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Introduction

The consistent leadership of the Fourier-transform ion cy-
clotron mass spectrometry (FT-ICR MS) in resolving

power and mass precision among all existing mass spectrom-
etry methods experienced a big leap upon introduction of the
new FT-ICR cell with dynamic harmonization [1–3]. Dynamic
harmonization was implemented in commercial FT-ICR mass
spectrometers of (Bruker’s BSolarix xR^ BSolarix 2xR^ and
BScimax^) and in National High Magnetic Field Laboratory in
the FT-ICR system with highest magnetic field of 21 Tesla [4].
Excitation and detection segments of this ICR cell consist of
assemblies of electrodes which are shaped in a way that the
electric field distribution in the cell is harmonic (saddle-like

hyperbolic) when averaged over a cyclotron trajectory around
the axis of the cell1.

Such a field distribution separates the ion motion along
the magnetic field from the motion in x,y-plane, as well as
the cyclotron motion from the magnetron motion. This
protects the excited coherent ion clouds from losing their
angular integrity by a so-called comet formation [5] and
provides ideal phasing of single m/z ion clouds in the
whole volume of the cell during detection [6] FT-ICR

1Here and later in the text, we are talking about averaging along
axis-center cyclotron motion trajectory. This averaging coin-
cides with averaging along the azimuthal angle. By this, we are
pointing out that cyclotron frequency is much higher than axial
oscillation frequency and the forth moving ions along z-axis is
averaged over the cyclotron motionCorrespondence to: Evgeny Nikolaev; e-mail: e.nikolaev@skoltech.ru
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instruments with dynamically harmonized cells demon-
strated at relatively low magnetic fields like 7 Tesla mass
resolving power over ten million at m/z 1000 in quadrupole
detection mode, which was not reachable with any other
type of modern mass spectrometric devices.

In [1], we have provided the theory of dynamically harmo-
nized cell (DHC) for the case of cyclotron motion-averaged
field distribution. In the past, attempts were made to develop an
analytical theory of the field distribution inside the tetragonal
and cylindrical FT ICR cells. Nikolaev and Gorshkov give a
theory of field distribution in elongated (infinitely long) cylin-
drical cells by using conformal mapping [7]. Grosshans,
Shields, and Marshall [8] found the equations for the field as
infinite series of Bessel functions for these trap geometries
through the Green’s functions formalism. Although such an
approach is successful, the resulting equations are hard to use in
field calculation and analysis because of the presence of infinite
sums.

In the present paper, we have extended the theory developed in
Boldin and Nikolaev paper [1] to the case of the non-averaged
field. Our working hypothesis is based on the assumption that the
potential distribution in a dynamically harmonized cell can be
presented in the form ϕ(x, y, z) = αz2 + f2D(x, y), where f2D(x, y) is
the solution for 2D Poisson equation, that can be found by the
method of conformal mapping and α is a coefficient, that can be
found from boundary conditions (trapping potentials). The sepa-
ration of variables reduces the number of dimensions from 3 to 2
and significantly simplify the equations.

In order to verify the model, the comparison with numerical
simulation was made.

The obtained potential distribution can serve as a base for an
analytical theory of signal detecting using dynamically harmo-
nized cells and as a standard for solutions obtained by numer-
ical simulations of the cell field.

Theory
The formal statement of the problem: We need to solve the
Laplace equation for the electric potential

Δx;y;zϕ x; y; zð Þ ¼ 0 ð1Þ

where R is the radius of the cell, z0 is its half-length (z = 0
is corresponds to the center of the cell), β is a coefficient
responsible for the width2 of grounded Bleaf^ electrodes, N
is the total number of leaf electrodes, and n = 0, 1, …N − 1
is the serial number of the leaf electrode. Here and below
in some cases, we will write equations in polar coordi-

nates: r ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 þ y2

p
, θ = arctan2 (y, x)3, angle θ is mea-

sured from the center line of one of the grounded
electrodes.

