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Abstract. Reference spectral library searching,
while widely used to identify compounds in other
areas of mass spectrometry, is not commonly
used in glycomics. Building on a study by Cotter
and coworkers on analysis of sialylated oligosac-
charides using atmospheric pressure-matrix-
assisted laser-induced tandem mass spectrome-
try (MS/MS), we show that library search
methods enable the automated differentiation of
such sialylated oligosaccharide isomers using

MS/MS derived from electrospray collision-induced dissociation in ion trap and beam-type fragmentation mass
spectrometers. We compare MS/MS spectra of five sets of native sialylated oligosaccharide isomers and show a
spectral library search method that can distinguish between these isomers using the precursor ion [M+2X-H]+,
where X=Li, Na, or K. Sialic acid linkage (α2,3 vs. α2,6) is known to have a dramatic effect on the fragmentation of
the sialylated compounds. We found that 2,4A3 cross-ring fragment at the terminal monosaccharide in
sialyllactoses, sialyllactosamines, and sialyl pentasaccharides is highly abundant in the MS/MS spectra of
[M+2X-H]+ species of α2,6-NeuAc glycans, while (2,4A3-H2O) fragment is highly abundant in α2,3-NeuAcmoiety.
The 2,4A3-H2O peak is specific to NeuAc-α2,3-Gal-β1,4-Y (Y=GlcNAc or Glc). To our knowledge, this observa-
tion was not reported previously. Theoretical calculations reveal major conformational differences between α2,6-
NeuAc and α2,3-NeuAc structures that provide reasonable explanations for the observed fragmentation patterns.
Other singly-charged ions ([M+X]+) do not show similar cross-ring cleavages. Implemented in a searchable
library, these spectral differences provide a facile method to distinguish sialyl isomers without derivatization. We
also found good spectral matching across instruments. MS/MS spectra and tools are available at http://
chemdata.nist.gov/glycan/spectra.
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Introduction

Sialylated (or sialic acid-containing) oligosaccharides play a
role in several biological functions, including host-

pathogen interactions, cell protection from membrane proteol-
ysis, cell adhesion, and cell-cell recognition [1, 2]. Sialic acids
are nine-carbon acidic monosaccharides typically found in N-
glycans, O-glycans, human milk oligosaccharides, and
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glycosphingolipids. N-Acetylneuraminic acid (abbreviated
Neu5Ac, NeuAc or historically, NANA) is the most common
sialic acid and is the only sialic acid naturally present in
humans [3]. NeuAc is usually attached to terminal galactose
(Gal) residues with an α2,3 or an α2,6 linkage or to terminal N-
acetylglucosamine (GlcNAc) residues with an α2,6 linkage. In
human milk oligosaccharides, NeuAc can also be found at-
tached to the internal Gal or GlcNAc residues [4].

Distinguishing sialyl linkage isomers is critical because
most biological activities of sialyl oligosaccharides are
structure-dependent [5]. For example, α2,3-sialyllactose, a hu-
man milk oligosaccharide, binds to Helicobacter pylori, effec-
tively lessening the adhesion of the bacteria to duodenum-
derived human cells [6]. The human influenza virus recognizes
α2,6-sialyl linkages; the avian and equine influenza virus rec-
ognizes the α2,3-sialyl linkages; and the swine influenza virus
seems to recognize both α2,3 and α2,6 sialyl linkages [7]. In
biomarker discovery, increased α2,6-sialylation was found to
be correlated in the progression of many types of cancer [8].

Using matrix-assisted laser desorption/ionization-time of
flight (MALDI-TOF) MS in the negative ion mode, Yamagaki
and Nakanishi [5] distinguished α2,3 and α2,6 sialyl isomers of
sialyllactose (SL) and sialyllactosamine (SLN) using difference
in relative intensities of the B1 fragment ion (m/z 290) (for a
detailed explanation of the fragmentation nomenclature, see
reference [9]). The α2,3-sialic acid cleaves easier in MALDI-
post-source decay (PSD) fragmentation, resulting in higher
intensities of the B1 ion. Tandem mass spectrometry using soft
ionization techniques, such as MALDI and electrospray (ESI),
is a powerful tool to analyze glycans. However, sialic acid is
labile and may be lost by in-source or metastable decay in
MALDI-MS [10]. In positive-ion ESI-MS, the tandem mass
spectra of the protonated or sodiated species of underivatized
sialylated glycans usually contain very few peaks since the
main fragmentation comes from the loss of the sialic acid [11].

