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Abstract. The gas-phase fragmentation behavior
of self-assembled metallo-supramolecular
r hombs based on an unusua l ch i r a l
[2.2]paracyclophane bis(pyridine) ligand is stud-
ied by collision-induced dissociation mass spec-
trometry. The fragmentation patterns strongly de-
pend on the charge state of the respective mass-
selected aggregate. For the doubly charged ions,
simple symmetric fragmentation is observed in
full accordance with previous results reported for

related metallo-supramolecular species. The triply charged species cleaves unsymmetrically which can be
rationalized by a preferred formation of ions with low charge density. CID of the quadruply charged rhomb
reveals a complex fragmentation. Besides ligand oxidation to the radical cation, facile cleavage of the central
covalently bound part of the [2.2]paracyclophane ligand takes place which is even preferred over rupture of the
weak dative pyridine-Pd bond.
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Introduction

Self-assembly has lead to numerous fascinating supramo-
lecular structures and functional architectures based on an

impressive variety of subcomponents. One way to design self-
assembly processes uses the metallo-supramolecular approach
based on well-chosen organic ligands interconnecting two or
moremetal centers [1–6]. Aggregate formation is thus based on
weak reversible dative bonds long established in coordination
chemistry. There are impressive examples in literature of high-
ly selective self-assembly processes of multicomponent mix-
tures [1–6] even leading to complex heterometallic assemblies

[7–10]. However, predicting the outcome of self-assembly in
such systems is still a challenge [11–14]. To obtain a single
species instead of a statistical mixture, the electronic and steric
demands of all building blocks need to be adjusted very care-
fully to avoid unwanted interferences [15–17]. A successful
design thus needs a solid knowledge of the size, shape, flexi-
bility, and of the dynamic behavior and interactions of the
subcomponents chosen to build the aggregate.

Mass spectrometry has become an indispensable tool to
determine the stoichiometry of self-assembled aggregates [18–
35]. This task however is often very challenging as very soft
ionization conditions are needed to avoid in-source fragmenta-
tion [18–22], although analysis of the detected fragments can
also confirm the structure of the aggregate in fortunate cases [26,
36–40]. Hence, it is tempting to use induced fragmentation [41,
42] in the gas phase to deduce the structure of metallo-
supramolecular aggregates in analogy to the well-established
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routes of structure elucidation of covalent compounds by mass
spectrometry [41–43]. However, the combination of rather weak
non-covalent bonds that form the aggregate and strong Coulomb
interactions between the charged metal centers and between
metals and counter anions (which are not shielded in the gas
phase in contrast to solution) can result in unforeseen fragmen-
tation pathways and rearrangements that easily can be mislead-
ing in structure determination [44]. In our eyes, a much broader
experimental basis is currently needed to better understand the
gas-phase fragmentation patterns of metallo-supramolecular ag-
gregates and establish fragmentation rules that are useful for
structure elucidation of metallo-supramolecular aggregates by
mass spectrometric means. In addition, induced fragmentations
can also yield information on the relative stability of non-
covalent bonds [18–22, 45–50]. Such information is highly
valuable as it forms the basis for a rational design of complex
functional supramolecular aggregates.

Our gas-phase fragmentation studies of metallo-
supramolecular aggregates started with Bsquares^ of the classic
Stang-type [51] built out of four identical (elongated) 4,4′-
bipyridine ligands and cis-protected Pd and Pt complexes with
diphenylphosphinopropane (dppp) ligands [52, 53].
Heterobimetallic squares incorporating two different types of
metal complexes expectedly exhibit much more complex frag-
mentation patterns which strongly depend on the ligand length
and thus aggregate size [50], whereas metallo-supramolecular
rhombs formed out of six metal centers (2× Pt/Pd, 4× Au)
showed a very general and simple fragmentation scheme
[44]. Due to the pronounced difference in metal-ligand binding
energies, the gold complexes did not take part in the fragmen-
tation at all.

