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Abstract.Reported herein is a simplemethod of performing single analyzer precursor
ion scans in a linear quadrupole ion trap using orthogonal double resonance excita-
tion. A first supplementary AC signal applied to the y electrodes is scanned through
ion secular frequencies in order to mass-selectively excite precursor ions while,
simultaneously, a second fixed-frequency AC signal is applied orthogonally on the
x electrodes in order to eject product ions of selected mass-to-charge ratios towards
the detector. The two AC signals are applied orthogonally so as to preclude the
possibility of (1) inadvertently ejecting precursor ions into the detector, which results
in artifact peaks, and (2) prevent beat frequencies on the x electrodes from ejecting
ions off-resonance. Precursor ion scans are implemented while using the inverse

Mathieu q scan for easier mass calibration. The orthogonal double resonance experiment results in single ion
trap precursor scans with far less intense artifact peaks than when both AC signals are applied to the same
electrodes, paving the way for implementation of neutral loss scanning in single ion trap mass spectrometers.
Keywords: Quadrupole ion trap, Precursor ion scan, AC frequency scan, Secular frequency scan, Single
analyzer precursor scan, Linear ion trap
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Introduction

Miniature mass spectrometers [1, 2] are desirable analyti-
cal tools for many specialized applications ranging from

pharmaceutical reaction monitoring [3] to forensics [4–6],
chemical agent analysis [7–11], and planetary exploration
[12, 13]. Because the quadrupole ion trap is tolerant of mTorr
pressures and electric field imperfections and also has single
analyzer product ionMS/MS capabilities [14, 15], it is the ideal
mass analyzer for miniaturization. Hence, miniature instru-
ments have increasingly been trending toward quadrupole ion
traps over higher-resolution but more complex alternatives [2,
16–31].

Even so, quadrupole ion traps by themselves do not current-
ly perform precursor ion or neutral loss scans, two of the three
main types of MS/MS experiments [32]. This is an unfortunate
omission since both types of scans are particularly useful for
analyzing complex mixtures for ions with similar functional
groups [33–44]. Planetary exploration and forensics, in partic-
ular, may benefit from single analyzer precursor ion scanning
capabilities since small organic molecules such as aryls with
common substituents and various classes of drugs often have

fragment ions in common. For planetary exploration, a data-
independent precursor ion scan would help increase the effi-
ciency of ion utilization and decrease power and sample con-
sumption compared with obtaining product ion spectra of
multiple precursor ions (and thereby reconstructing the precur-
sor ion spectrum). Data-dependent precursor ion scans would
require multiple ion injections from the same source material.

The difficulty in performing a precursor scan in a single
analyzer stems from its three requirements: (1) mass selection
of precursor ions, (2) fragmentation of the mass-selected pre-
cursors, and (3) mass analysis of the resulting product ions.
Conventionally, the simultaneous mass selection of precursor
and product ions has required multi-analyzer instruments such
as the triple quadrupole (or pentaquadrupole) [45, 46]. Other
instruments that can perform precursor ion scans are
multisector mass spectrometers, [33] quadrupole/time-of-flight
instruments [36, 38, 40], and triple quadrupoles used in tandem
with ion traps (e.g., Q-traps) [42]. As mentioned previously,
none of these configurations is ideal for miniaturization due to
the sheer size, power consumption, and complexity of multi-
analyzer mass spectrometers.

It is commonly accepted that single quadrupole ion traps can
perform product ion scans but that they do not have data-
independent precursor or neutral loss scanning capabilities.
However, some two and a half decades ago, Yost et al.Correspondence to: R. Cooks; e-mail: cooks@purdue.edu
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demonstrated, in principle, precursor ion scanning in a 3D
quadrupole ion trap using a double resonance technique [47].
A first scanned AC frequency was applied to the endcaps in
order to mass selectively excite precursor ions, thereby provid-
ing the functionality of the first and second quadrupole in a
triple quadrupole system. The function of the third quadrupole,
detection of a particular product ion m/z, was implemented in
the ion trap with a second AC frequency fixed on the product
ion of interest. Ideally, a signal would only occur at the detector
when a product ion withm/z value corresponding to this second
frequency was produced by fragmentation of a precursor ion.
Because the precursor ions are fragmented mass selectively in
time with a swept frequency sinusoid, the correlation between
precursor and product ion – as well as mass information – is
preserved in the ejection time of the product ion (in principle, a
neutral loss scan can similarly be performed by scanning both
AC frequencies at a constant mass offset, but this has not been
demonstrated).

