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Abstract. One of the major challenges in proteo-
mics is peptide identification from mass spectra
containing high noise ratio and small number of
signal (b-/y-ions) peaks. However, the accuracy
and reliability of peptide identification in such
highly imbalanced MS/MS data can be improved
by applying a preprocessing step prior to peptide
identification aiming at discriminating b-/y-ions
from noise peaks in the spectra. In this study,
we report a genetic programming (GP)–based

preprocessing method for de-noising highly imbalanced and noisy CID MS/MS spectra. GP now becomes a
popular machine learningmethod via automatic programming. GP preprocesses the highly noisy MS/MS spectra
by classifying peaks as noise peaks or signal peaks in a binary classificationmanner. Meanwhile, a set of spectral
fragment features based on the MS/MS fragmentation rules is extracted from the dataset to investigate their
discriminating abilities byGP. AMS/MS spectral dataset containing thousands of spectra are used to train theGP
model. As the GP tree-based representation has the capability for implicit feature selection during the evolution-
ary process, the evolvedGPmodel with the selected features is comparedwith the best threshold-basedmethod.
The results show that the GP method improved the reliability of peptide identification and increased the
identification rate of a de novo sequencing tool, PEAKS, to 99.4% from 80.1% achieved by the best threshold-
basedmethod. Moreover, the result of peptide identification by a database search tool, SEQUEST, using the data
preprocessed by the GP method was statistically significant compared to the other methods.
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Preprocessing
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Introduction

Proteomics is the large-scale analysis of proteins [1]. The
common method for identifying proteins’ amino acid se-

quences and posttranslational modifications of their amino
acids in proteomics is to digest the proteins into peptides,
analyze the peptides using mass spectrometry, assign the
resulting mass spectra to peptides, and match the assigned

peptides to proteins using software such as Mascot [2] and
SEQUEST [3]. Most of today’s proteomics analyzes are done
with tandem mass spectrometry (MS/MS) [4]. Peptide and
protein identification can reveal potential genetic diseases in
an organism, which is the reason that makes this task very
crucial. However, the identification task is very challenging if
the MS/MS spectra are highly noisy [5]. The large number of
noise peaks compared to the small number of signal peaks
makes the data extremely imbalanced. The more noise in MS/
MS spectra, the more false peptides in the identification. More-
over, having noise in MS/MS spectra results in identifying
peptides with low confidence scores, which causes to infer
low confidence proteins with a risk of losing true identifica-
tions. To overcome the problems imposed by the noise, a
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preprocessing step to de-noise the MS/MS spectra and find
signal peaks for more reliable peptide identification is usually
performed.

Generally, there are three types of methods to de-noise MS/
MS spectra: intensity-based thresholding [3, 6, 7], peak detec-
tion methods inspired from digital signal processing [8, 9], and
machine learning (ML) algorithms [10–14]. Threshold
methods are normally used in database search engines prior
to searching in order to simplify the spectra by discarding peaks
with intensity below a specific threshold. However, an optimal
threshold value is hard to determine and varies from one dataset
to another. Moreover, these methods, by only considering the
intensity information of peaks and assuming independence of
peaks, neglect the hidden interrelationship between them. In an
MS/MS spectrum, signal peaks are related to each other. For
example, the mass difference between two consecutive signal
peaks may equal to the mass of one of the 20 amino acids. Peak
detection methods such as Fourier analysis and wavelet analy-
sis usually rely on the shape of the signals and assume station-
ary signals, which are not the characteristic of signals in mass
spectrometry spectra. For low-quality MS/MS data where the
peaks are not in well-defined shapes, these methods are con-
siderably less effective [13]. Recently, there is a growing trend
to apply ML techniques on MS data in order to discover
peptide fragmentation patterns. An ML algorithm in a super-
vised learning tries to build a model which can predict the
intensity pattern of the MS/MS spectra. Unlike the threshold-
based methods that only consider one single intensity feature,
ML methods typically consider more features and attempt to
discover the hidden relationship between the peaks.

A classification method using artificial neural networks
(ANNs) to distinguish the signal peaks from noise peaks using
a comprehensive full factorial liquid chromatography (LC)-
MS/MS benchmark dataset [15] has been developed in [10].
Although ANNs build a non-linear model which is able to
detect the hidden interrelationship between the peaks, they
are usually black-box or uninterpretable models and still tend
to be over-fitted. The combination of machine learning–based
preprocessing methods with intensity-based method has also
been developed [11, 12]. It is worth investigating the effective-
ness of the ML algorithms by themselves on improving the
peptide identification.

Genetic programming (GP) belongs to evolutionary algo-
rithms (EAs) which are a family of population-based problem
solving techniques who employ Darwinian principle of natural
selection and gene theory such as recombination, mutation,
natural selection, and survival of the fittest in order to evolve
a population of individuals. GP showed promising results when
previously it was used in many symbolic regression [16],
optimization [17], and classification problems [18]. One of
the main advantages of GP in classification tasks is its flexible
representation which can be adapted for domain-dependent
problems. Moreover, GP using a tree-based representation
has the capability for implicit feature selection during the
evolutionary process. GP has the ability to automatically
evolve a model that fits the training data without any prior

knowledge or assumption. GP has the potential to cope with
complex problems and has good learning capability even from
imbalanced data. GP can adapt its fitness function to evolve an
individual that is capable of dealing with the class imbalance
problem [19]. Unlike other machine learning algorithms, GP
has the ability to combine several advantages: GP can integrate
various types of data and generate effective models; such
models are not black-box models, instead they are highly
interpretable and readable by human.

Recently, GP has been successfully applied on mass spec-
trometry (MS data) on various problems such as biomarker
detection, metabolite quantification, and metabolic pathway
modeling [20]. GP proved to be a promising tool in MS/MS
analysis, but its potential for further improvement in more
reliable peptide identification has not been systematically
investigated.

