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Abstract. Analyzing mass spectrometry imaging
data can be laborious and time consuming, and
as the size and complexity of datasets grow, so
does the need for robust automated processing
methods. We here present a method for compre-
hensive, semi-targeted discovery of molecular
distributions of interest from mass spectrometry
imaging data, using widely available image simi-
larity scoring algorithms to rank images by spatial
correlation. A fast and powerful batch search

method using a MATLAB implementation of structural similarity (SSIM) index scoring with a pre-selected
reference distribution is demonstrated for two sample imaging datasets, a plant metabolite study using
Artemisia annua leaf, and a drug distribution study using maraviroc-dosed macaque tissue.
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Introduction

Mass spectrometry imaging (MSI) datasets are highly
complex, containing abundance and distribution infor-
mation about thousands of chemical species. As sample probes
and ionization techniques have evolved, the information den-
sity of untargeted (discovery) MSI data has increased to the
point where comprehensive manual interpretation is not prac-
tical. Some degree of automation is often employed to extract
features of interest in a semi-targeted fashion.

The desired outcome of discovery-type MSI experiments
is typically the identification of molecular distributions
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correlated to some other features such as a known region
of the sample, or the distribution of some known compound
such as a disease marker, isotopic label, or a drug. For this
type of study, data interpretation comes down to finding
images of a particular appearance from a limited search
space. This is, in essence, an image recognition problem
similar to that of facial recognition or compression quality
evaluation in digital image processing [1].

The gold standard for calculating the perceived similarity of
two given images is the structural similarity (SSIM) index [2,
3]. The SSIM algorithm arose from a need to automatically
predict the perceived quality of digital images after compres-
sion or other processing. To calculate the SSIM index for a pair
of aligned images, each image is subdivided into smaller sub-
images, typically by generating a small window around each
pixel. For each aligned pair of sub-images x and y, the arith-
metic mean (uy, uy), standard deviation (oy, oy), and Pearson’s
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correlation coefficient (oyy/0x0y) are calculated. The mean in-
tensity and standard deviations are converted into 0—1 scores
which are multiplied together to generate the SSIM score as
shown in Eq. (1). The final result can be shown either as a map
of'local similarities, or as a mean SSIM (MSSIM) score for the
whole image as shown in Eq. (2).
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Methods
MSiReader Implementation

To apply image recognition methods to real MSI data, the batch
processing function of MSiReader [4, 5] was modified to
enable correlation scoring for a range of MS images with a
given reference image. The SSIM algorithm is included in the
MATLAB Image Processing Toolbox (The MathWorks, Inc.,
Natick, MA, USA). The MATLAB implementation of SSIM
calculates the index at each pixel by applying a circular gauss-
ian weighting function of adjustable radius. The combined
score at each pixel is then calculated as

SSIM = luminance(x, »)* x contrast(x,y)’ x structure(x, )’ (3)

Where the weighting constants o, £, and y can be set by the
user. They default to 1. An example of SSIM output using 200 x
200 monochrome images is shown in Figure 1, illustrating both
the individual components and final scoring (mean SSIM).

Evaluation of Imaging Datasets

In order to test the usefulness of image recognition for real
problems, two imaging datasets were produced, selected to be
representative of typical work done in our lab. Each image was
acquired using IR-MALDESI ionization coupled to a Q
Exactive Plus mass spectrometer operating at a nominal resolv-
ing power of 140,000 as previously described [6]. The raw data
was converted to .imzml using msconvert [7] and
imzmlconverter [8], and loaded into MSiReader for analysis.
Normalization to maximum abundance per image was used to
ensure matching based on relative rather than absolute ion
abundance for the luminance score. All heatmaps were gener-
ated using the “hot” colormap preset in MSiReader.

All raw data used are provided in .mzml and .imzml format
in the electronic supplement. The image recognition tools used
are included in the current open-source and stand-alone ver-
sions of MSiReader (v. 1.01), available at http://www.
msireader.com.
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Figure 1. SSIM analysis of three example images for a given
reference, with the separate components shown separately and
combined into a numerical score (mean SSIM). The SSIM out-
put shown was produced using the same MATLAB implemen-
tation as used for MSI evaluation, but with the Gaussian radius
weighting set to a value of 6 for demonstration purposes

Imaging of Artemisia annua Leaf The sweet wormwood (-
Artemisia annua, Chinese: Qinghao), native to China, is nota-
ble as the primary natural source of artemisinin, a powerful
antimalarial compound, the discovery of which was awarded
the 2015 Nobel medicine prize [9]. Artemisinin and other
related metabolites (e.g., its precursors and derivatives) are
accumulated in glandular trichomes on the leaf surface, the
size and density of which depend on spatial positions of leaves
and plant ages [10, 11]. The unique chemical composition and
localization of glandular trichomes on the leaf surface makes it
suitable as a validation system for MSI data analysis.