Since this initial development, precursor and neutral
loss spectra in single ion traps have almost always been
recorded either using data-dependent acquisition [48, 49],
requiring multiple ion injections and thus multiple mass
scans, or using data-independent activation methods that
also require multiple ion injections [50], or by methods
which rely on data deconvolution [51]. Furthermore, none
of these methods are single scans; rather, they all require
multiple scans. For miniature and portable instruments –
especially for planetary exploration and other situations
where power and sample mass are limited – these methods
are unsuitable.

We have previously implemented a double resonance pre-
cursor ion scan based on AC frequency scans using theMini 12
[52] miniature linear ion trap mass spectrometer developed at
Purdue University [53]. In the process of optimizing this scan
mode, many artifact peaks were observed and, furthermore,
mass calibration was difficult because the AC frequency was
scanned linearly, giving a nonlinear relationship between m/z
and time [54]. We postulated that artifact peaks were caused by
(1) beat frequencies resulting from the application of multiple
AC frequencies on the same pair of rods, and (2) accidental
ejection of precursor ions as the first AC frequency was
scanned. In this follow-up publication, we demonstrate single
analyzer precursor scans in a linear quadrupole ion trap using
orthogonal double resonance excitation. In comparison to the
previously demonstrated parallel excitation experiment, or-
thogonal excitation largely removes artifact peaks. Precursor
ion scanning is also demonstrated in conjunction with the
inverse Mathieu q scan, which forces an approximately linear
relationship between m/z and time, thereby simplifying mass
calibration compared with the linear frequency sweep case.

Experimental
Chemicals

Amphetamine, methamphetamine, 3,4-methylenedioxyam-
phetamine, and 3,4-methylenedioxymethamphetamine were
purchased from Cerilliant (Round Rock, TX, USA) and dis-
solved in methanol. Final drug concentrations of 1–5 ppmwere
used for all experiments. Pierce ESI calibration mixture
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Figure 1. Single analyzer precursor ion scans in a linear quadrupole ion trap using orthogonal double resonance excitation: (a)
illustration of precursor ion scanning on the Mathieu stability diagram, where a first AC frequency is scanned through ion secular
frequencies to excite precursors while simultaneously a second AC signal is fixed on a particular product ion, (b) scan table for the
precursor scan, and (c) schematic of orthogonal AC signals applied to the rods of an LTQ linear ion trap
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containing caffeine, the peptide MRFA, and the phosphazine
Ultramark 1621 was purchased from Thermo Fisher (Rock-
f o r d , I L , USA ) . C e s i um hyd r o g e n c a r b o n a t e ,
tridecafluoroheptanoic acid (TFHA), monobutyl phthalate
(MBP), and sodium sulfate were purchased from Sigma-
Aldrich Co. (St. Louis, MO, USA) and were dissolved in
50:50 methanol:water at a concentration of 3 mM. For gener-
ating CsTFHA or CsMBP cluster ions, the cesium
hydrogencarbonate and either TFHA or MBP were dissolved
in the same solution and electrosprayed as is.

Ionization

Ions were generated by nanoelectrospray ionization (nESI) at
1500 V using 5 μm nanospray tips pulled from borosilicate
glass capillaries (1.5 mm o.d., 0.86 i.d.; Sutter Instrument Co.,
Novato, CA, USA) by a Flaming/Brown micropipette puller
(model P-97; Sutter Instrument Co.). The flow rate in the
nanoelectrospray performed here is on the order of 10 nL/min
[55]. The positive ion mode was used for all experiments. Ion
injection time was generally set at 50 ms but was manually
optimized to prevent trap overloading. Automatic gain control
was not used in this study.

Instrumentation

A Thermo Instruments (San Jose, CA, USA) LTQ linear ion
trapmass spectrometer running LTQXL 2.7 software was used
for all experiments. The commercial rf coil was modified so
that dipolar AC signals could be applied simultaneously to both
the x and y rods while also applying the high voltage trapping rf
signal in a quadrupolar manner. Otherwise the instrument was
used as supplied commercially.

Generally, AC frequency scanning is performed at constant
trapping (rf frequency and amplitude) conditions. However,
ion trap control language (ITCL) code was not available, so
instead, AC frequency scanning was performed during an
Ultrazoom scan. The Ultrazoom scan is the closest available
approximation to constant rf conditions, as the rf amplitude is
swept slowly at a rate corresponding to 27 Da/s. For experi-
ments performed here, the starting Ultrazoom mass is reported
because rf voltage read-backs are not provided by the
manufacturer.