We reported on the synthesis of rather rigid racemic and
enantiomerically pure planar chiral ligands based on a pseudo-

meta-difunctionalized [2.2]paracyclophane skeleton and on their
self-assembly behavior with a special focus on self-sorting vs.
self-discrimination very recently [54]. The combination of the
abovementioned (dppp)Pd building block with the chiral
enantiomerically pure ligand L = (Rp)-4,15-bis(4-(pyridin-4-
yl)phenyl)[2.2]paracyclophane yields rhomb-like aggregates
(Scheme 1) which could be thoroughly characterized by NMR,
X-ray diffraction analysis, and electrospray (ESI) mass spectrom-
etry including accurate mass determination [54]. In the course of
this project, we also performed collision-induced dissociation
(CID) experiments and noted a peculiar fragmentation behavior
which we report herein.

Experimental Section
ESI mass spectra in positive mode were recorded on a com-
mercial micrOTOF-Q quadrupole/time-of-flight mass spec-
trometer from Bruker Daltonik equipped with its standard
ESI source and a Thermo Fisher Scientific LTQ Orbitrap
XL™ hybrid mass spectrometer equipped with an IonMax
source with a heated electrospray ionization (HESI-II) probe.
Acetonitrile solutions in concentrations of approximately
100 μM were used and transferred into the ion source using a
syringe pump at flow rates of 5–10 μL/min. Source parameters
are individually tuned for best abundances and low amounts of
in-source fragmentation for every sample. Typical Q/TOF pa-
rameters are as follows: end plate offset, − 500 V; capillary,
4 kV; nebulizer gas (N2), 5 bar; dry gas (N2), 1 L/min; dry gas
temperature, 20 °C; funnel 1 RF, 280 Vpp; funnel 2, 290 Vpp;
ISCID energy, 0 eV; quadrupole ion energy, 1 eV; hexapole
RF, 290 Vpp; collision cell energy, 1 eV; and coll. RF,
500 Vpp. In CID experiments at the Q/TOF instrument, the
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Scheme 1. Formation of [Pd2(dppp)2L2](OTf)4 by self-assembly of [(dppp)Pd](OTf)2 and the [2.2]paracyclophane bis(pyridine)-
based ligand L. Here and in the next figures, a gray square indicates a triflate anion, the circled 2+ indicates the (dppp)Pd2+ complex
fragment and the blue buckled line the ligand L
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Figure 1. ESI positivemass spectrum of 1:1mixture of L and [Pd(dppp)](OTf)2 in CD3CNmeasured on aQ/TOFmass spectrometer.
Green circles symbolize acetonitrile adducts
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Figure 2. CID-mass spectra for mass-selected ions [Pd2(dppp)2L2](OTf)4-n]
n+ (highlighted in gray boxes) measured with the Q/TOF

mass spectrometer at the indicated collision energy voltages: (a) n = 2; (b) and (c) n = 3; and (d) n = 4. The insets show the isotope
pattern in the mass-selected region at low collision energy voltage (top) and at the higher value chosen for the shown spectra
(bottom). The green line represents a coordinated ligand fragment C19H15N for which a putative structure is given in Figure 4
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full isotope pattern was mass-selected and argon was used as
collision gas. At the Orbitrap instrument, CID experiments
were performed in the He-filled ion trap while ion detection
was achieved in the orbitrap analyzer with the resolution set to
R = 30,000.

Results and Discussion
The ESI mass spectra of [Pd2(dppp)2L2](OTf)4 showed the
typical signals expected for metallo-supramolecular species:
The intact rhombs were detected with correct accurate masses
and isotope patterns in a series of different charge states ob-
tained by stripping off two, three, or all four triflate counter ions
[54]. Unfortunately, significant amounts of in-source fragmen-
tation occurred additionally under routine ESI conditions at the
Orbitrap instrument which we did not achieve to suppress even
by tuning the source parameters manually. Fragmentation into
smaller ions was much less pronounced at the Q/TOF instru-
ment after careful tuning of the ESI parameters to very soft
ionization conditions (Figure 1). Superpositions of the signals
for the intact rhombs with signals of fragments could thus be
avoided almost completely. This comes however at the cost of
significant loss of signal intensity and the appearance of ace-
tonitrile adducts [55].