In an MS spectrum, each precursor ion, which indicates the
m/z value of a peptide, can be selected and fragmented into
hundreds of fragment ions that construct an MS/MS spectrum.
During fragmentation by the collision-induced dissociation
(CID) technique, different fragment ion types are generated.
In the CID fragmentation technique, we are only interested in
b-/y-ions because the amino acid sequence of an MS/MS
spectrum can be determined by the mass differences between
b-/y-ions. However, during the fragmentation, different ion
types such as isotopologues, neutral losses, and doubly charged
ions are produced. The presence of different types of ions along
with the background noise, resulted for example from low
sensitive mass spectrometer instruments, can produce a large
and complex search space for the peptide identification tool to
explore, leading to a high false discovery rate. Therefore, prior
to peptide identification, it is worth investigating which ion
types should be considered as signals and noise peaks. This
investigation helps to have a clear definition of background
noise in the data. As the background noise does not necessarily
mean noise from low instrument accuracy, anything which
makes the peptide identification tool having a big search space
and decreases the performance of the identification tool should
be removed from data prior to peptide identification. Also, for
the supervised classification methods, each peak in the training
dataset is required to be labeled as either signal (b-/y-ions) or
noise; it is worth investigating which ion types should be
considered as signals in the training set of the golden standard
dataset. An accurate and reliable MS/MS golden standard
dataset should contain the fragment ions labeled as signal peaks
that can help both peptide identification tools to identify high
confident peptides and the machine learning–based preprocess-
ing method to distinguish noise peaks from signal peaks.
Therefore, an effective labeling can directly influence the per-
formance of both classification method and the peptide identi-
fication rate.

In our previous work [14], genetic programming (GP)
showed a great potential for imbalanced classification particu-
larly in preprocessing tandem spectra aiming at improving the
reliability of peptide identification. As the MS/MS data is
highly imbalanced, GP proved to be more stable than the six
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investigated different types of classification algorithms k-
nearest neighbor (K-NN), support vector machine (SVM),
naive Bayes (NB), decision tree (DT), random forest (RF),
and multilayer perceptron (MLP). Using a training set and a
test set containing thousands of MS/MS spectra from the
comprehensive full factorial LC-MS/MS benchmark dataset
the G, GP got the highest average accuracy and sensitivity on
both datasets compared to the aforementioned classification
algorithms. However, the current GP method achieved 72%
of retention of signal peaks and 86% of reduction of noise
peaks as tested on a dataset containing 1674 MS/MS spectra.
The GP-based preprocessing method only used 4 spectral
features, while other potential ways to improve the perfor-
mance have not been investigated.

The goal of this study is to investigate the capability of GP
for preprocessing tandem spectra, in order to improve the
capability of retention of signal peaks and reduce the noise
peaks. Based on our previous work [14], we will improve the
approach in the following ways:

1. Developing a GP-based preprocessing method to de-noise
the MS/MS spectra and investigating extraction of effective
spectral features aiming at providing more evidence for
signal peaks to be distinguishable from noise peaks

2. As there is no golden standard highly imbalanced dataset
containing already labeled signal and noise peaks, investi-
gating creation of a suitable golden standard dataset aiming
at increasing the peptide identification reliability and evalu-
ating the effectiveness of the golden standard dataset using
GP, and

3. Comparing the effectiveness of the proposed GP-based
preprocessing method with un-preprocessed data and the
best threshold-based preprocessing method in terms of reli-
ability of the peptide identification

Methods
The Proposed GP-Based MS/MS Preprocessing
Method

Figure 1 presents the full workflow of the GP-based MS/MS
preprocessing method followed by an evaluation step. The GP-
based preprocessing method includes three steps which are
feature extraction, peak labeling, and binary classification.
The feature extraction step is composed of extracting
intensity-based features for each peak in the spectrum. The
peak-labeling step determines the class label of each peak as
either signal or noise. The training set is used by GP for
building the model to classify the peaks while the test set is
used to evaluate the model. The output of the GP model is the
preprocessed data (test set) which is submitted to an evaluation
step where a peptide identification tool is used to identify the
peptides. This study uses PEAKS, a benchmark de novo se-
quencing software [21], as the peptide identification tool in the
workflow. The results of the identification is analyzed to

evaluate the effectiveness of the GP method in terms of im-
proving the peptide identification reliability. The following
section explains the three steps of the GP-based preprocessing
method in detail.

Feature Extraction

The intensity value of each peak in anMS/MS spectrum can be
used to extract a set of spectra features that explain the CID
fragmentation properties of peptides. Table 1 presents a total
number of 7 groups of spectral features extracted from the MS/
MS data. These spectral features indicate peak characteristics
which can be good discriminators between the signal and noise
peaks. All groups include only one feature except for groups 3,
4, and 7, which contain parametric features where changing the
parameter values results in extracting new features.

Given spectrum S with n peaks and precursor mass ofmprec,
let S = (mz(1),mz(2),mz(3), … ,mz(n)) denotes a spectrum with
an intensity vector of I = (I1, I2, I3, … , In). The ith peak in the
spectrum corresponds to the mass-to-charge value ofmz(i) with
intenstity value of Ii. More details about how to extract the
features of each group from the spectrum are explained as
follows:

Group (1): the Bnormalized m/z^ feature [13] normalizes the
m/z value of each peak to an integer value between 0 and 100.

f normmz
mz ið Þ
� � ¼ mz ið Þ � 100

mprec

� �

Group (2): The Bnormalized and discretized intensity^ feature
[11] divides the intensity value of the current peak to the
highest intensity value in the whole spectrum. Since the values
of intensities within the whole spectrum normally are very
fluctuated from a very small intensity value of less than
100.00 to 10,000.00, to have a better scaled values,
discretization is then applied on the normalized values to map
them into n discrete bins. For example, for n = 5, the normal-
ized intensities are rounded up to either 0.05, 0.10, 0.20, 0.40,
0.80, or 1.00 to be discretized [11].

f normintensity
I ið Þ ¼ n

I ið Þ
I maxð Þ

� �� �
=n

where Imax is the most abundant peak in the spectrum, Ii is the
intensity of the current peak, and n indicates the number of
discrete intervals.

