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Abstract. Three lithiated N-acetyl-D-hexosamine (HexNAc) isomers, N-acetyl-D-
glucosamine (GlcNAc), N-acetyl-D-galactosamine (GalNAc), and N-acetyl-D-
mannosamine (ManNAc) are investigated as model monosaccharide derivatives by
gas-phase infrared multiple-photon dissociation (IRMPD) spectroscopy. The hydro-
gen stretching region, which is attributed to OH and NH stretching modes, reveals
some distinguishing spectral features of the lithium-adducted complexes that are
useful in terms of differentiating these isomers. In order to understand the effect of
lithium coordination on saccharide structure, and therefore anomericity, chair config-
uration, and hydrogen bonding networks, the conformational preferences of lithiated
GlcNAc, GalNAc, and ManNAc are studied by comparing the experimental measure-

ments with density functional theory (DFT) calculations. The experimental results of lithiatedGlcNAc andGalNAc
show a good match to the theoretical spectra of low-energy structures adopting a 4C1 chair conformation,
consistent with this motif being the dominant conformation in condensed-phase monosaccharides. The
epimerization effect upon going to lithiated ManNAc is significant, as in this case the 1C4 chair conformers give
a more compelling match with the experimental results, consistent with their lower calculated energies. A
contrasting computational study of these monosaccharides in their neutral form suggests that the lithium cation
coordination with Lewis base oxygens can play a key role in favoring particular structural motifs (e.g., a 4C1

versus 1C4) and disrupting hydrogen bond networks, thus exhibiting specific IR spectral features between these
closely related lithium-chelated complexes.
Keywords: Lithiated N-acetyl-D-hexosamine, IRMPD spectroscopy, Mass spectrometry, Vibrational signatures,
Gas-phase conformations
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Introduction

C arbohydrates and their derivatives play key roles in nu-
merous biological functions, such as cell growth, fertili-

zation, and inflammation [1–4]. The vast number of carbohy-
drate variants, referred to as the isomer barrier [5], present a key
challenge for their structural identification. While nuclear mag-
netic resonance (NMR) is generally considered the key tech-
nique in terms of identification [6–8], mass spectrometry (MS)
has demonstrated an ability to gain important insights into their
structures [9–18].

Monosaccharides are the smallest units and fundamental
building blocks within the family of carbohydrates,
representing a much smaller subset of isomeric variants that
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need to be differentiated, and hence posing a more surmount-
able analytical challenge. Drift tube and traveling wave ion
mobility mass spectrometry (IM-MS) has been applied for
resolving monosaccharide variants [19, 20]. Infrared multiple
photon dissociation-mass spectrometry (IRMPD-MS) has been
ut i l ized for st ructural dif ferent ia t ion of methyl-
glucopyranoside anomers and methyl-D-glycoside isomers by
Eyler and co-workers [21–23], and on glucuronic iduronic acid
by Cagmat et al. [24]. A key aspect in all of those studies is the
use of metal cations as a charge carrier. Metal ions have the
advantage of increasing ionization efficiencies of monosaccha-
ride variants, as shown for Li+ [21, 22], Na+ [20, 25], NH4

+

[26], Cu2+ [15], and Pb2+ [27]. Metal chelation also intimately
affects the ligand structure and reactivity [28]. Lithiated sac-
charides have been prevalently used because small-size Li+ is
bound tightly and makes compact complexes, generating most
abundant cross-ring fragmentation [16, 21, 29, 30], which
establishes the value of Li+-monosaccharide complexes in the
positive-mode MS analysis for isomeric identification.

In addition, metal chelation also affects the structures that
are formed, as the metal cations interact in strong electrostatic
interactions with electron-rich groups or atoms. In carbohy-
drates, hydroxyl oxygens present a natural target for such
complexation, but carbonyl, sulfate, or phosphate oxygens, if
present, offer competing sites for binding. Depending on the
isomeric form, the binding interactions may differ substantial-
ly, potentially leading to different collision cross-sections for
various isomers, and hence a separation by ion mobility. Sim-
ilarly, metal complexation can have a distinct effect in infrared
spectroscopy by, for instance, perturbing hydrogen bonding
interactions between various OH groups, and thus shifting the
vibrational frequencies of those modes.