Leaves on the 15-17th nodes of 2-month old A. annua
plants, grown in the NC State phytotron, were collected and
affixed to a glass microscopy slide using double-adhesive tape.
A 2 x 2 mm region of interest was imaged in negative mode ata
spatial resolution of 50 um (40 x 40 scans), in the mass range
of m/z 100—400. The molecular ion of intact artemisinin [M-
H] observed at m/z 281.1395 was selected as reference for
image scoring. The MSiPeakfinder tool was used to pre-
generate a list of 332 masses with a 2x or higher abundance
ratio in scans from leaf tissue compared to blank scans. This
reduced dataset was used to evaluate the effect of the various
SSIM parameters (e, f, y, Gaussian radius).

Imaging of Drug-Dosed Macaque Lymph Node Combina-
tions of antiretroviral (ARV) therapies have radically improved
health outcomes for persons living with HIV. Interruption of
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these regimens, however, leads to rapid viral rebound that may
result from inadequate penetration of drug into tissues where
virus primarily resides such as lymph nodes [12]. Tissue dis-
position of the viral entry-inhibitor maraviroc was investigated
in the lymph node of a rhesus macaque, an animal model of
infection, receiving 270 mg/kg maraviroc dosed twice daily.
Since ARV tissue distribution can be highly heterogeneous
[13], MSI analysis provides a useful tool in identifying ions
accumulating in similar patterns to maraviroc that may partic-
ipate in its trafficking and metabolism within the lymph node.

A 10-pm-thick section of dosed lymph node was imaged in
positive mode at 100-pm spatial resolution (75 x 90 scans, or
7.5 %9 mm), in the mass range of m/z 200-800. Comprehen-
sive SSIM analysis was performed by binning the whole mass
range into evenly spaced non-overlapping bins of 5-ppm width
(277,259 bins), and subsequently comparing each bin against
the reference distribution of maraviroc (m/z 514.3352) using
default SSIM weightings. Duplicate hits resulting from the
same peak being included in adjacent 5-ppm bins were re-
moved, with only the highest ranked image at a given mass
(10-ppm tolerance at m/z 550) kept for analysis.

Results and Discussion
Trichome-Bound Metabolites in A. annua

To find suitable constant parameters for the SSIM algorithm,
SSIM evaluation for the A. annua sample was performed repeat-
edly, with the weighting parameters (o, £, y) varied between 0.5
and 4 individually and pairwise. While changes to the
weightings did affect the numerical SSIM score, the rank order
was largely unchanged, and so the default weight of 1 to each
parameter was used for all data here presented. Similarly, eval-
uating the SSIM scores with the Gaussian radius parameter
varying between 1 and 5 showed only minor effects on the final
ranking. It was observed that a small increase in the radius
parameter led to significantly lower ranking of images with
visible noise, caused either by low absolute ion abundance (shot
noise) or significant chemical background noise. We found that
a value of 2.25, raised from the default 1.5, resulted in somewhat
improved contrast between visually identified “good hits” and
“bad hits,” while still assigning high similarity scores to images
with moderate levels of chemical noise. These parameters (o=
f=y=1; radius =2.25) were used for all subsequent processing.
The pre-selected set of 332 tissue-correlated peaks was
evaluated against the reference m/z 281.1395 (artemisinin),
and sorted by similarity as shown in Figure 2. The final ranking
correctly identified the reference mass itself as a perfect corre-
lation match, with its own first isotope as a close second.
Known artemisinin derivatives including deoxyartemisinin
(m/z 265.144, rank 13) and dihydroartemisinin (m/z 283.155,
rank 22) were identified as visually similar distributions despite
large variance in actual ion abundance. The peak set contained
31 ion masses with the characteristic distribution pattern of
artemisinin, which were correctly assigned ranks of 1-31.
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Figure 2. lllustration of the image recognition workflow applied
to an MSI dataset acquired from IR-MALDESI imaging of
A. annua leaf using a known metabolite (artemisinin, m/z
281.1395) as a reference. All images were internally normalized
to a 0—1 abundance scale before processing and visualization.
Some selected masses taken from the top 100 best matches
are shown with similarity rank

Drug Distribution in ARV-Dosed Tissue

For the drug-dosed lymph node section, a comprehensive brute
force search was performed, where the SSIM evaluation was
performed separately for the mass image of each non-
overlapping 5-ppm bin through the whole mass range of m/z
200-800. Performing the evaluation this way required a total of
20 h of computation time. This represents the most thorough
search possible with the method, providing a “worst case”
example of computation requirements.

The 500 best unique image matches were batch exported
and inspected. The top 20 unique matches yielded images of
very high visual similarity, with the top 10 almost indistin-
guishable from the reference. The exported images were all
found to visually outline the tissue shape in part or whole, with
lower ranked and partial images generally ranking lower. This
is illustrated in Figure 3, showing a selection of images
throughout the correlation range.