Reducing the Problem Dimensions from 3D to 2D

Averaging of the electric field in a dynamically harmo-
nized cell performed in Boldin and Nikolaev paper [1] was
made in the plane perpendicular to the magnetic field x, y-
plane in our model. The averaging procedure does not
involve the z-coordinate. From this fact, we can conclude
that the field before the averaging process can be presented
in the same form as the field averaged along the cyclotron
motion trajectory:

ϕ x; y; zð Þ ¼ α � z2 þ f 2D x; yð Þ ð3Þ
where f2D is the solution of 2D Poisson equation obtained
from 3D Laplace Eq. (1):

Δx;y f 2D x; yð Þ ¼ −Δzαz2 ð4Þ

The function f2D can be presented as the sum of two other
functions:

f 2D x; yð Þ ¼ f x; yð Þ þ f pp x; yð Þ ð5Þ

where fpp is a partial solution of the Poisson equation and f is
the common solution for 2D Laplace equation. Of course, such
presentation of DHC field is not valid in the whole cell volume.
Very close to the electrodes, the field is not quadratic along z
because each electrode has a fixed potential which does not
vary along the electrode. It is equipotential (for more precise
explanation, see BEvaluating the Laplacian^ section and
Figure 5).

Figure 1. The geometry of the dynamically harmonized FT-
ICR cell. The Bleaf^ electrodes have zero potential, everything
else (Binverse leaf^ electrodes on the cylinder mantle and the
end caps) is under voltage ϕ0
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With the boundary conditions (Figure 1)

ϕjr¼R ¼
0; θ∈

2π
N

n� β
π
N

1−
z2

z20

� �

ϕ0; θ∈
2π
N

nþ 1

2

� �
� π

N
þ β

π
N

z2

z20
−1

� �� �
8>><
>>: ð2Þ

2The ratio between the width of grounded and non-grounded
electrodes in the middle (z = 0) of the cell.
3Arctan2 (y, x) is the modification of arctan (y/x) with range of
value [−π, π].



From (4) Δx, y fpp = −Δzαz
2 = − 2α. The partial solution can

be obtained in the form

f pp x; yð Þ ¼ −
α
2
r2 ð6Þ

The coefficient α will be calculated later from the boundary
conditions.

From (1)

ϕ x; y; zð Þ ¼ f x; yð Þ þ αz2−
α
2
r2 ð7Þ

The f(x, y) is the solution of

Δx;y f x; yð Þ ¼ 0 ð8Þ

With boundary conditions (from (7) and (2))

f jr¼R

¼
−αz2 þ α

2
R2; θ∈

2π
N

n� β
π
N

1−
z2

z20

� �

ϕ0−αz
2 þ α

2
R2; θ∈

2π
N

nþ 1

2

� �
� π

N
þ β

π
N

z2

z20
−1

� �� �
8>><
>>:

ð9Þ

Solving the 2D Laplace Equation

It is not necessary to solve the Laplace equation with so
complicated boundary condition (9). If Eq. (8) can be solved
with the following conditions

f jr¼R ¼ ϕ0; θ∈ 0; θ0½ �
0; else

�
ð10Þ

where θ0 is some arbitrary angle, the electric potential with the
boundary condition (9) can be found using the superposition
principle with the proper choice of θ0 (it will be described more
precisely at the end of the subsection—Eqs. (17)–(19)).

The common way to solve a two-dimensional electrostatic
problem is the conformal mapping. The detailed description of
this method can be found in [9] and in the Appendix. In the
following, we describe the main idea.

Let us take a conductor, which is infinitely long in z axis.
Thus, the electric field E of the conductor depends only on x and
y, but not on z. The conductor in x, y-plane can be described as a
curve C = f(x, y) which is an equipotential. Let us represent the
plane as a complex plane with z� ¼ xþ iy. Then C ¼ f z�ð Þ. If
there is an analytical complex function w(z) that turns the curve
into the line Im w f z�ð Þð Þ ¼ const, then the potential created by
this conductive line can be found as ϕ(x, y) = Im w (it is said,
that w z�ð Þ implements the conformal mapping of the plane z�).

