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Abstract. Rapid and accurate identification and
classification of microorganisms is of paramount
importance to public health and safety. With the
advance of mass spectrometry (MS) technology,
the speed of identification can be greatly im-
proved. However, the increasing number of mi-
crobes sequenced is complicating correct micro-
bial identification even in a simple sample due to
the large number of candidates present. To prop-
erly untwine candidate microbes in samples con-

taining one or more microbes, one needs to go beyond apparent morphology or simple Bfingerprinting^; to
correctly prioritize the candidate microbes, one needs to have accurate statistical significance in microbial
identification. Wemeet these challenges by using peptide-centric representations of microbes to better separate
them and by augmenting our earlier analysis method that yields accurate statistical significance. Here, we
present an updated analysis workflow that uses tandem MS (MS/MS) spectra for microbial identification or
classification. We have demonstrated, using 226 MS/MS publicly available data files (each containing from 2500
to nearly 100,000MS/MS spectra) and 4000 additional MS/MS data files, that the updated workflow can correctly
identify multiplemicrobes at the genus and often the species level for samples containingmore than onemicrobe.
We have also shown that the proposed workflow computes accurate statistical significances, i.e., E values for
identified peptides and unified E values for identified microbes. Our updated analysis workflow MiCId, a freely
available software for Microorganism Classification and Identification, is available for download at https://www.
ncbi.nlm.nih.gov/CBBresearch/Yu/downloads.html.
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Introduction

Rapid and accurate identification and classification of mi-
croorganisms is of paramount importance to public health

and safety [1–3]. Traditional methods for microbial identifica-
tions target only a limited number of microorganisms [4, 5] and
often require 72 h or more to carry out [6–8]. For most
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microorganismal identification protocols, the first step can take
the longest. This time-consuming step involves preparing a
culture of the collected sample in a selected medium, usually
a blood culture, to test for the presence of any microbes and to
amplify the concentration of microbes that might be present [7–
9]. If the prepared culture tests positive for the presence of
microbes, further tests are required to distinguish and identify
within the sample each microbe present [7, 8, 10, 11].

One of these tests is the analytical profile index (API),
which consists of a system of 20 biochemical reactions. Among
the concerns with the API test are that it cannot always identify
microbes at the species level and it cannot handle samples
composed of multiple microbes [12]. Another frequently used
test is the enzyme-linked immunosorbent assay (ELISA), a
highly specific yet expensive test, which relies on the use of
antibodies that are specific to antigens of a given species of
microbe [13, 14]. Traditional polymerase chain reactions
(PCR) of 16S rRNA followed by sequencing methods [15]
are also utilized in the identification of microbes. One issue in
using 16S rRNA sequence information is that it provides
reliable identification at the genus level for the majority of
cases, but it cannot always be used to differentiate between
closely related species having a 16S rRNA sequence similarity
greater than 97% [16, 17]. For example, Bacillus globisporus
and Bacillus psychrophilus have greater than 99.5% sequence
homology in their 16S rRNAs but have a DNA-level related-
ness of only 23–50% when measured by hybridization reaction
[18, 19]. Studies using FilmArray multiplex PCR have been
shown to be able to early detect single or multiple pathogenic
microbes present in positive blood cultures, as long as patho-
genic microbes are present with high enough concentrations
and the FilmArray system has the proper primers for these
pathogenic microbes [20]. There are also methods that do not
require a blood culture and can identify microbes from whole
blood samples. Of these methods, PCR amplification for
electrospray ionization mass spectrometry (PCR/ESI-MS) is
the most promising with reported sensitivity and specificity in
the 1990s [8].

In recent years, next-generation sequencing (NGS) and
mass spectrometry (MS) have emerged as reliable technologies
for rapid and accurate identification/classification of microbes
[21, 22]. Utilizing both the coding and noncoding DNA infor-
mation, NGS can be used to screen bacteria effectively al-
though it lacks gene expression information. On the other hand,
the MS-based technology (the focus of the current manuscript)
identifies microbes via peptides found thus providing protein
expression information. There are different ways in which
these technologies can be employed for microorganismal iden-
tification, and we direct the reader to the review articles of
Hodkinson and Grice [23] and of Saurce and Klien [22] for a
survey.

Both the NGS and MS-based technologies can be routinely
used to identify single microbes. For example, matrix-assisted
laser desorption ionization time-of-flight MS (MALDI-TOF-
MS) [24, 25] can be employed to identify single microbes
quickly and accurately in pure samples [26]. However, it

cannot be used for identification in a sample containing multi-
ple microbes [27, 28]. Given that our main goal is to robustly
and accurately identify multiple microbes in mixed samples, in
our analyses, we use only data collected from high-resolution
instruments using high-performance liquid chromatography-
tandemMS (LC-MS/MS) [29] tomitigate one of the challenges
(noise in data) that hinders the identification of multiple mi-
crobes. Another challenge appears due to the fast expansion of
database size. In order not to miss identify any known microbe,
one needs as an input to peptide identification tools a protein
database that includes all microbes present in the sample. The
ever-increasing number of microbial proteomes implies an
ever-expanding peptide/protein database along with ever-
increasing number of post-translational modifications (PTMs)
as well as single amino acid polymorphisms (SAPs) that will
overwhelm most peptide identification tools [30].

In addition to having longer search time, the consequence of
using a much larger database includes reduction of sensitivity.
One way to circumvent this is to first construct a peptide-
centric database without including PTMs or SAPs, sorted ac-
cording to peptide masses, then have an interface program that
extracts from the database, for every precursor ion mass of the
query spectrum, the corresponding peptide set and passes it to
peptide identification tools as the input database. PTMs and
SAPs are then allowed only for microbes whose identification
confidences are higher than a specified threshold. Although
this strategy allows for a higher peptide identification rate, it
should not be confused with the multistage proteomics search
strategies based on the target-decoy statistics [31] that is often
used in the metaproteomics community. For this type of mul-
tistage search strategy, in the second step (re-search), the
resulting proportion of false discoveries (or false discovery
rate) can no longer be estimated correctly [32–34], hence
undermining their validity. When using methods that do not
require target-decoy approach to assign accurate statistical
significance, however, the difference between the multistage
and one-pass search strategies becomes that of using a smaller
database and a larger one. And the sensitivity advantage of
multistage strategies can be achieved with much less search
time by the stratified database search method [35]. However,
even if the database size issue can be mitigated by using
stratified database and on-the-fly scope expansion of PTMs
and SAPs, a major challenge remains in terms of identifying
multiple microbes.

This major challenge originates from the difficulty in delin-
eating the microbes based on peptides identified. We meet this
challenge by developing a method that can delineate or group
microbes based on their peptidome similarity (counting only
experimentally observed peptides of high confidence) and can
assign accurate statistical significances to microbes identified.
In terms of identifying multiple microbes, the aforementioned
challenges are common to both the NGS [36–38] and MS-
based methods [39–45]. However, the extent to which one can
apply the statistical methods developed in this manuscript to
NGS-based methods deserves a separate investigation that is
beyond the scope of the current manuscript. In addition to the
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two main challenges outlined above, existing MS-based
methods for microbial identification/classification [39–44] as
mentioned by Boulund et al. [45] also face other challenges
such as being limited to simple samples and needing manual
intervention during data analysis. The latter makes it hard to
automate the data analysis workflow.

Interestingly, identifyingmultiple microbes is also pursued in
areas such as environmental proteomics, also termed
metaproteomics [46–48]. In this area, even though the primary
aim is to understand the functional expression of complex
samples (not the microbe classification/identification in particu-
lar), recently the reliability of taxonomic attribution using the
bioinformatic tools Unipept [49] and MEGAN [50] has been
assessed using unique (taxon-specific) peptides found experi-
mentally [51]. This latter endeavor is equivalent to classification/
identification of microbes [47, 48], which happens to be our
main goal. However, unlike Unipept [49] and MEGAN [50],
our method can identify/classify microbes with accurate statis-
tical significance assignment. Our method can also be applied in
terms of functional expression. To achieve this, we identify the
peptides, then the microbes, and then the corresponding pro-
teins.With proteins identified, onemay query the term databases
such as gene ontology to obtain functional expression [52].