The structural characterization of glycans released from
proteins follows different approaches, usually implicating la-
beling, derivatization, and others. Derivatizations, such as
permethylation [12, 13], amidation [14], and esterification
[15–18] and are useful in stabilizing sialic acids for analysis
in the positive ion mode and when combined with multi-stage
MS (MSn), may give valuable cross-ring cleavage peaks and
open hydroxyl scars to help elucidate the full glycan structure
[19]. However, derivatization may be incomplete and time-
consuming. Underivatized sialylated glycans analyzed in the
negative ion mode ESI-MS generally produce better fragmen-
tation [20], but the MS analyses are typically harder to opti-
mize. Cotter and coworkers reported that by using infrared-
atmospheric pressure (IR-AP) MALDI-ion trap MS with glyc-
erol as matrix, they were able to distinguish cationized
sialylated isomers in their underivatized form [11]. They found
that doubly sodiated or cobaltinated singly-charged
underivatized sialyl glycans produced distinct spectra with
cross-ring cleavages.

Building on Cotter’s work, we report spectra with cross-ring
cleavages of underivatized sialyl glycans acquired by collision-

induced dissociation (CID) in ion trap (IT) and beam-type
fragmentation (CID MS/MS, higher-energy collision dissocia-
tion (HCD) MS/MS, and CID MSn) at several collision ener-
gies using ESI-Orbitrap and ESI-quadrupole TOF (QTOF) MS
instruments. We surveyed several precursor ions and con-
firmed that the [M + 2X-H]+ (where X = Li, Na, or K) precursor
ions produce cross-ring-rich tandem mass spectra, as Cotter
reported earlier using AP MALDI MS [11]. We show that
using ESI ionization, these fragment ions help differentiate
sialyl isomers without the need for derivatization or online
purification. The signals are intense with minimal adverse
effects of the metal ion salts on the ion signals. We find good
spectral matching in the IT CID, QTOF, and HCD Orbitrap
MS/MS data across several collision energies. Thus, the anal-
ysis of [M + 2X-H]+ ions with library searching could be used
to differentiate sialyl isomers without derivatization. However,
such ions are generally lesser in abundance compared to [M +
Na]+ ions, so further work on optimizing the ionization effi-
ciency of these ions is necessary.

In addition to the identification of specific glycans, a goal of
this work to show the effectiveness of a library searching for
aiding the identification of glycans, especially by
distinguishing isomers having different fragmentation patterns.

Materials and Methods
Materials

Twelve oligosaccharides, such as 3′-sialyllactose (3-SL), 6′-
sialyllactose (6-SL), 3′-sialyl-N-acetyllactosamine (3-SLN), 6′-
sialyl-N-acetyllactosamine (6-SLN), sialyllacto-N-tetraose a
(LSTa), sialyllacto-N-tetraose b (LSTb), sialyllacto-N-tetraose
c (LSTc), sialyllacto-N-tetraose d (LSTd), 3′-sialyl-Lewis A
tetrasaccharide (SLeA), 3′-sialyl-Lewis X tetrasaccharide
(SLeX), sialylated tetraose type 1 (STetra1), and sialylated
tetraose type 2 (STetra2), were obtained from Sigma-Aldrich
(St. Louis, MO), V-labs (Covington, LA), and Elicityl (Crolles,
France). All materials were used without additional
purification.

Mass Spectrometry of Oligosaccharides

The underivatized glycans were prepared with, and without,
dopants. Cation-doped diluted solution (75:25 water/methanol)
were prepared by adding lithium iodide, sodium chloride, or
potassium iodide to obtain lithiated, sodiated, or potassiated
precursor ions, respectively, prior to MS analysis. Samples
were analyzed by direct infusion using a nano-ESI LTQ-
Orbitrap Velos or LTQ-Orbitrap Elite MS (Thermo Fisher
Scientific, Waltham, MA). Samples were infused at a flow rate
of 50 to 100 nL/min using equal volumes of aqueous methanol
or aqueous acetonitrile. Data were acquired in the positive
ionization mode at a mass range of m/z 100 to m/z 1500.
Full-scan Fourier-transform (FT) mass spectra were acquired
at a resolution of 30,000. Default values were used for the
activation Q and time. CID MS/MS and MSn spectra were
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obtained at 35% normalized collision energy and with an
isolation width of 2 Da. FT CID and HCD MS/MS spectra
were obtained at a resolution of 15,000 and 30,000, respective-
ly. HCD MS/MS spectra were acquired at several normalized
percent collisional energies ranging from 5 to 180%, but only
the useful spectra were included in the library. For example,
spectra with a single ion peak are usually not included in the
library. Calibration was done using a calibrant mix provided by
the manufacturer to allow mass accuracy of 10 ppm (ppm)1 or
better over the entirem/z range. Oligosaccharideswere detected
as [M +X]+, [M + 2X-H]+, [M + 2X]2+, [M +X +H]2+, and
[M +H]+ precursor ions, where M =molecular ion and X =
Li, Na, or K, depending on the dopant.

Similar spectra of a particular glycan acquired using the same
instrument, activation method, and collision energy were clus-
tered together using a stringent clustering algorithm in order to
generate a consensus spectrum [21, 22]. Several consensus
spectra were generated for each glycan. Multi-stage MS (MSn)
was performed when further characterization was necessary.