Thus, the task (as shown in Figure 2, top) is to transform the
curves ζ into ζ′, ξ into ξ′, the points A into A′ and B into B′, and
the inside and outside areas again into inside and outside areas.

The physical interpretation of curves ζ and ξ is the cross-
sections of two conductors: one with the potential ϕ0 and the
second one with the potential 0 (grounded) respectively; the
points A and B are the potential leaps between the conductors.

Formally, we need to find the transformation for the curves:

r ¼ R
θ∈ 0; θ0½ � → Im z ¼ ϕ0

ð11Þ

r ¼ R
θ∉ 0; θ0½ � → Im z ¼ 0

ð12Þ

And for the points:

Rexp i � θ0ð Þ⟶−inf ð13Þ

Rexp i � 0ð Þ⟶þ inf ð14Þ

In order to perform this, we use a consecutive four-step
transformation (Figure 2, bottom).

w ¼ w4∘w3∘w2∘w1 ¼ ϕ0

π

� Ln exp −iθ0=2ð Þ � z−Rexp iθ0

z−1

" #
ð15Þ

where Ln is the complex logarithm.

Figure 2. Top: the task, a conformal mapping w z�ð Þ must
transform the circle (left) to two lines (right). Bottom: The
solution, the mapping of areas on the complex plane: upper-
left, the initial configuration; upper-right, after applying w1;
bottom-right, after applying w2; bottom-left, the final stage,
after applying w4 ∘w3. The curve corresponded to conductor
with potential ϕ0 marked bold, the curve corresponded to
grounded one marked thin
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The final step is to find the electric potential distribu-
tion f(x, y) for the boundary condition (9). Using the
additivity principle once more, the f(x, y) can be found
from (18):

f x; yð Þ ¼ ∑
N−1

n¼0
ϕθ0;þ;n;θ1;þ;n

x; y;ϕ0−az2 þ
α
2
R2

	 
h i
þ

¼ ∑
N−1

n¼0
ϕθ0;−;n;θ1;−;n x; y;−az2 þ α

2
R2

	 
h i ð19Þ

where

θ0;þ;n ¼ 2π
N

nþ 1

2

� �
−

π
N

þ β
π
N

z2

z20
−1

� �� �
ð20Þ

θ1;þ;n ¼ 2π
N

nþ 1

2

� �
þ π

N
þ β

π
N

z2

z20
−1

� �� �
ð21Þ

θ0;−;n ¼ 2π
N

n−β
π
N

1−
z2

z20

� �
ð22Þ

θ1;−;n ¼ 2π
N

nþ β
π
N

1−
z2

z20

� �
ð23Þ

Although we have assumed that f(x, y) as the solution
of 2D Laplace, Eq. (8) has no dependence on z-coordinate,
in Eq. (19) z-coordinate is appeared as a parameter from
the boundary conditions. It is showing the limitations of
the theory, which will be addressed later in the text.
Although the z-coordinate appeared in equation and, for-
mally, it must be written as f(x, y, z), we will still use the
notation f(x, y) (assuming z as a parameter), saving the
connections with Eq. (8) and keeping in mind that z-
coordinate has much smaller effect on the field distribu-
tion, than x or y.

Averaging over the Polar Angle

In order to find the coefficient α, we average 3D electric
potential distribution over cyclotron motion (this is an equiva-
lent of the averaging over the polar angle θ). The calculation is
also useful for comparison the results with [1].