The detection of non-superimposed signals for intact
rhombs made it possible to perform collision-induced dissoci-
ation (CID) experiments in a controlled manner after mass-
selection of the respective ions of interest. Similar to our
previous findings for metallo-supramolecular squares [52,

53], the CID mass spectra of the rhombs differ significantly
depending on the charge of the gas-phase aggregate (Figure 2).

The fragmentation behavior observed upon CID of the
doubly charged rhombs follows a very simple pattern
(Figure 2a): The aggregate splits symmetrically in halves,
leading to ions of the same m/z ratio, but with an isotope
pattern with full mass spacing indicating a singly charged
ion. The resulting mononuclear monoligated complex
{[Pd(dppp)L](OTf)}+ subsequently loses the neutral ligand
L t o f o r m t h e Bu n l i g a t e d ^ m e t a l c om p l e x
{[Pd(dppp)]OTf}+ at m/z 667 followed by expulsion of
triflic acid HOTf (see below). This pattern fully matches
the behavior of the much larger doubly charged rhombs
described previously [44].

The triply charged rhomb behaves differently
(Figure 2b). Its fragmentation also separates the charges
on two ions, but unsymmetrically: the two ligands L re-
main bound to the same metal core. Thus, this fragmenta-
tion leads to a larger dication at m/z 773 binding both
monodentate ligands [Pd(dppp)L2]

2+ concomitant with
again the small monocationic complex {[Pd(dppp)]OTf}+

at m/z 667. The preferred non-symmetric cleavage of the
triply charged aggregate thus reduces the charge density in
the dication compared to the hypothetical symmetrical
alternative. In a subsequent process, only induced at slight-
ly higher collision energies (Figure 2c), [Pd(dppp) L]2]

2+ at
m/z 773 loses one of the two ligands L yielding the
dication [Pd(dppp)L]2+ at m/z 516.

The same ion is also the primary fragmentation product of
the quadruply charged rhomb (Figure 2d) which again splits

20 eV

515.1
515.4

515.6
515.9

516.6
4+

516.9
517.4

517.6
517.9

513.2

514.2
515.2

515.6
516.1

516.6
517.1

517.6
518.1
518.6

519.0 520.0 521.0 522.0

513.2

514.2
515.2

516.2

517.0 518.0

519.0

520.0

521.0 522.0

512 514 516 518 520 522 m/z

12 eV

3 eV4+[Pd (dppp) L ]2 2 2

2+[Pd(dppp)L]+[L+H]
•+L

+[Pd(C H P )]27 25 2

+[C H N +H]38 29 2

+[Pd(dppp)]

x

x

x
x

x

x

x

x

x

2+ 2+

2+

Figure 3. Isotope patterns and superposed signals aroundm/z 516 in the CID mass spectra shown in Figures 2 and 4 measured at
the indicated collision energy voltages
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symmetrically—very similar to the behavior of the doubly
charged rhomb, but without anions. The subsequent fragmen-
tation of [Pd(dppp)L]2+ at m/z 516 is tricky to analyze due to
strongly superposing signals. Clearly, both the mass-selected
quadruply-charged rhomb as well as its main primary fragmen-
tation product have the samem/z 516.1. Unfortunately, also the
secondary fragmentation product [Pd(C27H25P2)]

+ atm/z 517.0
and the protonated ligand [L+H]+ at m/z 515.2 appear in the
same region (Figure 3). The mass resolution of our instruments
is sufficiently high to distinguish these signals, but the mass-
selection window cannot be reduced as low as needed to probe
the subsequent fragmentations separately.