In this manuscript, we present an updated version of MiCId,
an analysis workflow for rapid and accurate identifications/
classifications of microbes. MiCId was designed to automate
the complete process, from microbial peptide database con-
struction to microbial identification and protein identification.
The first version of MiCId, standing for Microorganism Clas-
sification and Identification, was tested for analysis of samples
containing a single microbe [53].We have now updatedMiCId
to specifically handle mixed samples containing multiple mi-
crobes while preserving its speed and its accurate statistical
significance. Using 226 LC-MS/MS data files from a variety of
microbial samples, some of whose microbial compositions are
unknown, and 4000 blended MS/MS data files, we have ex-
tensively evaluated MiCId’s performance in terms of
identifying/classifying multiple microbes at different taxonom-
ic levels. MiCId utilizes a hierarchical identification strategy
where microbes are identified starting at the phylum level then
descending one level at a time. With the E value cutoff set at
0.01 (effectively control the PFD to be less than 5%), in terms
of microbe identification using blended MS/MS data (BMD-A
and BMD-B), MiCId yields an average true positive rate of
0.9813 at the genus level and 0.9550 at the species level. (More
details can be found in Table 2.) One should note, however,
that these numbers were obtained by blending spectra from up
to 24 single-species samples. Generalization to complex mi-
crobiota samples should be taken with a grain of salt. MiCId’s
computed statistical significance is shown to be accurate for
microbes identified when tested against a decoy database at
various taxonomical levels, providing a confidencemeasure for
users to control the proportion of false discoveries. The pro-
posed workflow has been implemented in MiCId, a freely
available software that can be downloaded at http://www.
ncbi.nlm.nih.gov/CBBresearch/Yu/downloads.html.

Materials and Methods
Downloaded MS/MS Data Files

A total of 207 LC-MS/MS data files were downloaded from the
ProteomeXchange database at http://www.proteomexchange.
org/ and from PeptideAtlas at http://www.peptideatlas.org/.
Of these LC-MS/MS data files, 194 are from mixture samples
of known organisms, with each sample containing one, two,
four or nine organisms. The remaining 13 data files are from
complex samples of the human gut. Supplementary Tables S1,
S2, S3, and S4 provide the data file (DF) number, the file name,
and the ProteomeXchange or PeptideAtlas identifier for each
LC-MS/MS data file downloaded. All the MS/MS spectra
described here were acquired on high-resolution mass spec-
trometers and further experimental details can be obtained in
the ProteomeXchange website. The true positive microbes in
the latter group of data (human gut microbiome) are unknown.
For the data from samples in the former group, the true posi-
tives in each sample were provided along with their mix ratios;
many such samples have nearly equal number of cells per
microbe, and some are from very biased microbe populations.
To complement the ratio varieties of the downloaded data, we
also generated some in-house MS/MS data from samples with
more biased (but not extreme) ratios.

In-House Dataset

Bacterial Culture Preparation Fresh Escherichia coli
(ATCC 25922), Pseudomonas aeruginosa (ATCC 27853),
Strep tococcus pneumoniae (ATCC 49619) , and
Staphylococcus aureus (ATCC 25923) plates were used to
inoculate a 2 ml tryptic broth for overnight growth. From each
saturated culture, a 10-ml vial was inoculated with 100 μl
(1:100 dilution) and put in shaker at 37 °C. Each culture growth
was monitored by nephelometer to an optical density value
between 0.4 and 0.51 (approximately 109 cells). True CFU
values were achieved by plating diluted samples on sheep
blood agar plates and counting the resulting colonies. Based
on the measured approximate cell count values for each culture,
these cultures were mixed in different ratios to generate mi-
crobemixtures containing 109 cells total. The preparedmicrobe
mixtures with their estimated ratios, DFs 84–102, are listed in
Table S3. These mixtures were added to eppendorf tubes and
spun at 14 K rpm for 2 min until all of the samples were in the
eppendorf tube and the supernatants discarded. These pellets
were washed with 1 ml 70% EtOH and then resuspended in
150 μl 70% formic acid. After vortexing, 150 μl acetonitrile
was added and samples were vortexed and respun. The super-
natant was transferred to a clean tube and speed-vacuum dried
on medium heat. To each dried tube, 40 μl of 6 M urea and
50 mM NH4HCO3 were added and the tube was sonicated for
50 min with occasional vortexing. Samples were reduced with
DTT (4 μl 1 M in water, 37 °C for 60 min), alkylated (20 μl
iodoacetamide 40 mg/ml in water, at room temperature for
60 min in the dark), and quenched with DTT (4 μl, 15 min).
The tubes were diluted with 100 μl of 50 mM NH4HCO3 and
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10 μl of 100 mM NH4HCO3. Trypsin/Lys-c (Promega, 2 μg)
was added to each tube. Samples were digested using the CEM
Discovery microwave digester (60 min, 50 °C, 50 W, with
cooling). After digestion, samples were stored at − 20 °C until
used.

Liquid Chromatography-Tandem Mass Spectrometry Acquisi-
tion Liquid chromatography-tandemmass spectrometry (LC-
MS-MS) was performed using an Eksigent nanoLC-Ultra 2D
system (Dublin, CA) coupled to an Orbitrap Elite mass spec-
trometer (Thermo Scientific, San Jose, CA). Peptide samples
were first loaded onto a Zorbax 300SB-C18 trap column
(Agilent, Palo Alto, CA) at a flow rate of 6 μL/min for
10 min, and then separated on a reversed-phase BetaBasic
C18 PicoFrit analytical column (0.075 × 250 mm, New Objec-
tive, Woburn, MA) using a 90-min linear gradient of 5–35%
acetonitrile in 0.1% formic acid at a flow rate of 250 nl/min.
Eluted peptides were sprayed into the Orbitrap Elite equipped
with a nano-spray ionization source. Both survey (MS) and
product (MS/MS) spectra were acquired in the Orbitrap, and
the FTMS resolution was set at 30,000 and 15,000, respective-
ly. Each MS scan was followed by six data-dependent CID
MS/MS scans with dynamic exclusion. Other mass spectrom-
etry settings were as follows: spray voltage, 1.8 kV; full MS
mass range, m/z 300 to 2000; normalized collision energy,
35%; precursor ion isolation mass width, 3 Da.

Blended MS/MS Dataset

Even though we already have some data files from mixture
samples of up to nine microbes, they are limited in number and
perhaps in complexity. While we have the data files from the
complex samples of the human gut, the true positives within
these samples are unknown. To stress test our proposed iden-
tification method, we need a large dataset made of highly
complex samples but with true positives known. Absent
existing DFs of this type, we generated blended DFs in silico
(similar tomethods of [54] that have been employed to evaluate
metagenomics analysis workflows).

Each blended MS/MS data file for this purpose was gener-
ated using the following steps: (1) identify a list of data files,
each containing MS/MS spectra from a sample of a microbe;
(2) for each data file in the list, a number of MS/MS spectra out
of the total were randomly sampled according to a pre-specified
percentage; (3) merge the sampled MS/MS spectra to mimic a
data file from a mixture sample of these microbes; and (4)
repeat steps 1–3 to achieve the desired number of blended
MS/MS data files. The number of microbes chosen and the
specified percentage of MS/MS spectra to sample (from each
microbe’s MS/MS data file) determine the size of a blended
MS/MS data file.