It can be proved, that the averaged over the polar angle
solution of the 2D Laplace equation f̂ rð Þ is independent of r
(note that here, we are talking about the 2D Laplace equation,
not the 2D Poisson equation and not the 3D Laplace equation).
To understand the independence, note first that if f̂ with the

simple boundary condition (10) (declared as ϕ̂0;θ0 rð Þ) is inde-
pendent of r, then the f̂ with the actual boundary condition (9)
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The functions are:

1. w1 z�ð Þ ¼ z� −Rexp iθ0ð Þ= z� −1ð Þ transforms the circle into
the semi-plane with w1(1 + 0i) = 0 and w1(R exp iθ0) = inf ;

2. w2 z�ð Þ ¼ z� �exp −iθ0=2ð Þ rotates the semi-plane so that the
border of this plane becomes Im w = 0;

3. w3 z�ð Þ ¼ Ln z�ð Þ folds the semi-plane into a strip with border
lines Im w = 0 and Im w = π;

4. w4 z�ð Þ ¼ ϕ0=π � z� normalizes the upper bound to ϕ0.
All previous reasoning were made for the simple boundary

condition (10). Before giving the solution for electric potential
in this case, let us define a new function ϕθ0;θ1 x; y;ϕ0ð Þ as the
solution for the potential with a bit more complicated boundary
conditions:

ϕθ0;θ1 x; y;ϕ0ð Þ��
r¼R

¼ ϕ0; θ∈ θ0; θ1½ �
0; else

�
ð16Þ

The solution for boundary condition (10) can now be de-
clared as ϕ0;θ0 .

Three mathematical relations are used:

1. Im Ln z�ð Þð Þ ¼ Arg z�ð Þ ¼ arctan2 y; xð Þ4
2. Ln(ab) = Ln(a) + Ln(b)
3. Ln(a/b) = Ln(a) − Ln(b)

With them, from (15), the electric potential distribution can
be found for simple boundary condition (10):

ϕ0;θ0 ¼
ϕ0

π

h
arctan2 y−Rsin θ0; x−Rcos θ0ð Þ−θ0

2
−arctan2 y; x−Rð Þ

i ð17Þ

The next step is to solve the 2D Laplace equation with
the boundary condition (16). Using the additivity principle,
it can be written ϕθ0;θ1 ¼ ϕ0;θ1−ϕ0;θ0 . The solution for the
electric potential with boundary condition (16) ϕθ0;θ1 can
be written as

ϕθ0;θ1 x; y;ϕ0ð Þ
¼ ϕ0

π
arctan2 yRsinθ1; x−Rcos θ1ð Þ−θ1

2

� �
−

−
ϕ0

π
arctan2 y−Rsinθ0; x−Rcosθ0ð Þ−θ0

2

� � ð18Þ

4Actually, we need the function image to be the segment
[0, 2π). Thus, for the whole geometric part, 2π should be added
to or subtracted from the result equation, so that the resulting
value at every point will be within [0, 2π).



is independent too (because of the commutation between addi-
tion and taking the average procedures).

Let us prove that ϕ̂0;θ0 rð Þ is independent of r:

ϕ̂0;θ0 rð Þ ¼
1

2π
∮dθ

ϕ0

π
arctan

rsinθ−Rsinθ0
rcosθ−Rcosθ0

−

−
ϕ0

π
1

2π
∮dθ

θ0
2

−
ϕ0

π
1

2π
∮dθarctan

rsinθ
rcos θ−R

ð24Þ

Coming from the simplest to the hardest one:

� The second integral is obviously constant: it is taken from a
constant function

� The third one is equal to zero because of the oddness: r sin θ
is odd, r cos θ − R is even, a quotient of odd and even is odd,
arctan is odd, so arctangent from an odd function is odd as
well. An integral over a circle from the odd function gives us
zero.

� The first integral is constant because of the geometric mean-
ing of the arctan. Arctangent is an angle from x-axis to the
line between origin and the point (r sin θ − R sin θ0, r cos θ
− R cos θ0). The averaging of an angle over the angle is
constant.

