochtones sur quelques espèces autochtones de l’îlet Fajou (réserve naturelle du Grand cul-de-sac marin, Guadeloupe), établis à l’issue d’une tentative d’éradication. Rev d’Écol (La Terre et la Vie) 59(1/2):293–307

    Google Scholar 

  • Lorvelec O, Pascal M, Delloue X, Chapuis J-L (2007) Les mammifères terrestres non volants des Antilles françaises et l’introduction récente d’un écureuil. Rev d’Écol (La Terre et la Vie) 62(4):295–314

    Google Scholar 

  • Lugo AE, Schmidt R, Borwn S (1981) Tropical forests in the Caribbean. Ambio 10(6):318–324

    Google Scholar 

  • Meerburg BG, Singleton GR, Kijlstra A (2009) Rodent-borne diseases and their risks for public health. Crit Rev Microbiol 35(3):221–270

    PubMed  Google Scholar 

  • Migeot J, Imbert D (2012) Phenology and production of litter in a Pterocarpus officinalis (Jacq.) swamp forest of Guadeloupe (Lesser Antilles). Aquat Bot 101:18–27

    Google Scholar 

  • Myers N, Mittermeier RA, Mittermeier CG, Da Fonseca GA, Kent J (2000) Biodiversity hotspots for conservation priorities. Nature 403(6772):853–858

    CAS  PubMed  Google Scholar 

  • Nakagawa S, Schielzeth H (2010) Repeatability for Gaussian and non-Gaussian data: a practical guide for biologists. Biol Rev 85:935–956

    PubMed  Google Scholar 

  • Nelson L, Clark FW (1973) Correction for sprung traps in catch/effort calculations of trapping results. J Mammal 54(1):295–298

    Google Scholar 

  • Nowak RM, Walker EP (1999) Walker’s Mammals of the World (Vol. 1). JHU Press

  • Pascal M, Lorvelec O, Borel G, Rosine A (2004) Rodent community structures in agricultural and natural ecosystems of Guadeloupe and Martinique (French West Indies). Rev d’Écol (La Terre et la Vie) 59(1–2):283–292

    Google Scholar 

  • Pascal M, Lorvelec O, Vigne J-D (2006) Invasions Biologiques et Extinctions : 11 000 Ans d’Histoire des Vertébrés en France. Editions Belin & Quæ, Paris

    Google Scholar 

  • Pimentel D, Lach L, Zuniga R, Morrison D (2000) Environmental and economic costs of nonindigenous species in the United States. Bioscience 50:53–65

    Google Scholar 

  • Pimentel D, McNair S, Janecka J, Wightman J, Simmonds C, O’connell C, Wong E, Russel L, Zern J, Aquino T, Tsomondo T (2001) Economic and environmental threats of alien plant, animal, and microbe invasions. Agric Ecosyst Environ 84(1):1–20

    Google Scholar 

  • Pinchon R (1967) Quelques aspects de la Nature aux Antilles. Fort-de-France, Martinique

    Google Scholar 

  • Pregill GK, Steadman DW, Watters DR (1994) Late Quaternary vertebrate faunas of the Lesser Antilles: historical components of Caribbean biogeography. Bull Carnegie Mus Nat Hist 37:1–51

    Google Scholar 

  • Quéré JP, Le Louarn H (2011) Les rongeurs de France: Faunistique et biologie—3e édition revue et augmentée. Editions Quae

  • R Core Team (2019) R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing. https://www.r-project.org/. Accessed Mar 2020.

  • Ringler D, Russell J, Jaeger A, Pinet P, Bastien M, Le Corre M (2014) Invasive rat space use on tropical islands: implications for bait broadcast. Basic Appl Ecol 15(2):179–186

    Google Scholar 

  • Rollet B, Fiard JP, Huc R (2010). Arbres des Petites Antilles. 2 vol. Office national des Forêts, Paris

  • Rousteau A (1996). Structures, flores, dynamiques: réponses des forêts pluviales des Petites Antilles aux milieux montagnards. Phytogeographie tropicale: realites et perspectives. ORSTOM editions, Paris, 308-321

  • Rousteau A, Portecop J, Rollet B (1994) Carte écologique de la Guadeloupe. ONF, UAG, PNG, CGG, Jarry

    Google Scholar 

  • Russell JC, Ruffino L (2012) The influence of spatio-temporal resource fluctuations on insular rat population dynamics. Proc R Soc B Biol Sci 279(1729):767–774