Group (3): The Btop X intensities in Win ± Z^ features [7]
determine whether or not the current peak is among the top
X most intense peaks in the window size of B± Z^ around
itself. These features have binary values of either 0 or 1. The
values of X and Z can be determined empirically or based on
the literature [7].
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Group (4): The Blocal intensity rank inWin ± Z^ features count
the number of peaks that are the same or are less abundant than
the current peak within a local window of ± Z. A big rank
indicates a significant peak. The ranks are then normalized by
dividing by the total number of peaks in the window of ± Z.
Group (5): The Bglobal rank^ feature normalizes the intensity
rank of the current peak compared to the complete spectrum.

f normrank
I ið Þ ¼ rank I ið Þ

n

Group (6): The Bcomplementary ion^ feature investigates if the
complementary ion of the current peak exists in the whole
spectrum. In CID fragmentation, a complete peptide fragmen-
tation gives a contiguous series of ions. However, sometimes,
due to the low ion fragmentation efficiency of the mass spec-
trometer, some ions are not available in the spectrum. By
finding the complementary ion peaks, undetected ions can be
added to the spectrum. The sum of the two complementary
ions’ masses should be equal to the precursor mass of the
spectrum. Based on the CID fragmentation parameters and

the dataset, a mass tolerance is considered to estimate the
existence of the complementary ion of the current peak.

f c mz ið Þ
� � ¼ 1; if mz ið Þ þ mz jð Þ þ δ ¼ mprec

0; otherwise

�

where 1 ≤ j ≤ n and n is the total number of peaks in the
spectrum. δ is the mass tolerance of the mass spectrometry
device used to ionize the spectra in the dataset and varies from
one dataset to another.

Group (7): The Bsister ion^ features check the existence of the
sister ions of the current peak. A sister ion is a peak that can be
found at the fixed Δm/z value away from the current m/z value.
Based on the literature, a list of 10 common sister ions includ-
ing Δ values of Δ = {− 2, − 1, 1, 2, 17, 18, 28, 34, 35, 36} are
considered in this study. These numbers are related to the loss
mass of H2O, NH3, H2O–H2O, H2O–NH3, or isotopic ions.
Later on, in the experiment section, a set of experiments where
a larger range of all possible values from − 2 to 143 will be
conducted. The purpose of running those experiments is to
investigate if considering the entire 145 sister ions can improve

Figure 1. The MS/MS analysis workflow composed of the proposed GP method for preprocessing the spectra and an evaluating
step

Table 1. List of Spectral Features. N Denotes a Normalized Value; D Specifies a Discretized Value; B Denotes a Binary Value

Group Features Feature name Value

(1) {f1} Normalized m/z N
(2) {f2} Normalized and discretized intensity N,D
(3) {f3,...,f15} Is top X intensities in Win ± Z B
(4) {f16,...,f28} Local intensity rank in Win ± Z N
(5) {f29} Global rank N
(6) {f30} Complementary ion B
(7) {f31,...,f40} Sister ions B
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the classification performance comparing to the case when only
10 sister ions are used.

Labeling Peaks/Instances

Based on the CID fragmentation rules of doubly charged
peptides [22], the theoretical spectrum of each experimental
spectrum is constructed. It is worth mentioning that the theo-
retical spectrum does not contain noise peaks, whereas it only
includes signal peaks. After constructing the theoretical spec-
trum, the theoretical and experimental spectra are matched
against each other. Each peak in the theoretical spectrumwithin
a mass tolerance of 0.2 Da (unified atomic mass unit or Dalton)
is matched against that from the experimental spectrum. The
0.2-Da error tolerance was previously used for producing the
full factorial benchmark dataset [15].

Creation of the Training Set and Test Set

After applying feature extraction and peak labeling on experi-
mental spectra, each peak contains a set of features followed by
a label which is either signal or noise. Then, the data is divided
into two sets: training set and test set. The training set is used
during the GP learning process to build the model and the test
set is used to evaluate the GP model.

GP Program Representation, Classification Strate-
gy, and Fitness Function

GP uses a population of computer programs as individuals to
build a model, searching to find a good solution for the problem
during the evolutionary process. The goodness of individuals,
which determines their potential to survive and represents their
ability to solve the problem, is measured by using the fitness
function. The individuals can be modified by genetic operators
to breed new individuals [23]. GP simulates evolution by
employing fitness-based selection where the fitter programs
are expected to be chosen for producing new individuals. The
computer structures used in GP can be in the form of tree,
linear, or graph-based structures. The most popular GP struc-
ture is tree-based which is composed of structural units namely
terminal and function sets. The terminal set, which forms the
leaves of the GP tree, provides the inputs to the individuals and
may contain variables/features and constants. The function set
represents the internal nodes and may consist of arithmetic
operators, conditional operations, or user-defined operators.

The overall structure of a GP algorithm is illustrated in
Figure 2 composing of the following steps:

1. Initialization: GP employs the function and terminal sets to
generate a population of initial/candidate solutions.

2. Fitness evaluation: GP executes each individual (program)
and evaluates the goodness of the individual using a user-
defined fitness function.

3. Individual selection: Using a specific selection procedure
(e.g., tournament selection is used in this study), GP selects

the individuals with better fitness values for the reproduction
process.

4. Genetic operators: GP transforms the (initial) population by
applying genetic operators (crossover, mutation, and repro-
duction) to create new individual programs which are more
likely to contain better fitness values.

5. Repeat steps 2–4 until the stopping criterion is met. A
stopping criterion determines when to stop the evolutionary
process. The process can be stopped when an ideal individ-
ual with a specified fitness value has been found or when a
maximum number of generations has been reached.

A tree-based GP classification system is designed to classify
highly imbalanced MS/MS data. Table 2 shows the list of
parameters used in the GP system. A set of arithmetic opera-
tions including summation, multiplication, differentiation,
protected division, and the trigonometric sin function are con-
sidered as the function set of the GP system. While all the
arithmetic operators take two arguments, the sine function gets
one argument. Each of the operator in function set returns one
single argument. Moreover, the set of spectral features extract-
ed from the MS/MS data along with randomly generated float-
ing point numbers are used as the terminal set of the GP system.
The output of the GP tree is a single floating point value. Since
it is a binary classification, zero is considered as the threshold
value of the GP-tree output to determine the class label of each
peak as either noise or signal. A peak with a negative value of

Figure 2. The overall flowchart of a GP algorithm

1298 S. Azari et al.: Preprocessing Tandem Mass Spectra Using Genetic Programming



the GP-output is considered to belong to the noise class (ma-
jority class), whereas a positive value indicates that the peak
belongs to the signal class (minority class). To implement the
GP system, the evolutionary computation Java-based (ECJ)
package is used [24].