The f̂ rð Þ ¼ f̂ R
� �

for all r can be found from (9):

f̂ ¼ ϕ0 1−β 1−
z2

z20

� �� �
−αz2 þ α

2
R2 ð25Þ

Return to the 3D equation

ϕ̂ r; zð Þ ¼ ϕ0−β 1−
z2

z20

� �
ϕ0 þ

α
2

R2−r2
� � ð26Þ

Now, the α coefficient can be determined. From (7) and
(26):

2α ¼ ∂2ϕ
∂z2

¼ ∂2ϕ̂
∂z2

¼ 2βϕ0

z20
ð27Þ

Solving the Original Equation

So, the formula for electric potential from (3), (6), (19),
and (27)

ϕ r; θ; zð Þ ¼ ϕ0
β
z20
z2−ϕ0

β
2z20

r2þ

þ ∑
N−1

n¼0
ϕθ0;þ;n;θ1;þ;n

x; y;ϕ0−ϕ0
β
z20
z2 þ ϕ0

β
2z20

R2

� �� �
þ

þ ∑
N−1

n¼0
ϕθ0;−;n;θ1;−;n x; y;−ϕ0

β
z20

z2 þ ϕ0
β
2z20

R2

� �� �

ð28Þ
With function (18) and angle (23).
Simplifying the whole equation, we finally get:

ϕ r; θ; zð Þ ¼ βϕ0

2z20
R2−r2
� �

þ ϕ0

π
∑
N−1

n¼0
arctan

y−Rsin θn
x−Rcos θn

� �����
θn¼ π

N 2nþ2þβz
2

z2
0

−β

� �

θn¼ π
N 2n−βz2

z2
0

þβ

� �
ð29Þ

Again, here, ϕ is the electric potential inside the trap,
x, y, and z are the Cartesian coordinates and r, θ, and z
are the corresponding cylindrical coordinates, β is an
arbitrary coefficient of ground electrodes’ width, ϕ0 is
the potential of non-grounded electrode, R, z0 are geo-
metric parameters of the trap, N is the number of the

Figure 3. The distribution of potential at z = 0.8z0, z0 = 60mm, R = 30mm, β = 0.95, N = 4 (left) and the averaged over polar angle
distribution for the same cell (right)
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Figure 4. Mean deviation from zero of the Laplacian (in V/m2), averaged over angle. β = 0.95, R = 30mm, ϕ0 = 1V. For more clear
view of low values we transform values bigger than 2 × 104 to the log scale. Red line is showing the border where Laplacian is equal
to 102. The area inside the yellow lines is the working area. Laplacian become closer to zero with increasing of z0 and N
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grounded electrodes (Figure 1), vertical line stands for
subtraction of two arctangents.

For averaged electric potential we get from (26) and (27):

ϕ̂ r; zð Þ ¼ ϕ0−
2β 1−

z2

z20

� �
2

ϕ0 þ
β 1−

r2

R2

� �
2

R2

z20
ϕ0 ð30Þ

This equation is the same as in [1] with α0 = β · π/N.
Figure 3 shows the electric potential distribution at

particular z = 0.8z0 (left) and the averaged potential dis-
tribution (right) for the typical cell with following pa-
rameters: N = 4, β = 0.95, R = 30mm, z0 = 60mm.

Evaluating the Laplacian

The final solution (29) must be checked if it is satisfying the
Laplace Eq. (1).

The second derivatives over x and y: the first term in

(29) gives ∂2ϕ=∂x2 ¼ ∂2ϕ=∂x2 ¼ − βϕ0

z20
; the second deriv-

ative of the second term (with summation over n) is zero
as the strict solution of 2D Laplace equation. The second
derivative over z is obtained by the direct calculation.

The full Laplacian is shown below

Δϕ x; y; zð Þ ¼ −
2βϕ0

z20
þ

þϕ0

π
∑
N−1

n¼0

h R2−r2
� �

sβ
2μ
Nz20

2
	
R2 þ r2−2R xcos θn þ ysin θnð Þ

−

−
2R R2−r2

� �
β 2zπ

Nz20

	 
2
xsinθn−ycosθnð Þ

2 R2 þ r2−2R xcosθn þ ysinθnð Þ� �2 ij θn ¼
π
N

2nþ 2þ β
z2

Z2
0

−β
� �

; s ¼ þ1

θn ¼ cπN 2n−β
z2

Z2
0

þ β
� �

; s ¼ −1

ð31Þ

The Laplacian is not equal to zero in the whole space. Its
averaged over angle deviation from 05 is shown in Figure 4 for
different N and z0. The area inside the yellow lines is the
working area of the trap. Its boundaries are the following:
z = ± 0.5z0, r = 0.7R. The boundary of the working region of
the trap corresponds to the region of high homogeneity of the
magnetic field (usually a cylindrical region of 6 cm long and
6 cm in diameter). In radial directions, it is limited by the
demands of avoiding the odd harmonics in the FT-ICR signal.
The red line is the border of the region where the Laplacian is
equal to 102V/m2.