Orthogonal precursor ion scans were accomplished by ap-
plying on the y electrodes a swept frequency sinusoid for mass-
selective precursor ion excitation while simultaneously apply-
ing to the x electrodes a second fixed-frequency signal corre-
sponding to the secular frequency and hence m/z of a particular
product ion [47, 53]. The result of this orthogonal double
resonance [56, 57] experiment is a single analyzer precursor
scan. All supplemental AC waveforms were supplied by a
Keysight 33612A arbitrary waveform generator (Newark ele-
ment14, Chicago, IL, USA). Channel 1 supplied the ejection
signal to the x electrodes and channel 2 supplied the swept
frequency resonance excitation signal to the y electrodes. The
generator was triggered at the start of the mass scan using the
triggers built in to the LTQ Tune BDiagnostics^ menu.

Results and Discussion
Single Analyzer Precursor Ion Scans

In order to perform a single analyzer precursor scan, the func-
tions of the three quadrupoles in a triple quadrupole mass
spectrometer must be condensed onto a single analyzer. For
the quadrupole ion trap, this conundrum translates into the use
of dual supplemental AC frequencies for ion excitation and
ejection. A first frequency (Bscanned excitation frequency^ in
Figure 1a) is scanned through a range of ion secular frequencies
in order to excite the precursor ions in the trap mass selectively
as a function of time. A second frequency (Bfixed ejection
frequency^ in Figure 1a), set on the frequency corresponding
to the product ion of interest, is used to eject product ions of a
particular m/z. The resulting scan table is shown in Figure 1b.
Because ion secular frequencies depend on the trapping rf
voltage and frequency, both must be kept constant during the
precursor scan. Instead of using an rf ramp for mass scanning,
the first AC frequency is swept either linearly or nonlinearly, a
selection that affects mass calibration. The second frequency,
the product ion ejection frequency, is fixed. In this study, the
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Figure 2. Comparison of parallel and orthogonal precursor ion
scans. (a) Shows full AC scan mass spectrum of MRFA, (b)
shows orthogonal precursor scan of m/z 288, and (c) shows
parallel precursor scan of m/z 288 wherein both excitation and
ejection signals were applied to the x electrodes. The excitation
signal was scanned from 200 to 140 kHz over 0.3 s with an
amplitude of 1.1 Vp-p. The ejection signal was set at a frequency
of 331 kHz, 1 Vp-p. The Ultrazoom scan started at m/z 240
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amplitudes of both precursor excitation and product ejec-
tion waveforms were kept constant, although they could
have been varied in order to alter the normalized collision
energy that each precursor ion experiences or to vary with
precursor ion potential well depth. However, the AC
amplitudes will also affect mass calibration, so they were
not varied in this work.

Orthogonal Versus Parallel Precursor Ion Scans

The key aspect of the current precursor scan experiment that
differentiates it from previous implementations is the use of the
orthogonal dimension for ion excitation. Few studies have used
the y dimension in linear ion traps for mass selective operations
because the detector lies in the orthogonal x direction. Rhombic
ion excitation is one such case where orthogonal excitation
signals are used to resonantly eject ions [58]. The resulting
rhombic ion motion was shown to decrease space charge
effects compared with typical single-direction resonance ejec-
tion. Here we use orthogonality for double resonance
excitation.

The orthogonality in the precursor scan is critical to
removing artifact peaks, which can result from beat fre-
quencies as well as unintended precursor ion ejection
caused by the excitation AC frequency sweep. For exam-
ple, Figure 2a shows a full scan mass spectrum from 200
to 140 kHz of the peptide MRFA from the Pierce ESI
LTQ calibration mixture, which also contains caffeine and
Ultramark 1621. The orthogonal precursor scan of m/z 288