The fitness function is a key component inGP as it measures
the goodness of the candidate solutions/individuals. As theMS/
MS data is highly imbalanced, the traditional accuracy which is
the average ratio of correctly classified instances might cause
the evolved GP programs to be biased towards the majority
class. Therefore, to avoid this issue, a weighted fitness function
including true positive rate (TPR) and true negative rate (TNR)
with coefficient of α is considered:

A−acc ¼ α� TP

TP þ FN

� �
þ 1−αð Þ � TN

TN þ FP

� �

¼ α� TPRþ 1−αð Þ � TNR
ð1Þ

where TP/TN indicates the correctly classified signal/noise
peaks, whereas FP/FN represents the incorrectly classified
signal/noise peaks and is α a coefficient that needs to be
determined empirically.

Design of Experiments

MS/MS Datasets In this study, the spectra from the compre-
hensive full factorial LC-MS/MS benchmark dataset, which is
designed for evaluating data analysis tools, are used [15]. The
dataset is obtained from the linear ion trap Fourier-transform
(LTQ-FT, Thermo Fisher Scientific) with the collision-induced
dissociation (CID) technique. The full factorial dataset contains
50 protein samples extracted from Escherichia coli K12. For a
2 × 3 full factorial design, the samples are spiked with different
concentrations of bovine carbonic anhydrase II and/or chicken
ovalbumin. The data was acquired using multiple reversed-
phase columns and instrument calibrations over a period of
2 months. The ground truth is composed of a comprehensive
collection of validated identified peptides by the Mascot v2.2
which is searched against a curated Refseq [25] release 33
E. coli database. The set of peptide spectrum matches has a
minimum Mascot score of 30. The identified peptides have a
minimum length of six amino acids. The datasets used in this
study are shown in Table 3. The following are more details
about these datasets:

Original dataset: including 2630 MS/MS spectra in the
training set and a test set of 253,732 MS/MS spectra. This is
the base for creating the golden standard dataset. Also, this
dataset is used for evaluating the methods in terms of peptide
identification.

Sampled dataset: including 10 MS/MS spectra in the train-
ing set and five spectra for test set. All these 15MS/MS spectra
are selected from the training set of the original dataset. This
dataset is used for the purpose of tuning the GP fitness function
and finding appropriate feature parameters.

Experiment 1: Investigating Important Ion Types in Peptide
Identification In order to have an accurate and effective gold-
en standard MS/MS dataset to be used by any machine
learning–based preprocessing method to increase the peptide
reliability, important ion types in MS/MS spectra should be
investigated. Figure 3 illustrates the workflow of investigating
the important ion types in peptide identification. The workflow
starts with an experimental MS/MS spectrum with known
peptide. The spectrum is submitted to the Mascot, a database
search engine, for labeling each peak in the spectrum. Different
peaks/ions are extracted from the spectrum to create different
scenarios from 1 to 7. Table 4 shows the Mascot parameter
settings. Each scenario containing a spectrum with different
ions is submitted to both PEAKS, a benchmark de novo se-
quencing software [21], and SPIDER, a benchmark database
search tool [27], to re-identify the spectrum. The best common
scenario with the highest confident identified peptide is chosen
to be evaluated by the GP-based preprocessing method.

Table 2. Genetic Programming Parameters

Parameter Value

Function set (+, −, ×, /, sin)
Terminal set (Features from dataset, random constant)
Initial population Ramped Half and Half
Population size 1024
Generations 50
Mutation rate 0.19
Elitism rate 0.01

Table 3. Datasets

Datasets No. of spectra No. of peaks

Original dataset Train 2630 1,730,190
Test 253,732 185,224,471

Sampled dataset Train 10 9958
Test 5 4475

Figure 3. The workflow of investigating important ion types for
more reliable peptide identification
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The single experimental spectrum is chosen from the ground
truth provided by LC-MS/MS benchmark dataset [15]. The
spectrum corresponds to doubly charged peptide sequence
BSEQGMSLLQPGK.^ This spectrum is submitted to the Mas-
cot database search tool [2] to be searched against the
Escherichia coli K12 [26] protein database with Fragment
match tolerance of 0.8 Da. Table 4 shows more details of the
database search parameter setting.

T h e Ma s c o t s e a r c h r e s u l t r e t u r n s p e p t i d e
BSEQGMSLLQPGK^ which is the same as the ground truth.
The result of the Mascot database is exported as an anno-
tated spectrum where each peak is labeled as: y(1+), b(1+),
y(2+), b(2+), b(1+)-H2O, b(1+)-NH3, y(1+)-H2O, y(1+)-
NH3, and no label which is considered noise. To find out
which ion types should be labeled in the golden standard
dataset, different scenarios are provided to test the peptide
identification rate using different combinations of ions. The
scenarios are as follows:

1) Raw spectrum containing all ion types and noise peaks.
2) Labeling only matched doubly charges b-/y-ions as signal

peaks. This includes {b(2+), y(2+)}.
3) Labeling only matched singly charged b-/y-ions as signal

peaks. This includes {b(1+), y(1+)}.
4) Labeling both matched singly and doubly charges b-/y-ions

as signal peaks. This includes {b(1+), y(1+), b(2+), y(2+)}.
5) Labeling matched singly charged and neutral losses as

signal peaks. This includes {b(1+), y(1+), b(1+)-H2O,
y(1+)-H2O, b(1+)-NH3, y(1+)-NH3}.

6) Labeling CID-simulated fragments singly charged ions as
signal peaks.

7) Labeling CID-simulated fragments singly charged ions and
neutral losses as signal peaks.