We have found SSIM to be a very robust and useful noise
filter for images including some blank or off-tissue data. Cau-
tion must however be taken not to include so much blank data
as to make the contrast between blank and sample dominate the
correlation calculations. For images containing very large re-
gions consisting exclusively of blank scans, or where matching
to very localized distributions is desired, we recommend lim-
iting the search to a pre-defined region of interest. Narrowing
the search space this way has the additional effect of reducing
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Figure 3. Selected output from a comprehensive SSIM search
of drug-dosed lymph node tissue. The images are shown on the
normalized 0—1 abundance scale used for SSIM comparisons,
with similarity rank shown in white. The image ranked 1 is that of
maraviroc (m/z 514.3352), used as a reference

processing times proportionately and can be applied for that
purpose alone.

Conclusions

We have here described the implementation and use of an
open-source tool using image similarity scoring to extract
features of potential interest from high resolving power mass
spectrometry imaging datasets. Using the SSIM method for
image similarity scoring, the process of semi-targeted discov-
ery can be performed in an automated fashion. Sorting or
filtering data by structural similarity effectively reduces com-
plex datasets down to a scale suitable for manual interpretation,
and can be used as a reproducible pre-processing step for
methods where computation time and memory requirements
are limiting factors, e.g., principal component analysis.
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All the algorithms used have been incorporated into the
latest public release of MSiReader through the batch process-
ing interface. The code is distributed under the BSD 3 license
[4] and can be freely adapted to other platforms used for
analyzing MSI data.

Acknowledgements

All mass spectrometry measurements were carried out in the
Molecular Education, Technology, and Research Innovation
Center (METRIC) at NC State University. The authors grate-
fully acknowledge the financial support received from the
National Institutes of Health (RO1AI111891, ROIGM087964)
and North Carolina State University.

Compliance with Ethical Standards

All animal experiments were performed in accordance with
locally approved IACUC protocols.

References

1. Wang, Z., Bovik, A.C. Morgan & Claypool Publishers, San Rafael, Calif.
(2006)

2. Wang, Z., Bovik, A.C., Sheikh, H.R., Simoncelli, E.P.: Image quality
assessment: from error visibility to structural similarity. Ieee T Image
Process. 13, 600-612 (2004)

3. Lin, W.S., Kuo, C.C.J.: Perceptual visual quality metrics: a survey. J Vis
Commun Image R. 22, 297-312 (2011)

4. Robichaud, G., Garrard, K.P., Barry, J.A., Muddiman, D.C.: MSiReader:
an open-source interface to view and analyze high resolving power MS
imaging files on Matlab platform. J Am Soc Mass Spectr. 24, 718-721
(2013)

5. Bokhart, M.T., Nazari, M., Garrard, K.P., Muddiman, D.C.: MSiReader
v1.0: evolving open-source mass spectrometry imaging software for
targeted and untargeted analyses. J. Am. Soc. Mass Spectrom. (2017)

6. Robichaud, G., Barry, J.A., Muddiman, D.C.: IR-MALDESI mass spec-
trometry imaging of biological tissue sections using ice as a matrix. J Am
Soc Mass Spectr. 25, 319-328 (2014)

7.  Chambers, M.C., Maclean, B., Burke, R., Amodei, D., Ruderman, D.L.,
Neumann, S., et al.: A cross-platform toolkit for mass spectrometry and
proteomics. Nat. Biotechnol. 30, 918-920 (2012)

8. Race, AM., Styles, I.B., Bunch, J.: Inclusive sharing of mass spectrom-
etry imaging data requires a converter for all. J. Proteome. 75, 5111-5112
(2012)

9. Tu, Y.Y.: Artemisinin-a gift from traditional Chinese medicine to the
world (Nobel lecture). Angew Chem Int Edit. 55, 10210-10226 (2016)

10.  Alejos-Gonzalez, F., Qu, G., Zhou, L.L., Saravitz, C.H., Shurtleff, J.L.,
Xie, D.Y.: Characterization of development and artemisinin biosynthesis
in self-pollinated Artemisia annua plants. Planta. 234, 685-697 (2011)

11. Xie, D.Y., Ma, D.M., Judd, R., Jones, A.L.: Artemisinin biosynthesis in
Artemisia annua and metabolic engineering: questions, challenges, and
perspectives. Phytochem. Rev. 15, 1093-1114 (2016)

12.  Fletcher, C.V., Staskus, K., Wietgrefe, S.W., Rothenberger, M., Reilly,
C., Chipman, J.G., et al.: Persistent HIV-1 replication is associated with
lower antiretroviral drug concentrations in lymphatic tissues. Proc. Natl.
Acad. Sci. U. S. A. 111, 2307-2312 (2014)

13.  Thompson, C.G., Bokhart, M.T., Sykes, C., Adamson, L., Fedoriw, Y.,
Luciw, P.A., et al.: Mass spectrometry imaging reveals heterogeneous
efavirenz distribution within putative HIV reservoirs. Antimicrob. Agents
Chemother. 59, 2944-2948 (2015)



	Evaluation of Digital Image Recognition Methods for Mass Spectrometry Imaging Data Analysis
	Abstract
	Section12
	Section13
	Section24
	Section25
	Imaging of Artemisia annua Leaf
	Imaging of Drug-Dosed Macaque Lymph Node


	Section18
	Section29
	Section210

	Section111
	Acknowledgements
	Compliance with Ethical Standards
	References