Theoretical Calculations

Three-dimensional (3D) structures were built using
GLYCAM-web (www.glycam.org). The structures were

preoptimized using molecular mechanics as implemented in
Amber16 [23] using the GLYCAM force field [24, 25] with the
most recent version of the GLYCAM06 parameters [25].
Although no systematic exploration of the conformational
space was performed, the potential surface was spanned
starting from various initial configurations. Subsequently,
quantum mechanical calculations were performed using the
density functional theory (DFT) method with the B3LYP func-
tional and either standard 6-31G(d) or LANLDZ basis sets as
implemented in Gaussian 09 [26]. Several relaxed scans were
performed for exploring potential fragmentation pathways.
Similar calculations have been effectively used in previous
studies of ion fragmentation under CID conditions [27, 28].
Frequency analyses at the same level of theory were performed
to identify real minima and transition state structures on the
potential energy surface, for the model structures, 3-SLN and
6-SLN. Geometry optimization of more complex structures,
such as LSTa and LSTc, were performed using the semi-
empirical Hamiltonian AM1.

Results and Discussion
3-Sialyllactose (3-SL) Versus 6-SL

We compared the consensus [21, 22] tandem mass spectra of
SL isomers shown in Figure 1A and B. The two isomers differ
in the sialic acid linkage, with Figure 1A having an α2,3-linked

1ppm is conventionally used in mass spectrometry and corre-
sponds to (μg/g)/charge.

Figure 1. Structures of analyzed sialyloligosaccharides. (a) 3′-Sialyllactose (3-SL), (b) 6′-sialyllactose (6-SL); cartoon representa-
tions of (c) 3′-sialyl-N-acetyllactosamine (3-SLN), (d) 6′-sialyl-N-acetyllactosamine (6-SLN); (e) sialyllacto-N-tetraose a (LSTa), (f)
sialyllacto-N-tetraose d (LSTd), (g) sialyllacto-N-tetraose c (LSTc), (h) sialyllacto-N-tetraose b (LSTb), (i) 3′-sialyl-Lewis A
tetrasaccharide (SLeA), (j) 3′-sialyl-Lewis × tetrasaccharide (SLeX), (k) sialylated tetraose type 1 (STetra1), and (l) sialylated tetraose
type 2 (STetra2). Each box is a set of isomers. Symbol nomenclature based on the recommendations by the consortium for
functional glycomics (yellow circle: galactose (Gal), blue circle: glucose (Glc), blue square: N-acetylglucosamine (GlcNAc), red
triangle: fucose (Fuc), purple diamond: N-acetylneuraminic acid (NeuAc)
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NeuAc (3-SL) and Figure 1B having an α2,6-linked NeuAc (6-
SL).

In the native form, small oligosaccharides are typically
analyzed using the precursor ion [M +Na]+. The CID MS/
MS of the [M +X]+ ion (where X = Li, Na, or K) of 3-SL and
6-SL trisaccharides showed primarily the Y2 ion (loss of the
labile sialic acid) in all cases and provided minimal differences
in the spectra of the isomers (see Supplemental Figure 1).
However, the spectra of [M + 2X-H]+ precursor ions of 3-SL
and 6-SL isomers gave distinct tandem mass spectra enough to
differentiate the isomeric pairs, a difference observed previous-
ly by Cotter and coworkers using AP-MALDI ion trap MS
[11]. Figure 2A–F shows the MS/MS FT CID spectra of [M +
2X-H]+ ion (where X = Li, Na, K) of 3-SL (left) and 6-SL
(right). In all cases, the greatest difference was the intensities
of the cross-ring cleavage pair of the reducing glucose, namely
2,4A3 and (2,4A3-H2O). The α2,6-linked SL favors the

formation of the 2,4A3 product ion, while the α2,3-linked SL
favors the formation of 2,4A3-H2O product ion. Upon closer
inspection, we see that the different cation-bound ions show
different behaviors. The α2,-6-linked [M + 2Li-H]+ ion favors
the formation of the 2,4A3 ion at 100% intensity; the B1 ion is at
< 20% intensity (Figure 2B). The α2,3-linked [M + 2Li-H]+ ion
favors the formation of the B1 ion (100%); the 2,4A3-H2O ion is
at ≈ 50%; the 2,4A3 ion is at > 20%; and the 0,2A3 ion is at ≈
10% (Figure 2A). The corresponding sodiated ion [M + 2Na-
H]+ of the α2,6- and α2,3-linked SL favors the 2,4A3 and

2,4A3-
H2O, respectively, at 100% intensity (Figure 2C and D).
The [M + 2Li-H]+ ion of the α2,3-linked species favors the
2,4A3-H2O ion formation at 100% (Figure 2E), while the
α2,6-linked species only favors the 2,4A3 formation at < 50%
(Figure 2F).