A total of three blended MS/MS datasets (BMDs) were
generated. BMD-A was used for learning the parameters need-
ed for MiCId’s clustering procedure; BMD-B was used to
evaluate MiCId’s performance in terms of sensitivity and

specificity; BMD-C was used to evaluate the accuracy of
MiCId’s statistical significance assignment in terms of microbe
identifications.

DFs 1–24, which cover 24 species and 21 genera, were used
to generate BMD-A. BMD-A is composed of five subsets, each
corresponding to a fixed sampling percentage of 1, 5, 10, 25, or
50%. Every subset contains 500 blended DFs, each of which
was generated by sampling a fixed percentage of MS/MS
spectra from every one of the 24 DFs. BMD-B, covering 15
species and 15 genera, is made of seven subsets each compos-
ing 200 blended DFs. Every blended DF in a subset was
generated by sampling a fixed percentage p of MS/MS spectra
from group 1 DFs and a complement percentage 100-p of MS/
MS spectra from group 2 DFs. For BMD-B, group 1 contains
DFs 24–31 and group 2 contains DFs 32–38. The seven dif-
ferent subsets are distinguished by their complement pairs of
percentages: (95, 5%), (90, 10%), (75, 25%), (50, 50%), (25,
75%), (10, 90%), (5, 95%). BMD-C contains 100 blended DFs.
Every blended DF of BMD-C was generated by sampling 50%
of MS/MS spectra from each of the following DFs: 40, 43, 48,
53, 55, and 61.

Peptide-Centric Databases

Protein sequences were downloaded (on February 16, 2018)
from the National Center for Biotechnology Information
(NCBI) at ftp://ftp.ncbi.nlm.nih.gov/genomes/genbank/. For
the current study, five peptide-centric databases (DBs) (DB-1
through DB-5) were constructed. In the genbank.assembly file,
an organism’s genome assembly level is labeled as contig,
scaffold, chromosome, or complete genome, in order of in-
creasing completeness. The peptide-centric DB-1 (DB-2) in-
cludes, in addition to Homo sapiens and Mus musculus, all
bacteria, archaea, fungi, and virus whose assemblies are at
chromosome (scaffold) level or higher. The other three data-
bases were created from metagenomics data that have been
analyzed and transformed into protein sequence fasta files [55]:
DB-3 (DB-Human_0_RF_6GB.fasta containing 3,423,708 se-
quences), DB-4 (DB-Human_0_CF_6GB.fasta containing
192,582 sequences), and DB-5 (DB-Human_1+2+3_RF_
6GB.fasta containing 2,866,541 sequences).

All DBs were constructed as follows: downloaded protein
sequences were in silico digested following the digestion rule
for trypsin and lys-c, i.e., cleaving at the carboxyl termini of
arginine and lysine, allowing up to two missed cleavage sites.
In our DBs, only nonredundant tryptic and lys-c peptides with
molecular masses between 660 and 4000 Da were kept. By
nonredundant peptide, we mean the following.We keep a copy
and only one copy of every possible peptide (resulted from in
silico enzyme digestion of the protein database) regardless of
whether the peptide is shared by multiple microbes or not. A
nonredundant peptide therefore can be a unique peptide to a
microbe at a given taxonomic level, but may become a shared
peptide when a lower taxonomic level is considered. Never-
theless, no peptides will be excluded, and as more microbe
genomes are sequenced, the growth rate of our peptide-centric
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database is expected to be smaller than that of the protein
databases.

In DB-1 and DB-2, for each peptide, the names of strains,
subspecies, species, genera, families, orders, classes, and phyla
that contain this peptide are also recorded and linked to the
peptide. The sizes of DB-1 and DB-2 are 46 and 200 GB,
respectively. Taxonomic information included in DB-1 and
DB-2 was extracted from the taxonomy files downloaded (on
February 16, 2018) from the NCBI (https://www.ncbi.nlm.nih.
gov/Taxonomy). The 46,838,064 protein sequences
(807,574,956 nonredundant tryptic peptides) in DB-1 are from
23,911 organisms, belonging to 13,072 species, 1890 genera,
and 517 families. The 260,931,852 protein sequences
(2,507,889,685 nonredundant tryptic peptides) in DB-2 are
from 75,356 organisms, belonging to 26,368 species, 2870
genera, and 701 families. Relevant information pertaining to
the NCBI taxonomy identifiers and organism names for the
different organisms included in DB-1 and DB-2 can be found
in Supplementary Table S5. Since DB-3, DB-4, and DB-5 are
from metagenomics reads/contigs, no taxonomy information is
available.

Software Parameter Values Used

Six databases, DB-1 through DB-5 and the reverse of DB-1,
were used in MS/MS data analyses; the first five were used as
the target DBs while the last as the decoy DB. The other
software parameters are described below. While performing
database searches, the digestion rules of trypsin and lys-c were
assumed with up to two missed cleavage sites per peptide
allowed. Iodocetamide was used as the reduction agent, chang-
ing the molecular mass of every cysteine from 103.00919 to
160.030647Da. The mass error tolerance of 10 ppmwas set for
both precursor and product ions. RAId’s Rscore scoring func-
tion, using b and y ions as evidence, was used for scoring
peptides. The statistical significance assigned to each peptide
was given by RAId’s theoretically derived peptide score dis-
tribution [56]. The largest (cutoff) E value for a peptide to be
reported was set to 1.

Statistical Method for Microbial Identification

For our statistical method for microbial identification to be
effective, two prerequisites are indispensable: (1) accurate sig-
nificance assignments, e.g., E values, at the peptide level must
be provided and (2) microbes used for database construction
must have the correct taxonomic classification. The first re-
quirement is satisfied because peptide identifications in MiCId
are done by using RAId’s scoring function and significance
assignments which have been shown to yield accurate E values
[56, 57].

As for the second requirement, it is known that the mi-
crobes’ taxonomic classification is not perfect and sometimes
controversial. For example, some studies recommend that
Shigella flexneri should be classified as a strain of
Escherichia coli [58, 59]. However, the microbes’ taxonomic
classification is expected to improve thanks to recent advances

in DNA sequencing technology and a polyphasic approach that
utilizes genotypic, chemotypic, and phenotypic information
during taxonomic classification [60].

To provide microbe identification significances, we com-
pute a unified E value (Eu) by combining the spectrum-specific
E values of the confidently identified peptides (CIPs). A pep-
tide is considered a CIP if it is identified with anE value smaller
than a cutoff (Ec). When performing identifications, we might
want to eliminate potential false positives aggressively thus
setting Ec low; currently, Ec is defined to be the minimum of
1 and 100/ns (with ns denoting the total number of MS/MS
spectra acquired for a given experiment). (When assessing
statistical accuracy using a random/decoy database, however,
one is essentially counting false positives and setting Ec too low
will reduce the number of false positives estimated.) With this
Ec specified, on average for large ns, only 100 false positive
peptides are expected among the CIPs. We next detail an
important clustering step [53], which is now improved to
accommodate identifications of multiple microbes.

In our peptide-driven clustering procedure [53], taxa sharing
significant amounts of CIPs were clustered together. All CIPs
were regarded as equally important, and the clustering proce-
dure did not go through further iteration. In this manuscript, we
incorporate all peptides with E values less than 1 in the clus-
tering procedure; however, we also introduce fractional counts
to give peptides with better (lower) E values more (less) influ-
ence than peptides with worse (higher) E values. The updated
peptide-driven clustering procedure is described below.

First, peptides identified withE values ≤ 1 are mapped to the
different taxa in the database. Second, a standardized weighted
count (Z) is assigned to each identified peptide (whose E value
is E).