(shown in Figure 2b), the most abundant fragment of
MRFA in LTQ CID (see Table 1 for precursor and prod-
uct ion relationships), returns a single peak (m/z 524)
corresponding to the time at which the precursor ion
forming the m/z 288 product ion fragments. Using the
ejection time of MRFA (ejection time 0.169 s in the
precursor scan compared with 0.17 s in the full mass scan)
as a reference for its secular frequency, 166 kHz, we
calculate the secular frequency of m/z 288 as 335 kHz,
in close agreement with the experimental value of 331
kHz. Note that because the product ions are generated
far from the center of the trap, they may experience
substantial secular frequency shifts compared with their
precursor ions, which can contribute to differences be-
tween calculated and experimentally observed secular fre-
quencies. Also, ions are not ejected on resonance; rather,
they are ejected slightly beforehand, which can further
increase the error in secular frequency calculations based
on ejection time. Furthermore, because the rf amplitude is
being ramped, ion secular frequencies will shift slightly
during the scan, increasing the error in calculated secular
frequencies. This effect, in particular, likely has the
greatest effect on the results presented here. Nonetheless,
errors within perhaps 10 kHz were chosen to be accept-
able in these calculations.

The parallel variant of the precursor ion scan, in which both
supplemental AC waveforms are applied to the x electrodes,
returns the result in Figure 2c. Essentially the parallel experi-
ment records a full scan mass spectrum because the excitation

Table 1. Precursor and Product Ion Nominal m/z Values for Compounds in This Study

Analyte Precursor m/z MS/MS m/z

Caffeine 195 138
110

MRFA 524 507, 489, 454, 435, 418, 407, 376, 288, 271, 229
Amphetamine (amp) 136 119 (->91 in MS3), 91
Methamphetamine (map) 150 119 (->91 in MS3), 91
3,4-Methylenedioxyamphetamine (mda) 180 163
3,4-Methylenedioxymethamphetamine (mdma) 194 163
Cesium tridecafluoroheptanoic acid clusters (CsTFHA) 151 133

174 133
267 133
1125 356, 629, 996
1265 629, 769
1511 629, 1015
1621 629, 1125

Cesium monobutyl phthalate clusters (CsMBP) 1195 487, 841
1439 487, 731, 841, 1085
1549 487, 841, 1195
1903 841, 1195, 1549

Sodium sulfate clusters 698 660
828 660
978 660
997 360, 660
1030 394, 550, 660
1046 409, 660, 858, 994
1296 660, 978
1614 660, 978, 1297, 1551, 1588

Data acquired on an LTQ linear ion trap at q = 0.25. Normalized collision energy was generally 25 (arb. units) but was increased in some cases (e.g., MRFA). Bold
values indicate the most abundant product ions, which were the ones used for precursor ion scanning
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AC waveform ejects the precursor ions into the detector. If the
excitation amplitude is decreased from 1.1 Vp-p to 300 mVp-p,
only the MRFA peak is left. However, the high signal intensity
(102 counts) indicates that the precursor ion is still being
ejected, and there is no way to unambiguously determine the
relative contributions of the full scan and the precursor ion
scan. Hence, although the orthogonal variant appears to lose
sensitivity (a factor of 100 in this case), it returns less ambig-
uous results than the parallel variant. Moreover, the 100× drop
in sensitivity should be interpreted as a ‘worst case scenario’
because we are unfortunately forced by commercial operating
system constraints to ramp the rf very slowly on our commer-
cial instrument, and as the rf amplitude increases the ions’
secular frequencies increase. The AC frequency is scanning
from high to low (in the opposite direction of the shift in ion

frequencies via the rf ramp) and hence the time each ion has on
resonance is quite short. By keeping the rf constant and by
scanning more slowly, we expect that much higher sensitivity
will be observed.

Application to Amphetamines

Many amphetamines as well as designer drugs [59–61] give
similar fragments in their product ion scans [62] and the pro-
tonated molecules also fragment quite readily in ion traps. The
latter characteristic is particularly important for precursor ion
scans in ion traps because of the slow heating CID process [63]
and also because the precursor ions are on resonance for a very
short period of time, which can lead to limited (if any) frag-
mentation. The short on-resonance time is further exacerbated
by the slow rf ramp necessarily applied using the LTQ, which
causes ion secular frequencies to drift. On a more customized
instrument, the rf ramp would not be an obstacle.