MS3 analysis of the 2,4A3 ion (m/z 540) from [M+ 2Na-H]+

of 3-SL reveals primarily the B1 ion (sialic acid), m/z 430, and
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Figure 2. FT CID MS/MS spectra of [M+ 2X-H]+ ion of 3-SL (left) and 6-SL (right), where X is (a) lithium adducted to 3-SL (m/z
646.24); (b) lithium adducted to 6-SL (m/z 646.24); (c) sodium adducted to 3-SL (m/z 678.18); (d) sodium adducted to 6-SL (m/z
678.18); (e) potassium adducted to 3-SL (m/z 710.13); or (f) potassium adducted to 6-SL (m/z 710.13). Positive FT CID MS3 spectra
of (g) 2,4A3-H2O from [M + 2Na-H]+ ion of 3-SL (m/z 540.13) and h 2,4A3 from [M+ 2Na-H]+ ion of 6-SL (m/z 558.32)
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m/z 522, as shown in Figure 2G. MS3 analysis of 2,4A3-H2O
(m/z 558) from [M + 2Na-H]+ of 6-SL (Figure 2H) also gave
the B1 ion (sialic acid) as the base peak, but the other small
peaks from Figure 2G were not observed, including m/z 430.

The 2,4A3 ion is a cross-ring cleavage in the reducing
glucose. The two isomers only differ in the linkage of the sialic
acid, a residue that is two monosaccharides away from the
cross-ring cleavage site. The fact that the cross-ring cleavages
are not observed in the singly sodiated precursor ion means that
the two sodium ions and the loss of H+ help in the overall
stability of the glycosidic bonds. Without the labile glycosidic
bonds, the cross-ring cleavages become more abundant [11].
Most likely, one sodium ion replaces the proton in the carbox-
ylic acid, accounting for one sodium gain and one proton loss.
The assignment of the other sodium could be challenging [11].
Most fragments are observed as sodium adducts.

3-Sialyllactosamine (3-SLN) Versus 6-SLN

To verify if the differences in spectra of [M + 2Na-H]+ precur-
sor ions of 3-SL and 6-SL were also applicable to other oligo-
saccharides, we probed another sialyl trisaccharide pair, 3-SLN

(Figure 1C) and 6-SLN (Figure 1D), differing from 3-SL and 6-
SL only in the reducing monosaccharide residue, GlcNAc.
Figure 3 shows the [M + 2Na-H]+ spectra of 3-SLN (Figure 3A)
and 6-SLN (Figure 3B). Table 1 summarizes the fragmentation
observations for [M + 2Li-H]+, [M + 2Na-H]+, and [M + 2 K-
H]+ ions. Following the same pattern in the SL isomers, the
cross-ring cleavage pair in the reducing GlcNAc was observed:
the 2,4A3-H2O peak at m/z 540 is ≈ 100% intensity in 3-SLN
but is only < 5% intense in 6-SLN and the 2,4A3 peak atm/z 558
is the base peak in 6-SLN but is only < 5% intense in 3-SLN.
Also, the B1 ion is the base peak in 3-SL but only ≈ 40%
intense in 6-SL.

Figure 4 shows product ion peak intensities as a function of
the HCD normalized collision voltage in the MS/MS spectrum
of 3-SLN (Figure 4A) and 6-SLN (Figure 4B) in the Orbitrap
MS. For both isomers, the two major parallel fragmentation
channels are the loss of sialic acid (full blue circles) and the
cross-ring cleavages, 2,4A3 (full green triangles), but the latter
is accompanied by a simultaneous loss of water (full purple
diamonds). The loss of water in the reducing end from the
precursor ion [M + 2Na-H]+ atm/z 701 is more intense in 6-SL
than in 3-SL, whereas m/z 406 (Y2) is more intense in 3-SL.
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Figure 3. Consensus FT CID MS/MS spectra of [M+ 2Na-H] + ion of SLN isomers (m/z 719.2097): (a) 3-SLN and (b) 6-SLN; and
sialyl Lewis isomers (m/z 865.2672): (c) SLeA and (d) SLeX. Consensus spectra from the NIST 17 tandem MS library (http://
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Figure 4A and B demonstrates that around 20 V, the precur-
sor ion intensities for both isomers have been reduced by ap-
proximately 50%. At collision energies below this voltage, only
the B1 fragmentation is important. Also, the abundance of
product ions from the cross-ring cleavages is only significant
at normalized collision energies above this voltage. The abun-
dance of cross-ring fragment ions, 2,4A3-H2O, for 3-SLN and
2,4A3 for 6-SLN, can reach up to 15% of the total ion abundance.