Z Eð Þ ¼ 1

1þ E

Ec

� � : ð1Þ

Third, taxa are sorted in decreasing order of their weighted
number of identified peptides to prepare for the clustering
procedure. The first taxon entering a cluster is called the head
of that taxon cluster, while other taxa the members of that
cluster. Starting from the best ranked taxon (a cluster head) in
the sorted list, any other lower ranked taxon will cluster to the
former if a resemblance coefficient of 0.85 or larger is obtained
between them. The resemblance coefficient is defined as the
proportion of the weighted number of peptides belonging to a
lower ranked taxon that can be explained by identified peptides
associated with a cluster head. Once the worst ranked taxon is
reached, the process will continue with the best ranked, not-yet-
clustered taxon as a cluster head and repeat until all the
unclustered taxa have been attempted as a cluster head, but
not more than once.

Fourth, after having generated taxon clusters, we further
group these taxon clusters as follows. Starting with the lowest
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ranking taxon cluster head, we denote its resemblance coeffi-
cient to others by its proportion of the weighted number of
identified peptides that are shared by all other heads of taxon
clusters; when a resemblance coefficient of 0.85 or larger is
obtained, the cluster under consideration is merged to its closest
taxon cluster, i.e., the one whose head shares the largest
weighted number of peptides with the current head. The re-
maining number of cluster heads nc is used as the Bonferroni
correction factor for significance calculation later. There is,
however, an exception to the general clustering rules above.
When a taxon (taxon cluster) contains three or more CIPs that
are not shared with any other taxa (taxon clusters), it can only
be a cluster head.

There is also a difference in the identification workflow
compared to our earlier method. We considered all genera
(species) together when performing genus (species) level iden-
tifications [53]. Here, we begin identifications at the phylum
level and then down. The current method has the advantage
that one may eliminate from consideration taxa that are unlike-
ly to be present during the upper level identifications. Below is
the condition we employ to select taxa to be retained at each
identification level. Each cluster head will be considered; any
member with a percentage difference in the weighted number
of CIPs to its cluster head less than 15% or having three or
more CIPs that are not shared with other taxa will be retained.

In order to provide statistical significances at various taxo-
nomic levels, we compute a unified E value Eu by combining
the spectrum-specific E values of the CIPs belonging to the
same taxon. The details of how the Eus are computed for
microbes at different taxonomic levels have been previously
described [53]. Here, we only briefly outline the essential steps
for computing Eu.

The unified E value Eu is given by

Eu ¼ nc � Pu; ð2Þ
where in Eq. (2), the unified P value (Pu) is multiplied by the
Bonferroni correction factor, nc, the final number of peptide-
driven taxon clusters. The Pu is obtained by first transforming
the E values (E) of CIPs into database P values (p) [61, 62], p =
1 − e−E. A weight (wπ) is then defined for each peptide π as
1/Cπ! with Cπ being the total number of taxon clusters contain-
ing π. Note that wπs are computed for all πs identified with E
values ≤ 1 although only CIPs are used for computing the
unified P value. Evidently, Cπ varies by the taxonomic level
considered.

For each taxon T, one then combines the weighted product
of database P values into a new variable

τ ¼ ∏
i¼1

nT

pwi
i ; ð3Þ

where nT is the total number of CIPs mappable to taxon T, and
the weight for peptide πi is wi ¼ 1=Cπi !. The sum of peptide
weights mraw≡∑nT

i¼1wi E≤Ecð Þ gives the effective number of
degrees of freedom. This allows one to define a stochastic
variable ~τ of the same number of degrees of freedom to

compare with, leading to the conditional probability formula
for the product of truncated P values [53, 63].

Pt ~τ≤τj m;mraw

� �
¼ τ

Pmraw
c

∑
m−1

s¼0

mrawln
�
Pc

h �
−ln τð Þ

i
s

s!
; ð4Þ

where m ≡ ⌈mraw⌉ is the smallest integer that is greater than or
equal to mraw. An example of how to compute the unified P
value using Eq. (5) can be found in the electronic supplemen-
tary material of an earlier publication [53].

Finally, Pu is given by

Pu ~τ≤τ
� �

¼ M !

m! M−mð Þ! P
m
c 1−Pcð ÞM−mPt ~τ≤τj m;mraw

� �
þ ∑

M

j¼mþ1
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j! M− jð Þ! P
j
c 1−Pcð ÞM− j�

� θ P j
c−τ

� �
Pt ~τ≤τj j; j
� �

þ θ τ−P j
c

� �h i
;

ð5Þ

where M ¼ ∑NT
j¼1wj E≤1ð Þ

l m
with NT being the total number

of identified peptides (with E value ≤ 1) mappable to taxon T,
Pc is the database P value for Ec, and the θ(x) function takes the
value 1 when x > 0 and 0 otherwise.

Within each cluster, the unified E value of each member
taxon, cluster head included, is computed; the taxon with the
most significant unified E value becomes the head of the
cluster. Note that the starting cluster head (with largest M)
remains most significant most of the time, indicating the sta-
bility of our clustering procedure and significance assignment.
After this step, the clusters are finally sorted in ascending order
of the unified E values of the cluster heads.

Statistical Method for Protein Identification

In this update of MiCId, we have included the protein
identification capability. Proteomes of confidently identi-
fied microbes (cluster heads at the species level) are used
as the protein database. The implemented statistical
framework for protein identification is found on a rigor-
ously derived general formula [64], which has been
extensively tested for the application to protein identifi-
cation [65]. Since the detailed derivations [64] and the
applications [65] are already available, here we only
briefly summarize the statistical method for protein iden-
tification in MiCId.

As before, we consider all identified peptides with E values
E ≤ 1 and convert each E value of an identified peptide into a
database P values (P = 1 − e−E) [61, 62]. These identified pep-
tides are then mapped to database proteins that contain them.
Assume that a given protein contains L identified peptides with
P values. Let us group these L peptides, according to the
number of database proteins a peptide maps to, into m groups
with 1 ≤m ≤ L. Within each group k, the nk peptide P values
have equal weight, while peptide P values in different groups
are weighted differently.
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The weighting enters our formalism through the following
quantities of interest

τ≡ ∏
m

k¼1
∏
j¼1

nk

pk; j

" #wk

and Q≡ ∏
m

k¼1
∏
j¼1

nk

xk; j

" #wk

; ð6Þ

where each pk; j represents a reported peptide database P value
and each xk; j represents a random variable drawn from a
uniform, independent distribution over [0, 1]. The quantity of
interest F(τ) ≡ Prob(Q ≤ τ), representing the protein P value,
can be obtained [64, 65].

F τð Þ ¼ ∏
m

l¼1
rnll

� 	
∑
m

k¼1
∑
G kð Þ

1

rgkþ1
k

H −rk ln τ; gkð Þ�

� ∏
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n j−1þ g j
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!

nj−1
� �

!g j!

−1ð Þg j

r j−rk
� �n jþg j

0
@

1
A
9=
;; ð7Þ

where rk ≡ 1/wk is the number of proteins a group k peptide
maps to, ∑G kð Þ enumerates each set of nonnegative integers

{g1, g2,…, gm} that satisfies the k-dependent constraint
∑m

i¼1gi ¼ nk−1, and the function H is defined as

H x; nð Þ≡ e−x ∑
n

k¼0

xk

k!
: ð8Þ

An example application of Eq. (7) can be found in the
supplementary information of the published study on protein
identification [65].