A full AC scan mass spectrum of a mixture of amphetamine
(amp), methamphetamine (map), 3,4-methylenedioxyam-
phetamine (mda), and 3,4-methylenedioxymethamphetamine
(mdma) is shown in Figure 3a. Because amphetamine and
methamphetamine both fragment readily to m/z 119, the
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Figure 3. Orthogonal double resonance precursor ion scan-
ning of amphetamines. (a) Full AC frequency scan mass spec-
trum of amphetamine (amp), methamphetamine (map), 3,4-
me t h y l e n ed i o x y amphe t am i n e (mda ) , a n d 3 , 4 -
methylenedioxymethamphetamine (mdma), (b) orthogonal pre-
cursor ion scan of m/z 119, and (c) orthogonal precursor ion
scan of m/z 163. The excitation signal on the y electrodes was
scanned from 360 to 100 kHz over 400 ms with an amplitude of
260mVp-p. The ejection signal on the x electrodes was set at (b)
206 kHz, 260mVp-p, or (c) 151.6 kHz, 240mVp-p. TheUltrazoom
scan started at m/z 60. For (b) and (c), resonance ejection
background signal was subtracted from the raw signal
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Figure 4. Multigenerational precursor ion scanning in a single
linear ion trap. (a) Shows full scan mass spectrum from high to
low mass (low to high frequency), (b) shows single generation
precursor ion scan ofm/z 119, and (c) shows multigenerational
precursor ion scan of m/z 91 (a product ion of m/z 119 and
second generation product ion of m/z 136). The excitation
signal on the y electrodes was scanned from 100 to 360 kHz
with an amplitude of 240 mVp-p over 0.4 s. The ejection signal
on the x electrodes was set at (b) 188 kHz (240 mVp-p) or (c)
261 kHz (240 mVp-p). The Ultrazoom scan started at m/z 90
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precursor ion scan shows both peaks. The calculated secular
frequency of m/z 119 under these conditions is 200 kHz, in
agreement with the experimental value of 206 kHz. Under
these conditions, the product ion’s secular frequency is calcu-
lated to shift by 7 kHz (from ~202.5 kHz to ~209.1 kHz) during
the rf scan period between ejection of amp and mdma, which
can contribute to both loss of signal intensity and the error in
secular frequency calculations. A similar precursor ion scan of
m/z 163, the primary fragment of both mda and mdma, again
yields both corresponding peaks. Once again the calculated and
experimental secular frequency of the product ion agreed with-
in 10 kHz.

Multigenerational Precursor Ion Scans

One of the unique features of quadrupole ion trap precursor ion
scanning is direct access to multigenerational scans without
need for another analyzer. We and others have previously
documented multigenerational collision-induced dissociation
scans wherein multiple generations of fragment ions can be
produced by sweeping the rf amplitude from high to low while
a fixed excitation frequency is applied for CID [62, 64–66], or

by applying multiple resonance frequencies corresponding to,
for example, fixed neutral loss fragments [50]. A similar ex-
periment can be performed in ion traps by sweeping the AC
frequency in the unconventional direction (low to high) so that
high mass ions are first to fragment, followed by their product
ions [66]. For example, Figure 4a shows a full AC scan mass
spectrum from 100 to 360 kHz (the opposite direction to that
used in Figure 3). Resolution and sensitivity are much worse in
this mode due to ion frequency shifts, as has been documented
previously [67–72], and here further compounded by the rf
ramp.

A precursor ion scan of m/z 119 gives only protonated
amphetamine (m/z 136) (and a broad peak due to its unwanted
rf ramp resonance ejection). Nonetheless, using the relationship
m/z 136 ->119 -> 91, we can perform a multigenerational
precursor ion scan by setting the product ion ejection frequen-
cy on m/z 91 (experimentally 261 kHz, calculated 253 kHz)
and observing the transitionm/z 119 -> 91 at t = 0.135 s, which
corresponds to a secular frequency of 187 kHz for the m/z 119
ion, in agreement with the calculated value. This peak is not
observed in the full mass scan because it can only be produced
by first fragmenting m/z 136 (at t = 0.095 s) and subsequently
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fragmenting its product ion m/z 119 (at t = 0.135 s), and finally
ejecting the second generation product ion m/z 91. This exper-
iment is akin to setting the third and fifth analyzers in a
pentaquadrupole mass spectrometer [46, 73–75] on m/z 119
and m/z 91, respectively, and scanning the first quadrupole
through a range of precursor ion m/z values. However, the
pentaquadrupole is considerably more complex and is not
portable or of appropriate size for planetary exploration. Of
course, the relationship between m/z 136 and m/z 91 is only
clear in the ion trap data when both the single and multigener-
ational precursor scans are compared (or if the forward and
reverse precursor scans are compared). Otherwise, the relation-
ship would be ambiguous.