In each scenario, only those peaks which are mentioned in
the description of each scenario are submitted to a de novo
sequencing tool and a database search engine, and other peaks
are removed from the spectrum. The results of these experi-
ments will indicate which scenario results in a higher score
identified peptide. Two different commonly used peptide iden-
tification tools are used to make a stronger conclusion. Based
on the results of this experiment, the peaks in the MS/MS data
are labeled to create the golden standard dataset containing a
training set and a test set.

Experiment 2: Tuning the GP-Based Preprocessing Method
and Evaluating Its Effectiveness for Improving the Peptide
Identification Reliability A set of experiments including
tuning the GP fitness function to find appropriate coefficients,
investigating the effectiveness of each individual features using
different parameters and combining features, is performed to
figure out the best GP model. The model is then applied to the
golden standard dataset. The preprocessedMS/MS spectra (test
set) is submitted to a peptide identification tool to evaluate the
effectiveness of the GP method. In the flowchart of Figure 1,
PEAKS is used for automating accurate sequencing MS/MS
spectra. The result of PEAKS is a set of identified peptides with
different confidence scores. It is worth mentioning that, in
peptide identification in PEAKS, an average local confidence
score (ALC) indicates how reliable the result is. An ALC score
reflects the average correct ratio of the predicted amino acids in
a peptide sequence. The higher the confidence score, the more
reliable the peptide identification. In PEAKS, ALC scores
range from 0 to 99% and a score at 55% or above, as suggested
in the PEAKS website [28], is considered a confident match.
The entire sequence of a peptide is not necessarily to be
mapped due to incomplete fragmentation and difficulty in
detecting the signal peaks of the fragments from the beginning
and the end of the peptide sequences in MS/MS. The results of
peptide identification are grouped into five intervals which are
{[90, 99), [80, 90), [70, 80), [60, 70), [55, 60)}. For each
interval, the number of peptides identified by PEAKS is count-
ed. These results are then compared to those of un-
preprocessed data and to the results of MS/MS spectra
preprocessed by an intensity-based threshold method.

Results and Discussion
Results of Experiment 1: Important Ion Types
in Peptide Identification

This section presents the results of submitting all scenarios to
PEAKS and SPIDER illustrated in the flowchart of Figure 3.
According to the flowchart, each scenario containing different
set of peaks from the considered spectrum is submitted to these
two tools. These tools identify the peptide sequence corre-
sponds to each scenario and reports the identified peptide
sequence along with a confidence score for the identification.

Table 4. Mascot Database Search Parameter Setting

Protein database Spectrum

Database name Escherichia coli (strain K12,
containing 4313 proteins) [26]

Min. precursor mass 350 Da

Enzyme name Trypsin Max. precursor mass 5000 Da
Max. missed cleavage 1 Fragment match options (export search results)
MS tolerance 10 ppm Charge details + 1 and/or + 2
MS/MS tolerance 0.8 Da Matched tolerance 0.2 Da
Percolator setting Selected ions Different combinations of

b, y, -H2O, -NH3, immoniumValidation based on q-value
Cutoff q-value 0.01
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Table 5 presents the results of peptide identification on each
scenario using the PEAKS de novo sequencing and the SPI-
DER database search. As previously mentioned, a single ex-
perimental spectrum is chosen from the ground truth and its
corresponding doubly charged peptide sequence is
BSEQGMSLLQPGK.^

Any letter of the identified sequence which is in bold
indicates an exact match against the corresponding letter of
the ground truth sequence. PEAKS score is a confidence score
reported by PEAKS and indicates the average correct ratio of
the predicted amino acids in a peptide sequence. The ALC
scores range from 0 to 99%. In this table, the scenario that
obtains a high PEAKS and SPIDER confidence score with
more similar sequence (more number of bold AA letters) to
the ground truth is selected as the best case and determines the
most important ion types to peptide identification. This indi-
cates the best decision on the ion types to be selected for
labeling the training data of the machine learning method.
The following sections analyze the results of each tool
separately.

The Scenarios Submitted to PEAKS and the Peptide
Identification Results

Table 5 presents the results of each scenario submitted to
the de novo sequencing tool, PEAKS, for automated and
accurate sequencing of the spectrum. The results in Table 5
show that submitting the raw spectrum (scenario 1), which
contains all the ion types, including noise peaks that are not
satisfying, results in sequence with a low ALC score of 34.
Moreover, if only matched doubly charged ions (scenario 2)
are selected out of the all peaks in the spectrum and sub-
mitted to the de novo sequencing tool, a worse result,
ALC = 10, is obtained. However, the matched singly
charged of b-/y-ions (scenario 3) gives a better result of
ALC = 61. In the next experiment, both singly and doubly
charged ions are combined (scenario 4), but the ALC score
decreases to 60. The next scenario combines singly charged
and neutral losses ions (scenario 5) to investigate whether
the presence of neutral ions can improve the identification
rate. However, the results deteriorate (ALC = 52) due to the
fact that the presence of neutral losses ions and doubly
charged ions makes the ladder complicated and increases
potential false positive sequences. Therefore, so far, only

using the matched singly charged ions (scenario 3) are the
best choice (ALC = 61). However, only using the matched
ions may make the ladder incomplete and deteriorate the
performance of peptide identification. In the next scenario,
the ions are constructed virtually based on the known CID
fragmentation rules of doubly charged peptides [22] using
only b-/y-(1+) (scenario 6). This results in a complete ladder
and presents a higher ALC score and closer to the exact
match compared to the previous scenarios. The last exper-
iment combines CID b-/y-(1+) and neutral losses (scenario
7). Although the ALC score is the highest among all exper-
iments, the sequence is far from the exact match. Therefore,
it can be seen that scenario 6 where only CID ions are used,
gives the best results. Furthermore, another set of experi-
ments using the database search tool, SPIDER, is conducted
in the following to make a stronger conclusion.

The Scenarios Submitted to SPIDER and the Peptide
Identification Results

Here, the same set of scenarios are submitted to SPIDER. The
purpose of running this experiment is to see how a database
search tool interact with different sets of ions/peaks in the
spectrum and to check whether the previous results from the
de novo sequencing is consistent with the results from a data-
base search tool.