An exploratory theoretical study of the gas phase potential
energy surface (PES) was conducted to find the most stable
locations for the sodium ions using Amber 16. Several local
minima were identified and re-optimized using the semi-
empirical Hamiltonian AM1. Finally, geometry optimization
of the “global” minima for both isomers was performed using
DFT calculations. It showed a crucial structural disparity in the
conformational structure of both isomers that explains, in part,
the differences observed in the fragmentation patterns. Figure 5
shows the optimized structures of the [M + 2Na-H]+ ions of 3-
SLN (Figure 5a) and 6-SLN (Figure 5b). It seems that in the gas
phase, the positions of the sodium ions are determined by the
carboxyl group of the sialic acid. One of the sodium ions is
forced in the vicinity of the carboxyl group and coordinating
other hydroxyl groups and the other sodium ion is located in the
opposite side also coordinating several oxygens. In the 3-SLN
isomer, for example, a sodium ion is about the same distance of
2.5 Å from one of the carboxyl oxygen and other three hydroxyl
oxygens marked with black asterisks in Figure 5a. The second
sodium ion is on the opposite side between the sialic acid and the
second-sugar ring making the structure very rigid (the oxygen
involved are marked with blue asterisks). A frequency calcula-
tion shows weak out-of-plane vibrational modes. On the other
hand, in the 6-SLN, both sodium ions are also near the sialic acid
end, but the α2,6-sialyl linkage allows the molecule to bend on
itself hydrogen-bonding the sugar of the reducing end with the
sialic acid. These structures explain the higher stability of the
glycosidic bonds and the labile character of the cross-ring frag-
ment. The computational modeling shown in Supplemental
Figure 2 shows two major differences in the fragmentation
patterns of the 3- and 6-SLN isomers. First, the loss of water
from the precursor ions occurs from the C6 branch of the
reducing end in both isomers; however, relaxed scans of the
C-O bonds corresponding to these water losses show different
behaviors for each isomer, consistent with the experimental
observations. Whilst the loss of water occurs with a relatively

low barrier from 6-SLN (≈ 80 kJ/mol), the stretching of the
C▬O bond for the 3-SLN isomer requires more energy (≈
120 kJ/mol) and at the same time promotes the 2,4A3 cleavage.
(It is worth mentioning that our assumption that the loss of water
is originated from the C6-branch is based calculations, looking
for the minimum energy pathway in all possible water losses;
however, it is also consistent with the spectra of both isomers;

Table 1. Relative Fragment Ion Abundances* in the MS/MS Spectra of α2,3- and α2,6-sialyllactosamines and the Four LST Isomers

Isomer Ion B1 0,2A3
2,4A3-H2O

2,4A3
2,4A5-H2O

2,4A5

3 (6)-SLN [M + 2Li-H]+ 100 (10) 25 (100) 50 (< 1) 15 (< 1)
3 (6)-SLN [M + 2Na-H]+ 52 (25) < 1 (100) 100 (< 1) < 1 (15)
3 (6)-SLN [M + 2 K-H]+ 33 (100) < 1 (45) 100 (< 1) 2 (85)
LSTa [M + 2Na-H]+ < 1 < 1 15 10
LSTb [M + 2Na-H]+ < 1 < 1 n/a n/a
LSTc [M + 2Na-H]+ < 1 < 1 < 1 100
LSTd [M + 2Na-H]+ 25 < 1 25 < 1

Legend: 3 (6)-SLN: 3′-sialyllactosamine (6′-sialyllactosamine), LST: sialylpentasaccharides *relative to the intensity of the most intense peak

(a)

(b)

HCD (V)

Figure 4. Product ion peak intensities as a function of the HCD
normalized collision energy in the MS/MS spectrum of (a) 3-
SLN and (b) 6-SLN. Each curve is identified by them/z value of
the corresponding production
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the B1 peak is less intense for the 6-SLN isomer that experiences
the larger water loss.) Second, the 2,4A3 fragmentation of the
extended structure of 3-SLN produces an ion that simultaneous-
ly experiences loss of water from the generated terminal residue
(2,4A3 fragment ion structures are shown in Supplemental
Figure 2; red asterisks in Figure 5 mark the oxygen atoms
involved in the water losses from the 2,4A3 ions; an approximate
planar representation of the structures of the fragment ions is
shown in Scheme 1).

On the other hand, the 6-SLN’s bent structure favors to retain
the water from the generated terminal residue. Of course, this is
an oversimplified view of the fragmentation process, but an
attempt to include the various contributions of different local
minima assuming a Boltzmann distribution complicates matters
and sheds no new light on the problem. The optimized

coordinates of the molecular geometries are given in Supple-
mental Table 1. It seems also that the B1 peak is less abundant
for the 6-SLN isomer due in part to loss of water from the sialyl
moiety.

Sialyl Lewis A (SLeA) Versus SLeX Spectra

Two other isomer pairs, SLeA (Figure 1I) and SLeX (Fig-
ure 1J), were examined. Both tetrasaccharide isomers
contained an α2,3-linked sialic acid and differed in the
lactosamine and fucosyl linkages. In Figure 3C and D, their
spectra showed both glycosidic and cross-ring cleavages. The
main differences are the intensities of Y2-Na (more abundant in
SLeX) and C2α (more abundant in SLeA) peaks and the pres-
ence of m/z 623 only in the SLeX spectrum.