5(1/2π) ∮ dθ · ∣Δϕ(r, z, θ)∣



784 A. Lioznov et al.: Electric Field Inside Dynamically Harmonized FT-ICR Cell

The absolute value and the sign of the Laplacian can be
different depending on a particular z and θ, but is always close
to zero in the larger part of the working volume and become
significant only closer to the working area borders. Moreover,
as it is shown in the figure, the deviation becomes closer to zero
with increasing of z0/R and N.

The maximum value of the Laplacian for each case inside
the boundaries was also calculated. The maximum value of the
Laplacian depends on z0 and N as shown in Table 1.

In close proximity to the electrodes, the potential should not
follow the z2-law, because of the influence of the nearest
electrode, which is equipotential. In common case, keeping x,
y constant, by changing z-coordinate, the potential would have
a leap from ϕ0 to zero and back again: when z = − z0, the

nearest electrode has potential ϕ0, going upward the nearest
electrode changes to the grounded one, and continue going
upward the nearest electrode changes ones more to the elec-
trode ϕ =ϕ0 (see Figure 5). That is why the coordinate sepa-
ration becomes invalid. When moving away from the cell
electrodes, the influence of the equipotential electrode de-
creases, as shown in Figure 4 and Table 1.

The physical meaning of the value of the Laplacian at a
point is simple—it is just the value of imaginary space charge at
this point as follows from the Poisson equation:

Δϕ ¼ ρ
ϵ0

; ϵ0∼9 � 10−12F �m−1 ð32Þ
Thus, the physical meaning of the non-equality to zero of

the Laplacian could be attributed to the imaginary charges.
If this density is much less than the density of real ions
presented in the cell, then the approximation is good.

Inside the working volume, the biggest value of the
Laplacian is ∼100V/m2. From (32), it can be calculated
that such a value corresponds to less than ten ions in mm3.
Typical ion cloud has the volume V ∼ 102 − 103mm3 [10].
For ion number ∼105, there are more than 100 ions in
1mm3. Thus, even with the biggest Laplacian in the whole
area, the number of imaginary ions are much less than the
number of real ions. The simulations show that this range
is more than enough for a good approximation as it will be
shown in the next section.

Comparison with Computer Simulation
Results
It is interesting to compare the analytically calculated
field with a simulated one. The electric field distribution
was determined using the finite difference method for the
Laplace equation in the Cartesian coordinates by using
SIMION 8.1. The data analysis and comparison was
carried out by Python 3.6. Two types of comparisons
were performed: the comparison between the averaged

Table 1. Maximum Value of the Laplacian in V/m2 in the Working Areas for
Different N and z0. R = 30mm, β = 0.95, ϕ0 = 1V

N (mm) 4 8
z0

60 347 62
120 87 16

Figure 5. Changes of the potential inside the cell near the
electrodes with fixed x and y

Figure 6. The comparison between the averaged over the polar angle potentials, simulated and theoretical. The left part of the
figure shows the r-dependence with fixed z, the right part shows the z-dependence with fixed r



field (in order to double-check the simulation) and the
comparison between the unaveraged field.

Comparison of Averaged Fields

The comparison between theory ϕtheor and simulation
ϕmodel after averaging over the polar angle is shown in
Figure 6. In this example, the following parameters were
taken: R = 30mm, z0 = 60mm, N = 4, and β = 0.95; number
of steps of partitioning by axes x, y, and z: 330, 330, and
2 · 330. The results match up with an accuracy of 10−3.