From Table 5, it can be seen that similar to the PEAKS
results, using doubly charged ions and neutral losses ions
(scenario 2) does not help the peptide identification. However,
since there is a protein database to be searched again, it can be
seen that in three scenarios, 3, 4, and 6, the results are the same
as with each other. However, both tools on scenario 6 show
good results. Therefore, only extracting CID singly charged b-/
y-ions can Bguarantee^ to obtain a reasonable peptide identifi-
cation rate. Shao et al. [13] has also reported that complemen-
tary signal peaks are more likely to be found at a charge state of
+ 1 than at other charge states.

So based on the results in this section, both datasets
introduced in Table 3 are labeled by considering only CID
singly charges ions as signal peaks and the rest of the peaks
as noise peaks. Table 6 presents more details related to the
number of signal and noise peaks in both datasets. SNR
represents signal-to-noise ratios. It can be seen that both
datasets are highly imbalanced.

Table 5. Comparisons of Various Scenarios Containing Different Set of Ion Types Submitted to PEAKS and SPIDER for Peptide Identification. The Ground Truth
Sequence Is SEQGMSLLQPGK. The Scenario with High Scores for Both Identification Tool Indicates Containing the Most Important Ion Types

Scenario no. Sequence identified by PEAKS PEAKS score (%) Sequence identified by SPIDER SPIDER score (%)

1) WNKVELASAEK 34 DLGFLPGDLAEK 17.42
2) FLLLKEYGYK 10 FLLLDEPTRGL 19.34
3) LCKGMSLLQPGK 61 SEQGMSLLQPGK 42.02
4) CLKGMSLLQPGK 60 SEQGMSLLQPGK 42.02
5) YHQLLSMTPGK 52 LTTLLLSQGTPM 21.63
6) LCKGMSLLQPGK 70 SEQGMSLLQPGK 42.02
7) CLLVLLSMTPGK 72 GQDQLLSLAGGDT 25.02
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Results of Experiment 2: Effectiveness
of the Proposed GP Method on Peptide
Identification

Tuning the Fitness Function of GP In binary classification of
imbalanced datasets, it is highly important to identify instances
belonging to the minority class correctly. Therefore, as previ-
ously shown in Eq. (1), a weighted average of the true positive
rate (TPR) or sensitivity (SE) and true negative rate (TNR) or
specificity (SP) is used to evaluate the evolved GP classifiers.
In this section, different α coefficients are experimentally
checked to find a suitable α value. The labeled sampled dataset
containing 10 spectra in the training set and 5 spectra in the test
set from Table 6 is used. Figure 4 shows the classification
results of GP using different coefficients for SE and SP on
training and test sets of the labeled sampled dataset, respective-
ly. It can be seen that by increasing the coefficient of SE, the
specificity in both the training and test sets drops, On the other
hand, giving a high coefficient to SP can decrease the sensitiv-
ity and this is not desired. Therefore, it seems that the sets of
coefficients (0.5 × SE + 0.5 × SP) or (0.6 × SE + 0.4 × SP) work
better compared to other sets. However, (0.6 × SE + 0.4 × SP)
results in higher sensitivity value decreases the precision due to
the increase in false positives. Therefore, the rest of the exper-
iments are done by using α = 0.5, i.e., (0.5 × SE + 0.5 × SP) as
the fitness function of GP.

Tuning the Parameters in BTop X Intensities in Win ± Z^
Feature In this section, a set of experiments is conducted
where GP is used to perform binary classification on labeled
sampled dataset using one single feature of Btop X intensities in
Win ± Z.^ A range of 1–10 is considered for X while Z ranges
from 27 to 100 with an increment of 10. The value 27 is
suggested by [29] where a top 1 in Win 27 approach is applied
on the MS/MS spectrum to remove the potential noise peaks.
Here, the aim of running these experiments is finding appro-
priate parameter values for X and Z that keep the classification
performance reasonably high.

The average accuracy graphs in Figure 5 show that for X
values from 3 to 8, and for window size Z values less than 60
(the first four graphs starting from top left), the results of
classification in terms of average accuracy is reasonably high
(more than 85%). By increasing the window size Z to more
than 70, the average accuracy graphs keep increasing for all X
values in range the 1–10. It means that for window sizes more
than 70, the X range of 1–10 is not sufficient to give a down-
ward trend to the average accuracy graphs. The reason is that

for a big window size Z, increasing the value of X gives more
chances to keep the potential signal peaks. Because of retention
of more signal peaks, the classification accuracy increases. As
Z indicates a neighborhood around each peak, we are not
interested in big neighborhoods which can turn the local Btop
X intensities in Win ± Z^ feature to a global feature. Therefore,
one solution could be limiting the range of Z to the mass of the
smallest amino acid which is 57 Da (as listed in Table 1, 13 sets
of X,Z). Also, another alternative would be considering all X
and Z values in the graphs of Figure 6 where the average
accuracy is more than 85% in both train and test sets. As there
are 45 cases with that condition, so, the next experiments
investigate the classification results of using 45 sets of X,Z as
features. Moreover, 13 sets of X,Z reported in [7] including:
X,Z = (1,27), (3,56), (4,40), (4,50), (4,60), (6,25), (6,30),
(6,40), (6,50), (6,60), (8,40), (8,50), (8,60), were used for the
purpose of noise thresholding of MS/MS spectra. However,
they were not used as the features for the machine learning–
based preprocessingmethod. In this study, these sets of features
are used with the GP method and the results will be compared
with other groups of features including the top 45 sets of X,Z
values obtained in this experiment.

Classification Results of each Group of Features This exper-
iment investigates the effectiveness of each group of features in
improving the classification performance of the GP system. For
Btop X intensities in Win ± Z^ and Bsister ions^ features,
various parameter values are considered to investigate all the
possibilities. Figure 6 a and b show the classification results of
each group of features from Table 1 on the labeled sampled
dataset from Table 6.