Results and Discussion
To investigate the feasibility of microbial identification
based on peptides identified, we examine in silico the
peptidome similarities among microbes at different taxo-
nomic level in our DB-1. The similarity of taxon X to Y,
SX→ Y ≡ ∣ X ∩ Y ∣ / ∣ X∣, is defined as the numbered of
shared peptides between the two taxa divided by the num-
ber of peptides corresponding to taxon X. Panel a of
Figure 1 displays histograms of the in silico peptidome
similarities computed among the families, genera, and spe-
cies in DB-1. The histograms in Figure 1 show that pep-
tides are weakly shared among taxa above species level
having similarity values that are typically much less than
0.6, indicating that microbial identifications at levels
higher than species should be easier than at the species
level. Based on these histograms, it appears that unambig-
uous identification at the species level for certain species
can be challenging. To investigate whether the high
peptidome similarity at the species level is an artifact due
to asymmetric similarity measure, we defined in addition
t w o s y m m e t r i z e d s i m i l a r i t i e s :
Smax(X→ Y) = Smax(Y→ X) ≡ ∣ X∩ Y ∣ / min {| X| , | Y| } and
Smin(X→ Y) = Smin(Y→ X) ≡ ∣ X∩ Y ∣ / max {| X| , | Y| } and

plot the species-level peptidome similarity histograms
using all three similarity measures (see panel b of
Figure 1). The closeness among all three versions of sim-
ilarity measures for species indicates that the presence of
high peptidome similarity among species is generic, not a
consequence of asymmetric similarity. However, similar to
the well-known example of high peptidome similarity be-
tween E. coli and S. flexneri [58, 59], the exceedingly high
peptidome similarities observed among certain species may
also be a consequence of incorrect/problematic taxonomy
classifications.

The question of what to include/exclude from the database
is definitely important, and the answer probably varies depend-
ing on the research conducted. It has been shown that the
choice of databases affects microbial identification [55]. As
another example, researchers studying the human gut
microbiome may wish to construct a gut-specific database
[48] by including only human gut microbial species that have
been cataloged by the Human Microbiome Project [66]. To
facilitate microbial research of various types, MiCId offers a
simple procedure for constructing a customized database and
using it for microbial identification afterwards. A user only
needs to specify a list with the names of species or their NCBI
taxonomy identifier, and everything else is handled by MiCId.

E Value Accuracy Evaluation

As stated in the BMaterials and Methods^ section, the
statistical method employed to assign statistical signifi-
cance to microbes identified requires accurate per-
spectrum significances, e.g., E values, at the peptide level.
Combining RAId’s accurate per-spectrum statistics [56] to
output unified E value (Eu) for microbes identified, we
expect Eu to be accurate and evaluated its accuracy as
described below. MS/MS spectra from BMD-C were used
to query the reverse [67, 68] of DB-1 while keeping the
taxonomic assignments untouched. The reverse of DB-1
thus acts as a peptide database from decoy organisms.
(Therefore, each decoy organism carries a canonical name,
but its peptide sequences are reverse of those of the true
organism of the same name.) The unified E value Eu of
each decoy organism can then be calculated using Eqs. (2)
and (5). Obviously, each identified decoy organism is a
false positive. The accuracy of assigned statistical signifi-
cance (or type I error) can be visualized by a log-log plot
[69, 70] of the expected number of errors (decoy organ-
isms identified) per query versus the Eu reported by
MiCId.

Since we have in total 100 queries (blended DFs) in BMD-
C, one would expect 1 decoy microbial cluster head with E ≤
10−2, 10 decoy microbial cluster heads with E ≤ 10−1, 100
microbial cluster heads with E ≤ 100, and 10,000 microbial
cluster heads with E ≤ 102. The log-log plot of the expected
number of errors per query versus Eu should yield a curve close
to the y = x line. Panels a, b, and c of Figure 2 show that the
computed Eu curves trace very closely the y = x line, indicating
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that the computed Eu is indeed accurate. Two dashed lines, y =
3x and y = x/3, are also provided as references. As described in
the BStatistical Method for Microbial Identification^ subsec-
tion, when assessing the accuracy of assigned significance
using decoy databases, one should not set Ec too low and the
statistical accuracy should remain even with different Ec. To
test this, we have used three Ec values, 0.01, 0.1, and 0.5,
corresponding to curves in panels a, b, and c, respectively.
These Ec values, 0.01, 0.1, and 0.5, yield 347, 3183, and
15,040 CIPs, respectively.

Although the statistical formula (7) for protein identifica-
tion is better found than the one (5) we used for microbe
identification/classification, we did not switch to the former
in this MiCId update for the following reason. When
performing microbial identification/classification, one needs
to combine hundreds to thousands of peptide database P
values as opposed to tens of database P values for protein
identification. For the former case, if one were to use formula
(7), the summation becomes very time-consuming to compute
and can considerably slow down the entire workflow.

Microbial Identification

Validation of MiCId’s Taxa Identification Using Mixtures of
Known Compositions One important component of our
method, as described in the BStatistical Method for Microbial
Identification^ subsection, is the peptide-driven clustering pro-
cedure used to group microbes at different taxonomic levels.
The parameters needed for the clustering procedure include the
resemblance coefficient, the minimum number of unique CIPs
required to prevent a taxon (or a cluster of taxa) from being
further clustered, and the condition for taxa to be selected for
the next level identification. These parameter values were
learned from using BMD-A (as a training dataset) to query
DB-1; they are selected by maximizing the Btrue positive rate^
(TPR) at the species level under a specified E value cutoff.
Once determined, the parameters are used for all level of taxa
identifications. When computing the TPR, a cluster of identi-
fied microbes contributes only one count; the cluster is viewed
as a true positive only if the cluster head is a true positive and as
a false positive otherwise. The first half of Table 2 displays,
from phylum-level to species-level identifications, the TPR
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Figure 1. Histograms of microbial peptidome similarity (ρ). The curves display the peptidome similarity histograms in DB-1. In
general, asymmetric peptidome similarity is used: similarity of taxon X to Y, SX→ Y, is defined by SX→ Y ≡ ∣ X ∩ Y ∣ / ∣ X∣, the number
of shared peptides between the two taxa divided by the number of peptides corresponding to taxon X. Note that both SX→ Y and
SY→ X are included in the histogram. To illustrate that the high frequency of large peptidome similarity among species is generic, we
def ined in addit ion two symmetr ized simi lar i t ies: Smax(X → Y ) = Smax(Y → X ) ≡ ∣ X ∩ Y ∣ / min { | X | , | Y | } and
Smin(X→ Y) =Smin(Y→ X) ≡ ∣ X ∩ Y ∣ / max {| X| , | Y| }. These new symmetrized measures are shown only for peptidome similarities
among species. The closeness among all three versions of similarity measures for species indicates that the presence of high
peptidome similarity among species is generic, not a consequence of asymmetric similarity
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Figure 2. Accuracy assessment of the unified E value (Eu) for microorganism identifications. Each of the 100 blendedDFs in BMD-C
was queried in the decoy (made of reversed target peptide sequences) of the target DB-1. Three Ecs, peptide E value cutoffs, are
used: (a) Ec = 0.01, (b) Ec = 0.1, and (c) Ec = 0.5. The closer the curve is to the y = x line, the more accurate the reported Eu
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along with the PFD using the parameters learned (with E value
cutoff 0.01). More pertinent information at the genus and
species levels can be found in Supplementary Figure S1.