However, careful analysis of the spectra obtained also at higher
collision energies (Figures 3 and 4) reveals some fascinating
unexpected behavior. The fragmentation pattern of [Pd(dppp)L]2+

thus consists of three major competing pathways. The maybe
most expected path is a charge-separating acid-base reaction

leading to the protonated ligand [L+H]+ at m/z 515 and a Pd-
complex bearing a deprotonated dppp ligand [Pd(C27H25P2)]

+ at
m/z 517 (black arrows in Figure 4). The latter ion can be generated
independently without disturbing superpositions (Figure 5) via
loss of HOTf upon CID of {[Pd(dppp)]OTf}+ [44, 52, 53]. The
deprotonation probably occurs at one of the phenyl rings because
the intact propylene bridge is split off during the following frag-
mentation via propene loss. A second charge-separating fragmen-
tation pathway of [Pd(dppp)L]2+ shows that the ligand L is not
redox-innocent: [Pd(dppp)L]2+ fragments into the ligand radical
cation L•+ atm/z 514 and the unusual complex [Pd(dppp)]+ atm/z
518 (gray arrows in Figure 4). This ion might best be understood
as a complex of Pd0 with a (dppp)•+ ligand formed via intramo-
lecular metal reduction by a redox-active ligand in the gas phase
[29]. Addition of molecular oxygen (m/z 550) as well as several
radical losses from [Pd(dppp)]+ nicely corroborate its open-shell
nature.
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Finally, a third fragmentation pathway of [Pd(dppp)L]2+ is less
intense, but clearly visible, particularly at lower collision energies
(Figure 2d). The ligand is centrally cleaved into two parts of the
elemental composition C19H15N, one of which stays bound to the
dicationic metal (m/z 387.6). This is an extremely intriguing
process as the rupture of two weak, but covalent bonds in the
[2.2]paracyclophane core of the ligand obviously is preferred over
cleavage of the metallo-supramolecular Pd-pyridine dative
bond—which in all our previously studied cases was the first
bond broken upon CID and thus was assumed to be the weakest
bond in the aggregate. The ligand rupture is only observed for the
doubly charged ion [Pd(dppp)L]2+, but not for its singly charged
analogue {[Pd(dppp)L](OTf)}+ which only loses the full ligand
(Figure 2a). One thus could speculate that the remaining half
ligand is needed as a kind of internal solvation of the doubly
charged ion [Pd(dppp)]2+ in the gas phase. Given the outstanding
role palladium plays in metalorganic catalysis to form and cleave
C–C bonds, it seemed plausible at first sight that the metal could
promote the cleavage of the ligand. This however is not necessar-
ily the case: CID of the simple protonated ligand [L+H]+ indeed
shows the very same fragmentation (Figure 6).

Conclusion
Self-assembled metallo-supramolecular rhombs based on an un-
usual chiral [2.2]paracyclophane bis(pyridine) ligand can be trans-
ferred into the gas phase via ESI under very soft ionization
conditions. CID fragmentation patterns of the multiply charged
aggregates [Pd2(dppp)2L2](OTf)4−n]

n+ (n= 2 − 4) depend on the
charge state of the respective mass-selected ion. The rather simple
fragmentation pattern observed for the doubly charged ions are in
full accordance with expectations based on previous results re-
ported for metallo-supramolecular rhombs and squares. The triply
charged species cleaves unsymmetrically which can be rational-
ized by a preferred formation of ions with low charge density. In
both cases, only weak metal-pyridine dative bonds are cleaved.
CID of the quadruply charged rhomb reveals a more complex
fragmentation behaviour that inter alia includes ligand oxidation
to the radical cation. In addition, an intriguingly facile cleavage of
the central covalent bonds of the [2.2]paracyclophane ligand takes
place which is even preferred over rupture of the weak dative
pyridine-Pd bond.
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