The results show that among the seven groups of features,
Btop X intensities in Win ± Z^ and Blocal rank in Win ± Z^
groups get the highest classification results on both the training
and test sets compared to other feature groups. The reason is
that these two groups try to identify possible noise peaks within
a local window around the current peak and keep signal peaks.
The second best group of features is Bglobal rank,^ where each
peak is compared to the all peaks in the spectrum.

BComplementary ion^ and Bsister ions^ groups are the third
best sets of features. These features are based on the CID
fragmentation rules and try to find the hidden relationship
between the peaks in the whole spectrum without considering
the intensity of each peak. The last two best features are
Bnormalized m/z^ and Bnormalized intensity^ groups.

As mentioned before, for the two groups of features, Btop X
intensities in Win ± Z^ and Bsister ions,^ two sets of

Table 6. Datasets with Different Ion Types Labeled as Signal Peaks

Datasets No. of spectra No. of signal peaks No. of noise peaks SNR

Golden standard dataset Train 2630 42,960 1,687,230 40
Test 253,732 4,095,873 181,128,598 44

Labeled sampled dataset Train 10 278 9680 35
Test 5 115 4360 38
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experiments including different parameter values are run to
investigate appropriate parameters for these groups. For the
group Btop X intensities in Win ± Z,^ two sets of 13 and 45
features are used. The bar charts (Figure 6 a and b) show that
the classification results in terms of average accuracy, sensitiv-
ity, and specificity on both the training and test sets are

relatively the same for both sets of 13 and 45 features. As using
more features during the learning process requires more pro-
cessing time, for the group Btop X intensities in Win ± Z,^ 13
features are considered afterwards. Also, the results of the bar
charts show that for Bsister ions^ group, considering only 10
common features will be sufficient to get a reasonable classifi-
cation result on both train and test sets compared to having all
145 possible features, so far, the results of each individual
groups of features are obtained. It is worth to investigate the
classification results of combining all the features together.

Classification Results of Combining All the Features The
existing GP-based preprocessing method [14], only considered
4 features. In this work, a different set of features are extracted
from the MS/MS data. Based on the results of the classification
of individual groups, a total number of 40 features including 1,
1, 13, 13, 1, 1, and 10 features from group (1) to (7) are
extracted, respectively. For more investigation, 145 possible
sister ions from group (7) are used together with another 30
features from group (1) to (6). Therefore, a total number of 175
features will be compared to 4 and 40 features. Shao et al. [13]
show that a total number of 20 delta values including common
neutral losses with Δ = {17, 18, 28, 34, 35, 36, 44, 45, 46, 64}
and isotopic ions with Δ = {− 1, − 2, + 1, + 2} and delta values
separated by masses of amino acids including Δ = {57, 63, 71,
87, 97, 99} are meaningful delta values and contribute to better
signal and noise peak discrimination. Therefore, the 20 features
above from group (7) along with 30 features from other groups

Figure 4. The classification results of GP on labeled sampled
dataset for different coefficients of sensitivity and specificity in
the GP fitness function: α × SE + (1 − α) × SP, where α = {0.2,
0.3, 0.4, 0.5, 0.6, 0.7, 0.8}. (a) The classification results on the
training set. (b) The classification results on the test set. As there
are overlaps in the scatter plots of both figures for more clarifi-
cation, the arrows are pointing to α = 0.5 for more clarification

Figure 5. The classification results of GP on labeled sampled dataset in terms of average accuracy using different parameter values
for the feature top X intensities in window size Z
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(totally 50 features) will be also compared to 4, 40, and 175
features to find out the best set of features aiming at increasing
the classification performance using the golden standard
dataset (Table 6), which is a large dataset containing thousands
of spectra.

Figure 6 c and d show the classification results of GP using
different number of features on the training and the test sets of
the labeled sampled dataset. It can be seen that there is a huge
difference between using only 4 features and using more than 4
on both train and test sets. This is a good indication to motivate

using more features. Among the other cases when using 40,
50, and 175 features, it can be seen that using 40 features
gives higher classification result on test set compared to
using 50 and 175 features. Also, training process takes
shorter time when using 40 features compared to 50 and
175 features. In summary, the results show that choosing 40
spectral features are good discriminators to help GP to
identify signal and noise peaks. As the main purpose of
having a preprocessing method is improving the peptide
identification reliability, the next section evaluates the

Figure 6. The classification results of GP on labeled sampled dataset. (a) Using each group of features individually on the training
set. (b) The results on test set. (c) Using different sets of sister ions on training set. (d) The results on test set
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effectiveness of the new GP-based preprocessing method
using 40 features and compares the results with the GP
system in [14], and the best threshold-based method [14]
for the golden standard dataset and un-preprocessed data.

Evaluating the Effectiveness of GP-Based PreprocessingMeth-
odUsing a DeNovo Sequencing Tool for Peptide Identification
It was investigated experimentally on full factorial LC-MS/MS
benchmark dataset [15] that the threshold value of 100 gets the
highest peptide identification rate among the other thresholds
[14]. Therefore, the threshold value of 100 is used as a bench-
mark method. The preprocessed data is then submitted to
PEAKS for peptide identification. Also, the test set without
applying any preprocessing method is submitted to PEAKS to
be a baseline of all the comparisons. Meanwhile, the
preprocessed test set by the best GP-method (using 40 features)
is also submitted to the peptide identification tool. The results
are compared with the existing GP method as well.

Figure 7 shows the results of peptide identification done by
PEAKS using different methods to preprocess the test set of the
golden standard dataset. All experiments are tested on the same
253,732 MS/MS spectra in the test set of the golden standard
dataset. The results are presented in five different ranges of
ALC scores. For each ALC range, the rate of identified pep-
tides by PEAKS has been calculated.

Overall, the proposed GP method achieved the highest
number of identified peptides by PEAKS compared to the
other methods. The proposed GP method helped PEAKS to
identify more highly confident peptides with scores 70 <
ALC < 99. Since the method has already identified a large
number of peptides in range 70 < ALC < 99, there are fewer
peptides to be identified with low confidence scores in
range 55 < ALC < 70.