With the parameters determined, we use BMD-B and
mixture sample datasets of known composition to query
DB-1 in order to test the ability of MiCId in microbial
identification/classification. The resulting TPR and PFD
(with E value cutoff 0.01) are displayed in the second half
of Table 2. The retrieval curves of taxa and peptides from
using BMD-B as queries are plotted in panels a and c of
Figure 3. Plotted in panel b of Figure 3 is the PFDs versus
the E values of identified taxa. This panel indicates that
using a E value cutoff of 0.01, one can control the PFDs at
the genus and species level at 5 and 2%, respectively.
Panel d of Figure 3 shows the histogram of peptides
identified with different E values. BMD-B contains 1400
blended DFs, each of which contains spectra from all 15
genera/species; hence, the maximum count of identifiable
genera/species is 21,000. In this assessment, an identified
cluster is counted as a true positive only if its cluster head

is among the known microbes and a false positive other-
wise. Although the table headings are explained in the
caption, we shall elaborate on few of them here: IF1 is
the overall identification fraction (proportion of times a
taxon is identified, be it a cluster head or not, from samples
containing it); IF2 is no larger than IF1 as it records the
identification fraction of a known microbe that is also the
head of the cluster it belongs to; IF3 cannot be larger than
IF2 by definition since it reports the identification fraction
of a known microbe that, in addition to satisfying the
conditions for IF2, must have taxon-specific (unique) pep-
tide hits. The fact that sometimes IF2 is smaller than IF1
indicates the room for improvement in our identification
method: it shows occurrences of a true positive microbe
not being the cluster head. There are two scenarios that this
can happen. First, it is possible that a false positive mi-
crobe having a similar peptidome to the true positive
somehow becomes more significant than the true positive
microbe and the new cluster head. Second, we can have
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Figure 3. Retrieval assessments using the blended MS/MS dataset BMD-B of known microbe compositions to query DB-1 are
shown in panels (a) (taxa) and (c) (peptides). (b) The PFDs versus the E values of identified taxa. This panel indicates that using a E
value cutoff of 0.01, one can control the PFDs at the genus and species level at 5 and 2%, respectively. (d) The histogramof peptides
identified with different E values. BMD-B contains 1400 blended DFs, each of which contains spectra from all 15 genera/species;
hence, themaximumcount of identifiable genera/species is 21,000. An identified cluster is counted as a true positive only if its cluster
head is among the known microbes and a false positive otherwise. The table headings are explained below: SK represents the
species key; E[R] is the taxon’s average rank in the identified cluster containing it; IF1 is the overall identification fraction (proportion of
times a taxon is identified, be it a cluster head or not, from samples containing it); IF2 records the identification fraction of a known
microbe that also happens to be the head of the cluster it belongs to; IF3 reports the identification fraction of a known microbe that
not only is the head of the cluster it belongs to but also has unique (taxon-specific) peptide hits; e[NIP] is the average number of
identified peptides; e[CS] represents the average cluster size containing the taxon. In the table above, microbial identification was
controlled at the 5% PFD. The species keys are 1, Escherichia coli; 2, Enterobacter lignolyticus; 3, Streptococcus pyogenes; 4,
Mycobacterium tuberculosis; 5, Salmonella enterica; 6, Yersinia pestis; 7, Shewanella oneidensis; 8, Pseudomonas aeruginosa; 9,
Bacillus subtilis; 10, Bordetella pertussis; 11, Bartonella henselae; 12, Rhodobacter sphaeroides; 13, Thermotoga maritima; 14,
Geobacter bemidjiensis; 15, Caulobacter vibrioides

G. Alves et al.: Identification of Microorganisms 1729



two true positive microbes sharing a larger number of CIPs
and are clustered together.

One quantity of particular interest is IF2-IF3. Note that with
IF2-IF3 being zero for all genus-level identifications, we know
that each microbe present in these DFs has genus-specific
peptides identified, indicating separability (or weak correla-
tion) among genera. On the other hand, at the species level,
we found several cases with IF2-IF3 being nonzero (highlighted
in orange), indicating that strong similarities exist among cer-
tain species. Interestingly, the fact that IF2>IF3 for several
species reveals that MiCId can correctly identify at times these
species without relying on species-specific peptides. Another
noteworthy point is that even though DB-1 is a fairly large
database, the majority of identified peptides are still quite
significant (see panel d).

As another test of MiCId’s ability to correctly identify
microbes, a series of 85 samples, DFs 39–123, composed of
one, two, four, or nine known microbes were used to query
DB-1. Panels A and B of Supplementary Figure S2 display the
PFD curves for the genus and the species-level identifications,
respectively, from samples containing one microbe and several
microbes. Panels C and D show the histograms of peptides
identified with different E values, respectively, from samples
containing one microbe and several microbes. The identifica-
tion performance of MiCId using DFs 39–123 and with the
PFD cutoff at 5% is summarized in the associated table of
Supplementary Figure S2.

We have also tested if MiCId can identify viruses from
samples of Calu-3 human lung cancer cells (infected with
influenza A, harvested 0, 3, 7, 12, 18, and 24 h post infection
with five replicates at each time point). These samples, DFs
137–226, are from cell lysates using multidimensional protein
identification technology (MudPIT) [71] and were not enriched
for virus proteins. Using these samples, MiCId was able to
correctly identify influenza A as early as 7 h for 2 out of 15
samples and could correctly identify influenza A after 12 h for
all of them. Note that with the E value cutoff of 0.01, MiCId
does not report any false positive regardless whether true
positives are reported or not, indicating a robust false positive
control. The results obtained is quite surprising given that the
size of DB-1 (covering 46,838,064 proteins) is so much larger
than that of influenza A (11 proteins), see Supplementary
Table S6.

Microbial Identification in Complex Mixture of Unknown
Composition Using a human stool sample, DF-124, we com-
pare the microbial identifications at the genus level of MiCId
with the results from a previous study [55] that includes three
workflows: MetaProteome Analyzer (MPA) that uses X!Tan-
dem for peptide identification [55], MaxQuant (MQ) [55], and
Proteome Discoverer (PD) which uses Sequest-HT and Perco-
lator for peptide identification [55]. In Figure 4, two databases,
DB-3 and DB-4, are employed for identification comparison,
shown as Venn diagrams, among the four workflows. We did
not compare MiCId with the three aforementioned workflows

(MQ, MPA, and PD) adapting MEGAN [50] since the authors
of [51] have shown that Unipept outperforms MEGAN in
terms of pathogen identifications. For MQ, MPA, and PD,
genus identifications were done by sending all peptides identi-
fied at 1% PFD to Unipept with the filtering strategy recom-
mended by [51] enforced: when the number of unique peptides
mapped to a taxon is less than 0.5% of the total number of
unique (taxon-specific) peptides, that taxon is viewed as a false
positive. For MiCId, all peptides identified with E value ≤ 1 are
used for genus identifications, and only heads of genus clusters
identified with E value ≤ 0.01 are used to generate the Venn
diagram. Species-level identification comparison was not pos-
sible because Unipept processes the database differently at this
level [49]. However, more comparisons with the PD workflow
adapting Unipept are available in Supplementary Table S7 and
Supplementary Figure S3. From Supplementary Figure S3, the
readers will notice that although PD in general identifies more
peptides than MiCId in this complex sample, MiCId neverthe-
less identifies more genera. Given the rigorous statistical foun-
dation ofMiCId and the low E value cutoff used, the additional
genera identified by MiCId are unlikely to be false positives.
On the other hand, the large number of peptides identified by

(a)

(b)

Figure 4. Identification result comparison between MiCId and
different workflows by analyzing DF 124 (human stool sample)
in two databases DB-3 (a) and DB-4 (b). The workflows com-
pared with MiCId include MetaProteome analyzer (MPA) that
uses X!Tandem for peptide identification [55], MaxQuant (MQ)
[55], and proteome discoverer (PD) which uses Sequest-HT and
percolator for peptide identification [55]. Plotted in the Venn
diagrams are the intersection of nonredundant peptides identi-
fied at the 1% PFD for the four workflows. For MQ, MPA, and
PD, genus identifications were done by sending all peptides
identified at 1% PFD to Unipept with the filtering strategy rec-
ommended by [51] enforced. For MiCId, all peptides identified
with E value ≤ 1 are used for genus identifications, and only
heads of genus clusters identified with E value ≤ 0.01 are used
to generate the Venn diagram
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PD, but not byMiCId, do not yield additional confident genera
identifications. This might be because these peptides are pri-
marily false hits or the aforementioned filtering strategy, due to
its heuristic nature, sometimes can be too aggressive [47, 51]
and lose true positives.