Precursor Ion Scanning of Cluster Ions

The tightly controlled nature of the commercial LTQ – that is,
the forced use of the Ultrazoom scan to approximate a fixed rf
amplitude – restricted our experiments to ions that fragment
quite readily. Furthermore, there was a lower limit to the AC
frequency scan rate, again forced by the use of an rf ramp.With
more customized instrumentation, however, the excitation scan
could be slowed to give each ion more time on resonance,
thereby increasing the quantity of product ions formed. As a
result of these restrictions, cluster ions were chosen to demon-
strate precursor ion scanning because (1) they fragment readily
with very little resonance time, (2) they form similar or identi-
cal product ions, and (3) the precursor ions fall over a wide
mass range. This last characteristic made simple mass calibra-
tion possible, as discussed later.

Precursor ion scans were performed in the positive ionmode
on cesium tridecafluoroheptanoic acid clusters (Figure 5a–d),
cesium monobutyl phthalate clusters (Figure 5e, f), and on
sodium sulfate clusters (Figure 6). In the case of the cesium-
containing clusters, at both high and low m/z clean precursor
ion spectra were obtained (b, d, and f). These spectra mimicked
the full scan mass spectra (a, c, and e) because the clusters in
the full scan fragment easily to common product ions. For
example, for higher mass CsTFHA clusters, m/z 629 was a
common fragment, and for lower mass CsTFHA clusters, m/z
133 was a common fragment. The CsMBP clusters shared m/z
841 as the common product ion; hence, a precursor ion scan of
this product ion (Figure 5f) mirrored the full scan data
(Figure 5e).

Linear Mass Calibration

All of the data shown up to this point were obtained using
linear frequency sweeping. Linear frequency sweeping gives
each ion the same amount of time on resonance because the
scan rate in frequency units per unit time is constant. However,
the mass spectral data then must be calibrated using the non-
linear Mathieu parameters, which is not ideal [54]. For another
example, a full scan of sodium sulfate cluster ions is shown in
Figure 6a. The precursor ion scan of m/z 660 (Figure 6b), a
common product ion, gives a single stage MS-like spectrum.
However, the nonlinear nature of the relationship between ion
secular frequency and time makes calibration non-intuitive.
Instead, the excitationwaveform can be replaced by a nonlinear
frequency sweep in the form of an inverse Mathieu q scan,
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which excites the precursor ions such that there is an
approximately linear relationship between the excited
ion’s m/z and time [76]. Figure 6c shows the same
precursor ion spectrum wherein the excitation scan was
an inverse Mathieu q scan from q = 0.908 to q = 0.15
taken over 300 ms. As shown in panel d, there is an
approximately linear relationship between m/z and time,
making calibration simple. Note, however, that because
the excitation frequency is scanned nonlinearly, the pre-
cursor ions will have about the same number of secular
oscillations but different amounts of time on resonance,
which can affect the relative intensities of the peaks
observed.

Conclusions
We have demonstrated precursor ion scanning in a single
quadrupole ion trap mass analyzer using an orthogonal double
resonance technique. In combination with nanoelectrospray,
the data-independent precursor ion scan uses minimal sample
yet maintains reasonable sensitivity, characteristics ideal for
resource-limited situations (e.g., a miniature ion trap mass
spectrometer on Mars).

Orthogonal activation suffers from fewer artifact peaks than
parallel activation and, therefore, allows for higher energy
deposition into the precursor ions without fear of precursor
ion detection. Unlike triple quadrupole and other double ana-
lyzer instruments, the choice of scan direction in the ion trap
can be used to access higher order precursor scanning experi-
ments by successively fragmenting precursor and product ions
in the same excitation sweep. Furthermore, a linear relationship
between m/z and time can be observed if the precursor ion
excitation scan is an inverse Mathieu q scan. Cluster ions are
ideal calibrants for these scans because they share product ions,
fragment quite readily, and fall over a wide mass range.

Further work is needed to characterize resolution and sen-
sitivity in order to understand the performance of single ana-
lyzer precursor scans compared with multi-analyzer scans.

The results demonstrated here pave the way for further
utilization of precursor ion scanning as well as implementation
of neutral loss scanning and double resonance multiple reaction
monitoring scans in single ion trap mass analyzers using or-
thogonal excitation. These scans will further solidify the quad-
rupole ion trap’s emerging standing as the most versatile of
mass analyzers as well as the one most amenable to
miniaturization.
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