(a)

(b)

2,4A3

2,4A3

Figure 5. DFT optimized structures of 3-SLN (a) and 6-SLN (b), calculated at the B3LYP-LandlDZ level of theory, and showing the
2,4A3 cross-ring fragmentation. Black (blue) asterisks mark the oxygen atoms that are coordinated to the sodium ion in front (behind)
the plane of the sugar at the reducing end. Red asterisksmark the oxygen atoms involved in thewater losses from the 2,4A3 fragment
ions
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The fact that C2α is the base peak in SLeA suggests that
the Gal-β1,3-GlcNAc bond is easier to break than the
labile fucose or sialic acid. For SLeX, the Gal-β1,4-
GlcNAc bond is harder to break. Instead, the labile sialic
acid is easier to break, as observed in the base peak
intensity of Y2-Na. This also shows that one of the sodium
atoms sits on the sialic acid.

The fragmentation spectra of glycans with fucosyl link-
ages is dominated by glycosidic cleavages and the α2,3
effect is barely observed. The peak at m/z 623 in the
spectrum of SLeX corresponds to loss of 242 Da, and it
was initially attributed to the neutral ion pair of sodium ion
and the product ion generated from cross-ring cleavage of
sialic acid (1,5X2). However, the MS3 spectrum of the ion
at m/z 623 shows a prominent B1 fragment ion (https://
chemdata.nist.gov/glycan/). A previous report [29] showed
that protonated native sialyl Lewis tetrasaccharide alkyl
glycosides undergo internal-residue rearrangements with
the fucose residue migrating toward the non-reducing ter-
minal sialic acid residue. These authors reported two major
unexpected peaks in the spectra of SLeA and SLeX at m/z
438 and m/z 600 of the [M + H] + ions, and they also
mentioned that the abundance of these ions is significantly
reduced for other ion types. In the present study, we
observe an unexpected peak at m/z 623 in the spectrum
of SLeX, but not in the spectrum of SLeA. Also, the
presence of an intact B1 ion in the MS3 spectrum provides
strong evidence against the fucosyl rearrangement mecha-
nism. This is an important issue, because rearrangements
can isomerize the sequences and lead to errors in
interpreting oligosaccharide structures.

Instead of a cross-ring fragmentation of sialic acid or a
rearrangement, there is another plausible explanation for
the observed peaks in the spectrum of SLeX. The spectrum
shows a prominent peak at m/z 701 corresponding to a loss
of 164.0681 Da (the exact mass of fucose, 164.0685 Da). It

seems that the peak at m/z 623 is originated from this peak
by neutral loss of 78 Da {C2H4O2+ H20}. According to
Lebrilla et al. [30], this loss is characteristic in the spectra
of negative ions of 1–4-linked disaccharides and involves
the loss of the anomeric carbon atom and the adjacent
carbon atom. This was first suggested by Garozzo et al.
[31]. In the present case, the exact mass analysis and
theoretical calculations suggests the loss of C2H4O2+ H20
from the ion at m/z 701 (a planar representation of the
fragmentation process is included with the supplementary
information, Scheme S2). An experimental validation of
these findings or an explanation for the observe differences
with the SLeA isomer would require further investigation.

MS/MS Spectral Comparison of LSTa, LSTb, LSTc,
and LSTd Sialyl Pentasaccharides

Next, we analyzed four isomers of sialylated pentasaccha-
rides (Figure 1E–H). Figure 6 shows the MS2 consensus
spectra of the [M + 2Na-H]+ precursor ions at m/z 1043.
LSTc (Figure 6C and LSTb (Figure 6B) are both α2,6-
linked sialyl oligosaccharide, differing only in the point of
attachment of the sialyl residue: the NeuAc residues of
LSTc and LSTb are linked to Gal and GlcNAc, respective-
ly. Visually, the spectral peaks of the two isomers differ
only in intensities. This is a good example of where in-
silico libraries would NOT work because peak intensities
could help differentiate the two isomers. Empirical or
experimental spectral libraries, such as the NIST MS/MS
library take into account all fragmentation pattern differ-
ences, not only B1, cross-ring, or theoretical fragmenta-
tions as mentioned in previous work [5]. Even the cumu-
lative effect of relatively small peak intensity, differences
can render significantly different scores.

Moreover, as expected from the cross-ring cleavage patterns
of the trisaccharides studied above, the cross-ring fragment of
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Scheme 1. Planar representation of the 2,4A3 fragment ions from (a) 3-SLN and (b) 6-SLN. Figure 2 of the Supplementary
information shows the tridimensional structures of the fragment ions
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interest is an A cross-ring at the reducing end. For LSTc, this is
the 2,4A5 cross-ring ion (Figure 6C) and for LSTb, it is the

2,4A4

ion (Figure 6B), both at m/z 923.
In LSTc shown in Figure 6C, the most intense peak is the

2,4A5 cross-ring ion, followed by another cross-ring fragment
0,2A5 and the loss of sialic acid (Y4-Na). In LSTb (Figure 6B),
the most intense peak is the loss of sialic acid followed by the
2,4A4 cross-ring cleavage at the reducing glucose.