Note that in Figure 4, although the peptides identified do not
have strong overlaps, the genera identified seem to overlap
much more. The discrepancy in peptides identified might be
attributed to the difference in terms of how PFDs are estimated.
Leaving this issue aside, however, a more fundamental question
remains: using a workflow such as MiCId (that yields accurate

PFDs) to analyze data from several replicates of the same
sample, how well can the identified taxa overlap given the
possible intrinsic variation due to data-dependent acquisition
of typical MS/MS practice? To investigate the size of this
intrinsic variation and its impact on taxa identifications, we
analyze nine MS/MS datasets DF-128 to DF-136, three techni-
cal replicates from human stool samples of three different vol-
unteers [30]. In Figure 5, we plot in the Venn diagrams the
overlaps among triplicates in terms of peptides, genera, species,
and proteins identified by MiCId when searching DB-2. The
peptide Venn diagrams, displaying the intersections of
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Figure 5. Identification overlaps of peptides, microbes, and proteins among technical replicates. Analyzing nine MS/MS datasets,
DFs 128–136, three technical replicates from human stool samples of three different volunteers [30], we plot in the Venn diagrams
the overlaps among triplicates in terms of peptides, genera, species, and proteins identified by MiCId when searching DB-2. The
peptide Venn diagrams show the intersections of nonredundant peptides identified at the 1% PFD, while other Venn diagrams are
constructed using genera, species, and proteins identified with E value ≤ 0.01
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nonredundant peptides identified at the 1% PFD, show a lot
more variations than the Venn diagrams for genera and species.
This indicates that the taxa identified remain largely the same
even though there exists nonnegligible intrinsic variations
among technical replicates in terms of peptides/proteins identi-
fied [30].

The other problem of interest is to compare the taxa identi-
fication performance of various workflows given the same list
of input peptides. Evidently, when the input peptides are the
same, then except for MiCId, the taxa identified by MQ, MPA,
and PD become identical (as they all are given by Unipept). In
this context, it becomes the taxon identification comparison
betweenMiCId and Unipept. To meaningfully compare MiCId
with Unipept (with and without the filtering strategy proposed
in [51]), however, the true positive microbes must be known.
We thus used a data set (DF-100 to DF-108) from a mixture of
four known microbes. The results are summarized in Table 1.
We found that MiCId consistently identify more true positives
while controlling the false positives at a lower rate when
compared to Unipept. One important observation is that the
heuristic filtering strategy [51] does not always control the
number of false positives to a low number while our statistical
method does. It is possible that theE value cutoff of 1 in Table 1
may include too many peptides with poor statistical signifi-
cance, hence hindering the performance of Unipept. For this
reason, we have provided in the Supplementary Table S8 the
results from controlling the input peptides at 1% PFD using the
MiCId statistics. As one may see in the Supplementary
Table S8, the same trend persists.

Sensitivity Does Not Always Decrease as the Database Size
Increases Sensitivity drop due to searching a large database
has been examined and reported by many groups [30, 32, 35].
The basic fact is that when a simple (single) microbe sample is
used, searching a smaller database (containing the proteome of
that microbe) has a better sensitivity than searching a larger

database [30]. However, when a more complex sample is used,
searching a larger database has the advantage of discovering
unexpected but perhaps true positive peptides [35, 55]. In other
words, even though searching a larger database reduces the
statistical significances of peptides previously identified in a
smaller database, new peptides not contained in the smaller
database may be identified with high significance. Hence, the
sensitivity in terms of peptide identification may even increase
when searching a larger database.

To investigate the latter point, we have used data from
complex samples (DFs 128–136) to query DB-1 and DB-2.
The sizes of DB-1 and DB-2 are 46 and 200 GB, respectively.
The 46,838,064 protein sequences (807,574,956 nonredundant
tryptic peptides) in DB-1 are from 23,911 organisms, belong-
ing to 13,072 species, 1890 genera, and 517 families. The
260,931,852 protein sequences (2,507,889,685 nonredundant
tryptic peptides) in DB-2 are from 75,356 organisms, belong-
ing to 26,368 species, 2870 genera, and 701 families. In terms
of number of tryptic peptides, DB-2 is about three times the
size of DB-1, although in terms of protein sequences it is about
5.6 times the size of DB-1. The peptide retrieval curves for each
DFs are shown in groups. The first group, containing PFD
curves from DFs 128–130, is displayed in Figure 6. The other
two groups are shown in Supplementary Figure S4. The con-
sistent trend for each of these DFs (from complex samples) is
that at a given PFD value, searching the larger database (DB-2)
indeed yields a larger number of identified peptides in compar-
ison with searching the smaller database (DB-1).

Protein Identification

MiCId performs protein identifications by extending its taxa
identifications in one go. It first queries the MS/MS spectra in
a peptide-centric database, which is constructed from microbial
protein sequences and used for microbial identification at vari-
ous taxonomic levels. MiCId then uses the protein sequences

Table 1. Genus Identification Comparison Between MiCId and Unipept

Genus assignment for data files 100–108

MiCId Unipept

DF NPU TPf TPu FPf FPu TPf TPu FPf FPu

100 9229 4 4 0 2 3 4 18 591
101 9865 4 4 0 0 3 4 18 634
102 9666 4 4 0 0 3 4 12 595
103 23,248 4 4 0 3 3 4 11 862
104 22,496 4 4 0 1 3 4 11 858
105 23,105 4 4 0 0 3 4 13 870
106 21,730 4 4 0 0 3 4 12 880
107 24,091 4 4 0 1 3 4 13 892
108 21,093 4 4 0 1 3 4 16 866

DF-100 to DF-108, sample mixtures composed of four bacteria S. pneumoniae, S. aureus, E. coli, and P. aeruginosa, are used to query DB-1. All peptides with E
values ≤ 1 are used as input for bothMiCId and Unipept. The data file (DF) index is shown in the first column. The number of peptides used (NPU) is displayed in the
second column. For Unipept results, the subscript u (or f) of the number of true positive (TP) and the number of false positive (FP) means that the filtering strategy [51]
is turned off (or on); for MiCId, the subscript u includes taxa with E value ≤ 1 while f includes only taxa with E value ≤ 0.01
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belonging to the confidently identified microbial species to
construct a protein database on-the-fly and queries in it the
MS/MS spectra again for protein identification. This approach
differs from metaproteomic approaches which identify proteins
directly from identified peptides without performing microbial
identifications first [30, 48]. Because each on-the-fly constructed
protein database, no longer covering all microbes, is much
smaller than the original peptide-centric database, MiCId can
consider post-translationally modified peptides and semi-
enzymatic (semi-tryptic) peptides during protein identification
without adding much computational cost. In a previous study
[65], we have shown that the method employed for protein
identification in MiCId assigns accurate statistical significance
to identified proteins and also has a protein retrieval performance
that is no worse than that of any other protein identification
method. Therefore, we only present the protein identification
results of MiCId from analyzing DFs 128–136, three technical
replicates from human stool samples of three different volunteers
[30]). In the last row of Figure 5, we plot in the Venn diagrams
the overlaps among triplicates in terms of proteins identified by
MiCId when searching DB-2. As one may see, there exists
nonnegligible variation among the triplicate results in terms of
proteins identified. This may be attributed to the significant
variations in the peptides identified, see the Venn diagrams on
the first row of Figure 5. On the other hand, from the Venn
diagrams on the second row (genus) and the third row (species)
of Figure 5, the genus and species identifications appear consis-
tent despite the variations in peptides/proteins identified.