For 55 < ALC < 99, the results of the summation of identi-
fication rate for each ALC range, the results show that the new

GP method could help PEAKS to find more highly confident
peptides rather than the other methods. This method could
improve the reliability of peptide identification by 26.6% com-
pared to un-preprocessed data. Comparing the new GP method
with the threshold method, GP had 19.3% improvement over
the threshold method. Also, the new GP method had 7.1%
improvement compared to the existing GP method [14].

In terms of the identification rate, the new GPmethod could
help the peptide identification tool to identify 99.4% of the
highly confident peptides, whereas the threshold method only
achieved an identification rate of 80.1%.

In summary, the proposed GP method helps PEAKS find
more highly confident identified peptides than threshold-based
preprocessing method. The reason is that the threshold method
ignores those peaks with intensities less than the threshold,
resulting in loosing many low intensity signal peaks and keep-
ing a number of high intensity noise peaks. That is one of the
disadvantage of threshold method as it ignores the hidden
relationship between the peaks and only filters them based on
only the intensity feature. The new GP method achieved A-acc
of 87.72% and SE of 86.26% on test set of labeled sampled
dataset (see the 40 features bar charts in Figure 6 c and d, which
means GP could keep a reasonable amount of signal peaks
while removing a significant number of noise peaks and this
allows GP to improve the results of PEAKS.

Evaluating the Effectiveness of GP-Based PreprocessingMeth-
od Using a Database Search Tool for Peptide Identification
The same experiments explained in previous section are done
using a database search engine, SEQUEST [3], to check the
effectiveness of the GP-based preprocessing method.
SEQUEST is a dominant benchmark database search tool and
reports a confidence score for each peptide spectrum match. A
cross-correlation (Xcorr) as a confidence score measures the
goodness of fit of experimental spectra to theoretical spectra

Figure 7. The results of peptide identification by PEAKS using the existing GPmethod, the new proposedGPmethod, an intensity-
based thresholding method, and golden standard data (un-preprocessed/original data) in different ALC ranges. The ALC score is a
confidence score given by PEAKS to each identified peptide and indicates the average ratio of correctly predicted amino acids of a
peptide sequence
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created from the sequence b- and y-ions. For each spectrum, the
peptide candidate with the highest Xcorr-score is known to be a
better match.

To compare the results of the proposed GP method with
other methods, a statistical unpaired t test with 95 confidence
interval is used. Table 7 shows that the result of proposed GP
method compared to the results of the other methods is statisti-
cally significant (shown in italics in the table). The proposed GP
method outperformed the existing GPmethod and increased the
mean of the Xcorr score by 0.53 and 0.16 compared to the best
threshold value and the un-preprocessed data, respectively.

In summary, the proposed GP method was also helpful for
increasing the reliability of peptide identification done by
SEQUEST as a database search engine. By filtering more noise
peaks and retaining sufficient signal peaks, it increased the
average of confidence scores of identified peptides and reduced
the standard deviation of these scores.

Analysis on the Evolved GP Solution Figure 8 shows the best
GP-evolved program using 40 features. It can be seen that the
GP tree has used features {f2}, {f7, f7, f12, f12, f14}, {f16, f16, f19,
f21}, {f29, f29}, {f31, f34} which correspond to the groups (2),
(3), (4), (5), and (7) of Table 1. GP revealed that the features
Bnormalized intensity,^ Btop X intensities in Win ± Z,^ Blocal
intensity rank in Win ± Z,^ Bglobal rank,^ and Bsister ions^ are
good discriminators which helped GP to distinguish signal
peaks from noise peaks. This is the evidence of why the
proposed GP method gets better results compared with the
existingmethodwhich only used 2 groups of the features above
(normalized intensity and global rank). Also, as Bsister ions^

features have appeared in the evolved GP program, which
confirms the result of experiment 1 where it was expected that
later, other ion types such as neutral losses will help GP to
identify the signal peaks from noise peaks. So it can be seen
that sister ion features have been found byGP and helped GP to
distinguish the signal peaks from noise peaks. In addition, GP
can automatically select 9 features from the 40 features in the 5
groups and achieve the best performance.

Conclusions and Future Work
The goal of this paper was to develop an affective preprocess-
ing method to filter noise peaks and identify the signal peaks
for improving the reliability of peptide identification using
highly noisy CID spectra. The goal has been successfully
achieved by proposing a classification-based preprocessing
method using GP to classify peaks to signal or noise peaks.
As the MS/MS data is highly imbalanced, average accuracy of
true positive rate and true negative rate was used as the fitness
function of GP, and this helped GP not be biased towards the
accuracy of the majority class containing noise peaks. Mean-
while, a set of suitable spectral features based on the CID
fragmentation rules was extracted from the data. With its tree-
based representation, feature selection was implicitly applied
during the evolutionary process to GP and the analysis of a GP
model revealed the important spectral features that have better
discrimination ability. A suitable golden standard dataset con-
taining thousands of MS/MS spectra was created and used as
the training set of the GP system. The experiments showed that

Table 7. The Statistical Results of Peptide Identification by SEQUEST Using the Existing GP Method, the Newly Proposed GP Method, an Intensity-Based
ThresholdingMethod, and Golden Standard Data (Un-preprocessed/Original Data). The Average and Standard Deviation of Xcorr-Scores for EachMethod Is Shown

Proposed GP method Existing GP method Threshold 100 Original data

Xcorr-score 3.07 ± 0.74 2.93 ± 0.78 2.91 ± 0.77 2.54 ± 0.63

Figure 8. The best GP evolved program using 40 features
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the GP-based preprocessing method improved the reliability of
peptide identification and increased the identification rate of the
de novo peptide identification tool by 26.6% compared to the
un-preprocessed data and 19.3% over the threshold-based
method. Moreover, the results of the database search tool using
the data preprocessed by GP were statistically significant com-
pared to the un-preprocessed data and the best threshold-based
method.

As the GP preprocessing method showed the promising
results in improving the reliability of peptide identification, in
our next work, we will apply this method prior to our new de
novo sequencing method on different MS/MS spectra datasets
to check how GP can help the de novo sequencing method find
the most likely peptide sequence for the given spectrum.
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