Figure 6C and D shows the [M + 2Na-H]+ CIDMS2 spectra
of LSTa and LSTd, respectively. Both isomers have an α2,3-
linked sialic acid and they differ only in one lactosamine
linkage: β1,3 for LSTa and β1,4 for LSTd. The peaks mostly
differ in intensities except for one peakm/z 540 that only occurs
at ≈ 30% intensity in the LSTd spectrum. Further examination
of this peak byMS3 at 35 V FT CID (Figure 7A) shows that the
spectrum matches the IT CID spectrum of 3-SL m/z 540 in
Figure 2G.

The fact that the m/z 540 peak is observed in LSTd and not
in LSTa means that this peak is not only specific to an α2,3-
sialyl linkage [11], but it is specific to an α2,3-β1,4 linkage. To
our knowledge, this observation was not reported previously.

Moreover, the FT CID spectrum of LSTa (Figure 6A)
shows the preference of the formation of B3-H2O ion, while

the LSTd spectrum (Figure 6D) shows preference of the Y4-Na
ion. Following the pattern of SLs and SLNs, the 2,4A5-H2O ion
is more abundant than the 2,4A5 ion. However, the difference in
intensities is less than for smaller trisaccharides.

The CID MS/MS was activated at lower energies for the
same precursor ion in order to understand the product ions. In
Figure 7B, MS3 of the precursor ion m/z 540 at 18 V of CID
energy shows that the said ion is the base peak, and the B1 ion is
the second most abundant peak. We also see that m/z 318 and
m/z 430 are starting to form. At 25 V of CID energy in
Figure 7C, we see that the B1 ion is now the base peak but
m/z 430 and m/z 318 remained at less than 20% intensity.

MS4 of m/z 336 at CID 20 V in Figure 7D shows the
formation of B1-H2O and a cross-ring cleavage at m/z 216.
Other peaks appear at a higher CID energy of 35V (Figure 6E).

The IT CIDMS/MS of the [M + 2Na-H] + precursor ion was
activated at lower energies in order to understand the formation
of the product ions. For example, Supplemental Figure 3 shows
the IT CID spectra of m/z 1043 of LSTa at increasing energies.
At 22 V (Supplemental Figure 3A), m/z 905 and m/z 683 ions
are starting to form. The B3-H2O ion (m/z 683) continues to rise
in intensity at increasing energies (Supplemental Figure 3B–F).
However, the 2,4A5-H2O (m/z 905) ion increased in intensity
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Figure 6. Consensus FTCIDMS2 spectra of [M+ 2Na-H]+ of four LST isomers (m/z 1043.31): (a) LSTa (N = 17), (b) LSTb (N = 33), (c)
LSTc (N = 31), and (d) LSTd (N = 49). Consensus spectra from the NIST 17 tandem MS library (http://chemdata.nist.gov)
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gradually near 40% at 25 V energy and then stayed near 20%,
even though it started to appear early withm/z 683 at 22 V. The
Y4-Na (m/z 730) ion increased in intensity with m/z 905 but
surpassed the latter in the 25 V energy spectrum onwards.

We also probed at increasing HCD energies to see if the ions
followed the same formation pattern, as shown in Supplemen-
tal Figure 4. At 20 V HCD energy (Supplemental Figure 4A),
only m/z 905 and m/z 730 are observed at less than 5% inten-
sity. More product ions appear at 25 V HCD energy (Supple-
mental Figure 4B). At 28 V HCD energy (Supplemental
Figure 4C), m/z 730 is more abundant than m/z 683 and m/z
905. This is different from the CID spectrum, where m/z 683 is
more abundant than m/z 730. Since the HCD activation frag-
ments all the ions including the product ions, the B1 ion at m/z
336 should be viewed as an ion that comes from other ions that
has a sialic acid, including B glycosidic ions and A cross-ring
ions (m/z 498, 683, 905, 983). This might explain why m/z 730
(Y4-Na) ion is more abundant than m/z 683 (B3-H2O): some of
them/z 683 ions are further fragmented to producem/z 336 (B1)
ions in HCD.

The CID MS/MS analysis of LSTd and LSTa in the
negative mode, shown in Figure 8, also suggests cross-ring

cleavages. Of particular interest are m/z 536 and m/z 494
ions that are only present in LSTd (Figure 8A) and not
LSTa (Figure 8B). The ions correspond to 0,2A3-2H2O and
2,4A3-H2O, respectively. These cross-ring fragmentations
of negative ions are interesting; however, it is expected
that the fragmentation mechanisms share not much simi-
larities with the fragmentation mechanism of [M + 2Na-H]
+ ions, so will not extend the discussion on this topic.
However, the presence of similar cross-ring fragmentation
processes in the spectra of negative ions indicates that
likely the effect of the sodium ions on the mass spectra
of [M + 2Na-H] + is more related to the replacement of the
acidic hydrogen by a sodium ion than to the promotion of
the cross-ring fragmentation itself, whereas a second sodi-
um ion coordinates several hydroxyl groups and adds
rigidity to the structure.