    Google Scholar 

  • Russell JC, Gleeson DM, Le Corre M (2011) The origin of Rattus rattus on the Îles Éparses, Western Indian Ocean. J Biogeogr 38(9):1834–1836

    Google Scholar 

  • Sastre C, Breuil A, Bernard JF, Feldmann P, Fournet J (2007). Plantes, milieux et paysages des Antilles françaises: écologie, biologie, identification, protection et usages. Biotope

  • Shiels AB, Pitt WC, Sugihara RT, Witmer GW (2014) Biology and impacts of Pacific island invasive species. 11. Rattus rattus, the black rat (Rodentia: Muridae). Pac Sci 68(2):145–184

    Google Scholar 

  • Singleton G (2003) Impacts of rodents on rice production in Asia. IRRI, Los Baños

    Google Scholar 

  • Stapp P, Polis GA (2003a) Marine resources subsidize insular rodent populations in the Gulf of California, Mexico. Oecologia 134(4):496–504

  • Stapp P, Polis GA (2003b) Influence of pulsed resources and marine subsidies on insular rodent populations. Oikos 102(1):111–123

  • Tamarin RH, Malecha SR (1971) The population biology of Hawaiian rodents: demographic parameters. Ecology 52(3):383–394

    Google Scholar 

  • Weaver PL, Murphy PG (1990) Forest structure and productivity in Puerto Rico’s Luquillo Mountains. Biotropica 22(1):69–82

    Google Scholar 

  • Zuur A, Ieno EN, Walker N, Saveliev AA, Smith GM (2009) Mixed effects models and extensions in ecology with R. Springer Science & Business Media

  • Zuur AF, Hilbe JM, Ieno EN (2013) A beginner’s guide to GLM and GLMM with R: a Frequentist and Bayesian perspective for ecologists. Highland Statistics Limited

Download references

Acknowledgements

The authors would like to thank the Guadeloupe National Park agents who provided the rat traps used during the capture sessions. A special thanks go to Daniel Imbert (University of Antilles), who helped us identify the capture sites and lent us some equipment. The authors are also grateful to “Météo-France” for providing data concerning weather conditions in Guadeloupe. The authors would also like to thank Zoé Thalaud for her help in preparing the rat skeletal material and the acquisition of biological data.

Funding

This study was conducted as a part of the CNRS ECSIT Project: « Écosystèmes insulaires tropicaux, réponse de la faune indigène terrestre de Guadeloupe à 6000 ans d’anthropisation du milieu », with financial support from the European PO-FEDER program (grant n° 2016-FED-503), the Guadeloupe Regional Council, and the DAC of Guadeloupe.

Author information

Authors and Affiliations

Authors

Contributions

J.G., D.C., O.L., C.O., M.-T.C., A.R. and A. L. conceived the project. J.G. conducted stable isotopic analyses. C.O. and M.-T.C. conducted radiocarbon analyses. J.G., D.C., O.L., C.O., A.R. and A. L. wrote the manuscript.

Corresponding author

Correspondence to Jean Goedert.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Ethics approval

Trapping operations were reported to the ONCFS regional office and authorizations were provided by the Guadeloupe National Park (permits PNG-2017-81 and PNG-2018-15). This study did not involve any endangered or protected species. None of the captured black rats were subjected to experiments involving extended stress or suffering. All specimens were killed following recommendations (regulation UE 2010/63) for the small mammals weighing less than 1 kg (Annex IV).

Additional information

Communicated by: Joanna Stojak

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

ESM 1

Details concerning trapping season and black rat morphology by age class for 11 sites across 5 habitats of Guadeloupe. Values were averaged when at least 3 individuals recorded per season, site, and relative age. A = Adult; J + S = Juvenile + subadult; IND = indeterminate. The “Sprung” column includes only empty traps or those sprung by mongoose or hermit crabs. (DOCX 18 kb)

ESM 2

Details concerning the procedure employed for statistical analysis. (PDF 1031 kb)

ESM 3

Statistical tests concerning the relationship between the reproductive status of females and males with mean eye lens weight, eviscerated body mass of adults and corrected trapping rates by habitat and season for black rats (Rattus rattus) trapped between October 2017 and March 2018 on seven sites in Guadeloupe. Results whose credible interval is significantly different from 0 are in bold. (DOCX 13 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Goedert, J., Cochard, D., Lenoble, A. et al. Seasonal demography of different black rat (Rattus rattus) populations under contrasting natural habitats in Guadeloupe (Lesser Antilles, Caribbean). Mamm Res 65, 793–804 (2020). https://doi.org/10.1007/s13364-020-00523-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13364-020-00523-w

Keywords

Navigation