When clustering proteins, MiCId does not use protein ho-
mology to cluster them. Rather, it uses a peptide-centric clus-
tering procedure which is described below: first peptides iden-
tified with E values ≤ 1 are mapped to proteins in the database;
second, a standardized weighted count (Z) is assigned to each

identified peptide (whose E value is E), Z Eð Þ ¼ 1= 1þ E
Ec

� �
,

where Ec is the E value cutoff used to control peptide identifi-
cation at a 5% PFD value; third, the sum, Wp, of the weighted
(Z) peptide evidence for every protein p is computed and used
to sort proteins in order of decreasingW; fourth, one starts with
the worst ranking protein p and clusters it to the better ranking
protein which can explain the highest percentage ofWp. If that
percentage is below 95%, p does not cluster into any better
ranking protein; fifth, continue the process in step 4 for the

second worst ranking protein and repeats it until one has tested
the second best ranking protein. However, there is an excep-
tion: a protein will not cluster if it has a unique evidence peptide
(a peptide that maps to only one protein) with assigned E value
less than both 10−4 and 1/ns, with ns being the number of
spectra collected per experiment. Specifically, we cluster pro-
teins that share the majority of the peptide evidences when the
information obtained from identified peptides does not allow us
to pin point a specific protein. Because we do not assign
functionality to proteins identified, we do not cluster proteins
by their homology. In fact, it is possible for two totally dissim-
ilar proteins to be clustered together if they share a couple of
peptides that happened to be identified with high confidence.

Execution Time

With speed a main consideration, MiCId code was written in
C++ and its routine for database search was written using
parallel programming. This allows users to run jobs with a
flexible number of cores. We have measured the execution
time of MiCId in performing microbe identification when
querying MS/MS spectra in DB-1 (23,911 organisms and
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Figure 6. Peptide retrieval curves for DFs 128–130 (complex samples) when searching DB-1 (46 GB) and DB-2 (200 GB). At the
same PFD value, more peptides are identified when searching the larger database (DB-2)
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Figure 7. MiCId execution time versus number of cores using
two datasets (one containing 15,000 MS/MS spectra and the
other 100,000MS/MS spectra) to query DB-1 (46GB) and DB-2
(200 GB)
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46 GB) and DB-2 (75,356 organisms and 200 GB). Figure 7
shows that for data sets of ≈100,000 MS/MS spectra, microbe
identification using DB-1 can be accomplished in about 15 min
with 4 cores and reduces to around 6 min with 16 cores. On the
other hand, with ≈100,000 MS/MS spectra, the execution time
for microbe identification using DB-2 ranges from around
44 min (with 4 cores) to 14.2 min (with 16 cores). Our results
indicate that when the database size increases by a factor of 4.3,
the execution time increases only by a factor of 2.4 (using 16
cores), suggesting that only a 5.6-fold execution time will be
encountered with a 10-fold database size increase. This reflects
the scalability of MiCId in handling large databases. Figure 7
also shows that the execution time reduction by increasing the
number of cores appears to reach a plateau at 16 cores. This is
because the piece of C++ code performing microbial identifi-
cation has not yet been parallelized, thus incurring a constant
time cost.

Limitation and Future Direction
We have mentioned that based on Figure 1, it appears that
unambiguous identification at the species level for certain
species can be challenging. This difficulty worsens when com-
plex samples are concerned and presents the direction for future
efforts. For example, most real environmental samples will not
be clonal, but might be clades of related organisms. Hence,
even the concept of Bspecies^ can be problematic here. Sepa-
rating closely related organisms evolved from a common an-
cestor species may not be possible under our current method
due to lack of proteome information and high degree of prote-
ome similarities of closely related organisms. Nevertheless,
identifying the ancestral species can be a realistic long-term
goal.

On the other hand, numerous lines of evidence indicate that
individual Bstrains^ might differ in physiology, and thus, de-
tection at strain levels might be needed for clinical applications.
For this case, however, cultured colonies of bacteria might be
possible and progress has been made at the strain-level identi-
fications in simple mixtures [45]. The challenge and future
direction here pertains to how to minimize the culture time
and increase the identification rate.

Evidently, limitation of our method exists. In fact, inter-
pretation of the results using our analysis workflow depends
on the presence/absence of the correct microorganism in the
database. If one is certain that the correct microorganism is
present in the database, one should interpret the results as
microbial identification. On the other hand, if one is sure
that the correct microorganism is absent from the database,
one may interpret the results as microbial classification, i.e.,
finding the closest relative.

Conclusion
In this study, we have proposed a workflow for microbial
classification/identification by processing MS/MS data ac-
quired in high-resolution mass spectrometers. We have used a
large number of MS/MS data files to assess MiCId’s ability in
identifying microbes in mixture samples. Results from our
identification assessment show that (at the E value cutoff 0.01
yielding PFD ≤ 5%) MiCId has an average true positive rate of
0.9813 at the genus level and 0.9550 at the species level. (More
details can be found in Table 2.) One should note, however,
that these numbers were obtained from blended spectra of
single species samples. Generalization to complex microbiota
samples must be taken with a grain of salt. Nevertheless, we
were also able to show, by comparing with published results,
that MiCId performs comparably to existing methods in mi-
crobial identifications. A major advantage of MiCId over
existing methods is that it can assign to microbes and proteins
identified accurate statistical significance, e.g., E values, thus
providing users a measure suitable for controlling false posi-
tives (type I errors) and to estimate the PFD via the Sorić
equation [72]. In contrast with current metaproteomics
methods, MiCId’s protein identification strategy begins with
microbial identifications, allowing users to consider post-
translationally modified peptides and semi-enzymatic (semi-
tryptic) peptides without addingmuch computational cost. This
feature might be welcomed by researchers interested in prote-
omics of complex microbial mixtures. Storing only nonredun-
dant peptides from proteins digested in silico, the peptide-
centric database of MiCId has a database size to number of
organism ratio that decreases with the increasing number of

Table 2. True Positive Rate (TPR) and Proportion of False Discoveries (PFD) at the 0.01 E Value Cutoff Using BMD-A and BMD-B

True positive rate and proportion of false discoveries

MS/MS data set BMD-A
Taxonomical level P C O F G S
TPREc = 0.01 100.00% 94.13% 99.99% 99.93% 97.69% 94.10%
PFDEc = 0.01 3.02% 3.47% 2.33% 2.59% 1.49% 1.91%
MS/MS data set BMD-B
Taxonomical level P C O F G S
TPREc = 0.01 100.00% 100.00% 100.00% 100% 98.57% 96.90%
PFDEc = 0.01 0.07% 0.00% 0.15% 2.37% 4.98% 1.89%

The first half of the table displays the TPR along with the PFD (with E value cutoff 0.01), using the parameters learned from BMD-A and apply them to BMD-A, at
various taxonomic identification levels: phylum (P), class (C), order (O), family (F), genus (G), and species (S). Displayed in the second half of the table are the
microbial identification/classification results using BMD-B to query DB-1 with the parameters learned from using BMD-A
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organisms, making database search time increase only
sublinearly with the number of the included organisms.
MiCId’s workflow is fully automated: users need only specify
a list of microbes to be included in the peptide-centric database
and the parameters to analyze the MS/MS spectra, and every-
thing is handled internally by MiCId. MiCId can be
downloaded freely at http://www.ncbi.nlm.nih.gov/
CBBresearch/Yu/downloads.html.

The study presented here focuses mainly on the
classification/identification with accurate statistical signifi-
cance for microbial mixtures via high-resolution MS/MS spec-
tra. True advances in microbial studies using complex samples,
however, require multidisciplinary collaboration. Along this
direction, many innovative approaches have been developed.
Such examples include but are not limited to faster MS/MS
instruments like Orbitrap Fusion Lumos Tribid [73–75] that
can better sample complex mixtures by collecting a greater
number of MS/MS spectra, improved sample preparation pro-
tocols for pathogenic samples [76, 77], and new techniques to
isolate strain-specific peptides from microbes’ membrane pro-
teins [78, 79]. These advances, together with computational
workflows (such as MiCId) built on firm statistical founda-
tions, may potentially further improve microbe identification in
complex samples.
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