A similar theoretical modeling strategy was designed for
the study of the fragmentation mechanism of the [M + 2Na-
H] + ions from LSTa and LSTc isomers. Supplemental
Figure 5 shows the optimized structures for the two isomers.
The absolute minima for isomer LSTa resulted in an extended
structure similar to 3-SLN, and LSTc structure resembled the
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structure of 6-SLN. Although no further calculations were
made for these isomers, a similar explanation probably holds
for the observed differences of the 2,4A5 cross-ring fragmen-
tation. It is worth mentioning that there is also some exper-
imental data that supports the simultaneous coordination of
cations to the glyceryl side chain and the carboxylate group
[32, 33]. In general, the observed cross-ring fragmentation
processes in [M + 2Na-H] + ions seem to follow certain
general patterns: (i) a stabilizing effect of the gycosidic bond
due to the replacement of the acidic hydrogen. Theoretical
calculations show that one of the sodium ions is always near
the carboxyl group at distances not larger than about 2.5 Å.
(ii) The second sodium ion is also nearer to the non-reducing
end in between the first and second rings, thus conferring
certain rigidity to the structures. (iii) The fact that similar
fragmentation processes are observed in the spectra of nega-
tive ions, [M-H]−, suggests a charge remote fragmentation
mechanism. At this time, there is insufficient experimental
and theoretical evidences to fully explain the role of the
sodium atoms in the cross-ring fragmentation. (iv) Glycan
branching and the presence of fucose in the reducing end
inhibit the cross-ring fragmentation and the spectra can ex-
hibit some unexpected peaks.

Lastly, we compared the QTOF CID and Orbitrap HCD
MS/MS spectra of these isomers, as shown in Supplemental
Figure 6 for LSTd and Supplemental Figure 7 for LSTb. The

fragmentation patterns are very similar for most isomers.
However, certain comparisons may require constraints, be-
cause the spectral differences among isomers are not very
pronounced and noisy experimental spectra can match the
wrong isomers. Table 2 shows an example of the library
search results for the QTOF spectra of the isomer LSTb. It
is observed that low collision energy spectra, with low con-
version of the parent ion, match the wrong isomers (and with
poor scores). A similar problem is observed at high collision
energies. On the contrary, QTOF spectra with degree of the
parent ion conversion between 5 and 90% match well with
the HCD spectra in the library. This is the general finding in
the NIST 17 library [34, 35] that spectra of the same precur-
sor on different instruments are generally nearly identical at
equivalent extents of decomposition (or effective collision
energy). In practice, if library spectra are acquired at over a
range of energies the include that of the query spectrum, the
closely matching library spectra will appear at the top of the
hit list and will have the closest matching fragmentation
energy. We also note that when making identification by
library searching one typically uses absolute scores (> 800
is usually a good match), differences between the top and the
next best hit (100 is usually a good separation) [36, 37],
although expertise concerning the fragmentation of the struc-
tural class under study is always an essential requirement for
a confident identification.
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A downloadable NIST Glycan MS/MS library and MS
Search software is available at https://chemdata.nist.gov/
dokuwiki/doku.php?id=chemdata:glycan-library for
enhanced search options. Finally, it is worth mentioning
that the NIST library browser provides several tools that
enhance the identification capabilities, such as hybrid and
exact mass searches. For example, although the number of
glycans in the library is relatively small similarity searches
can match other related glycans.

Conclusion
The fragmentation pattern of the [M + 2X-H]+ ion of sialyl
isomers allowed us to differentiate spectra of underivatized
sialyl isomers. The MS/MS spectra suggest that the main
contribution to the spectral differentiation derive from an A
cross-ring cleavage in the GlcNAc residue. We found that
the differentiation is specific not only to the α2,3 and α2,6
NeuAc acid linkages, but to NeuAc-α2,3-Gal-β1,4-GlcNAc
(or NeuAc-α2,3-Gal-β1,4-Glc) linkage, as we showed in
the sialyllactose, sialylactosamine, and penta-sialyl iso-
mers. To our knowledge, this is the first time that this
observation is reported. Theoretical calculations show that
the [M + 2Na-H]+ ions derived from glycans with α2,3 and
α2,6 NeuAc acid linkages produce different conformation-
al structures. The former linkage leads to rigid and extend-
ed structures, while the latter allows the molecule to bend
on itself forming compact structures. These structural

differences are consistent with the observed disparities
between fragmentation patterns.

The NIST library of glycans contains MS/MS spectra
from a broad range of collision energies and allows users to
perform an exhaustive comparison and analysis of the differ-
ences between spectra, including relative small peak intensity
differences. Consensus spectra searched against the library
showed that the differentiation of isomers, at least in the case
of [M + 2Na-H]+ ions of pentasaccharide sialyl isomers, was
possible. It was also shown that for an effective comparison,
the degree of parent ion conversion must be between 5 to
90%. Moreover, the CID QTOF and HCD Orbitrap MS/MS
spectra of oligosaccharides showed good spectral match re-
gardless of the type of mass spectrometer.
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