Comparison of Unaveraged Fields

Figure 7 shows the comparison between theory and sim-
ulation in the non-averaged case. The left part of the
figure shows the ϕ(z) dependence for several θ and r in
both theoretical and simulated case. The right part of the
figure shows the difference between the approaches. The
upper angle (0.5 · π/2) is the angle of the plane cutting
the cell between grounded leaf electrodes. The lower
angle (2.3 · π/2) is an example of the general case.

In a narrow region at the junction of two electrodes, a strong
disagreement of up to 20% is observed between the simulation

and the theory. But fortunately, this mismatching is limited
only to this very narrow region.

Conclusion
The analytical solution for the potential distribution in
the working volume of dynamically harmonized FT-ICR
cell was found. Averaged field over the polar angle was
calculated and it was proved that the field coincides with
the averaged field obtained in the paper of Boldin and
Nikolaev [1].

Distributions of two values— the Laplacian of the potential
and the difference between the analytically found potential and
its simulation using SIMION‐8.1—were calculated to verify
the model. Both values should be equal to zero in the whole
volume of the cell if the hypothesis of the field structure we are
using is valid (Eq. (3)), though it is not exactly fulfilled.

The difference from zero for both distributions become
significant at close proximity of the electrodes. It turns out
because of non-constant second derivative over z, which
was assumed as a base during construction of equations. It
happened because of contribution of the nearest electrode,
which is equipotential. The border between two electrodes
lies at different angles depending on z. Thus the potential

Figure 7. Left, comparison of the results for ϕ obtained by the theory (green lines) and obtained by the simulation (red lines). They
coinside for r/R = 0.5 . In each figures, different radii aremarked by solid, dash-dotted, anddotted lines. Right, the difference between
the results of the simulation and the theory. Each of two figures in left and right rows stands for one fixed angle, which is shown in the
title of a figure. R = 30mm, z0 = 60mm, N = 4, β = 0.95
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depending on z (with fixed x and y) approximately takes
only two constant values (ϕ0 and 0) with the leaps
between.

Both distributions—Laplacian and difference between
the theory and the simulation—are becoming closer to zero
inside the working area—z∈ ± 0.5z0, r < 0.7R. So, in the
working area, the theoretical potential satisfies the Laplace
equation and it is in the good agreement with the simulation.
And the distributions become even closer to zero with
increasing the number of electrodes N and with elongation
of cell—increase of z0/R. Therefore, we conclude that the
found equation can be applied for all practical cases and
serve to calculate the electric field and the ion trajectories
inside the cell. With the help of the reciprocity principle the
solution will help to calculate the signal induced by ions
moving in FT-ICR cells.

Further research is required to analyze the influence of the
non-ideality of the electrode shapes and the electrode
misalignments.
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Appendix. About conformal mapping
Conformal mapping is a method from the theory of func-
tions of a complex variable, which can be used for finding
strict solutions of the electric potential distribution in case
of a flat electric field (when E depends only on x and y, but
not on z).

From [9]:
In the empty space, the electric field satisfies the equations

rotE = 0, divE = 0. We can introduce both scalar and vector
potentials for the same electric field: E = − gradϕ = rot A. Be-
cause the field is considered to be flat, the potential A can be
chosen perpendicular to the plane.

Then

Ex ¼ −
∂ϕ
∂x

¼ ∂A
∂y

; Ey ¼ −
∂ϕ
∂y

¼ −
∂A
∂x

ð33Þ

This relations between A and ϕ can be also found in the
theory of functions of a complex variable—the Cauchy-

Riemann equations, the complex expression

w ¼ ϕ−iA ð34Þ

Is analytical function from the complex argument z = x + iy.
From mathematical point of view, w =w(z) implements a

conformal mapping for the variable z to the planew. If there is a
conductor with x, y-plane cross-section C, and we can find
some analytical function w(x + iy), when in new geometry
potential distribution can be found (ex: if we transform the
counter C into the line w =ϕ0), Re w will be the potential
distribution (or Im w for case of w = iϕ0).
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