Another interesting but challenging topic on monosaccha-
ride structures is investigating their conformational preferences
from a fundamental point of view. Some common D-
hexapyranoses and their derivatives, such as glucose, galac-
tose, mannose, and glucuronic acid, have been explored exper-
imentally in aqueous solution or crystals, proving that these
molecules usually exist in the 4C1 chair conformation with C-4
pointing up and C-1 pointing down [31–34]. Also, hydrogen
bond networks with hydroxyl groups as both hydrogen donors
and receptors have been observed, even forming long, cooper-
ative chains [35, 36]. Despite convincing spectroscopic obser-
vation and quantitation for monosaccharide conformers in con-
densed phase, the understanding of their gas-phase structural
forms remains ambiguous. Comprehensive theoretical calcula-
tions with density functional theory have been conducted by
Momany and coworkers, involving full geometry optimization
and energy calculations on variable conformations of both α-
and β-isomeric D-hexapyranose [37–39]. However, only a
limited number of experimental evidences have been given
towards the conformational forms of monosaccharides and
their derivatives in vacuo. Among gas-phase approaches, IR
spectroscopy is likely best placed to address detailed structural
questions. In addition to the studies mentioned above by Eyler
and co-workers [22, 23], and Cagmat et al. [24], Simons and

coworkers carried out IR spectroscopic experiments to examine
the gas-phase conformation of neutral phenyl β-D-
glucopyranoside and phenyl β-D-galactopyranoside [40–42].
Bendiak and co-workers showed direct evidence for the ring
opening of deprotonated D-aldohexoses by IRMPD spectros-
copy [43]. In regards to protonated monosaccharide ions,
Compagnon and coworkers distinguished isobaric glucos-
amine 6-phosphate and glucosamine 6-sulfate and discussed
their gas-phase conformations based on IRMPD results [44].
For most IR spectroscopic studies, density functional theory
(DFT) computations have been primarily employed to ratio-
nalize the experimental results and assist the determination of
conformational preferences.

In this work, the structures of three isomeric lithiated N-
acetyl-D-hexosamine (HexNAc) as model monosaccharide de-
rivatives have been studied by coupling mass spectrometry and
gas-phase IRMPD spectroscopy in the frequency range mainly
from 3400 cm–1 to 3750 cm–1. Previous work has contributed
to identify conformers of lithiated methyl N-acetyl-D-
glucosamine and N-acetyl-D-galactosamine with IRMPD
spectroscopy in the region between 900 cm–1 and 1800 cm–1

[22]. However, compared with the congested nature of
delocalized C–O stretching and H bending vibrations, infrared
spectroscopy in the hydrogen stretching region adopted in this
study can resolve specific NH and OH vibrations and thus aid
conformer identification for sugars [45].

Experimental
Sample Preparation

In this study, N-acetyl-D-glucosamine (GlcNAc), N-acetyl-D-
galactosamine (GalNAc), and N-acetyl-D-mannosamine
(ManNAc) were considered. Lithiated HexNAc samples were
prepared at a concentration of 0.1 mM in MeOH-water (80:20)
solutions with equimolar concentration of LiCl. All reagents
were purchased from SigmaAldrich (St. Louis, MO, USA) and
used without further purification.

Mass Spectrometry and Infrared Multiple Photon
Dissociation (IRMPD)

All experiments were carried out using a custom-built mass
spectrometer coupled with a tunable, continuous-wave (cw)
optical parametric oscillator/amplifier (OPO/A) (LINOS Pho-
tonics OS4000, Munich, Germany). This setup has already
been described in previous studies [46, 47]. Lithiated HexNAc
was ionized in a modified electrospray ionization (ESI) source
(Analytica, Branford, CT, USA) equipped with an rf ion fun-
nel. Ions of interest were mass-selected by a quadrupole mass
filter (Ardara Technologies LP, Ardara, PA, USA), followed
by trapping and OPO/A irradiation in a reduced-pressure
(background pressure ~10–5 mbar) quadrupole ion trap. Helium
gas was pulsed to assist trapping of ions, and then pumped
away prior to irradiation. The cw OPO/A was pumped by a cw
Nd/YAG laser (1064 nm, 2W), generating an idler and a signal
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beam through nonlinear interactions and quasi-phase matching
within a periodically poled lithium niobate (PPLN) optical
crystal. The idler beam was focused onto the ion cloud with a
lens through an aperture in the ring electrode (2.4 mm diame-
ter). In order to determine the idler wavelength used for IR
irradiation, the signal wavelength was determined with a wave
meter (EXFO WA-1000). The combined power of the idler
beamwas measured by reflecting them off a mechanical shutter
(UNIBLITZ VS25S2ZMO) into a power meter (Ophir 3A).
The mechanical shutter also allowed control of the irradiation
time. A time-of-flight drift (TOF) tube (Jordan TOF Products,
Grass Valley, CA, USA) was employed for mass analysis of
the remaining precursor and photofragment(s).

In order to obtain well-resolved vibrational bands in
IRMPD spectra, the irradiation time used in this study was
optimized as 250 ms in the wavenumber range from 3600 to
3750 cm–1, and 1000 ms in the wavenumber range below 3600
cm–1, due to weaker IRMPD yields in the latter region. In order
to normalize for the different irradiation times, the IRMPD
yield in the wavenumber below 3600 cm–1 was divided by a
factor of 4. At each laser frequency, a set of 10 mass spectra
were collected and averaged. Data were analyzed with aid of an
in-house LabVIEW program. The IRMPD yield was calculated
by the formula,

IRMPD Yield ¼ ‐ln 1‐

X
fragment intensities

X
fragment intensities þ precursor intensity

0
@

1
A

Here, ∑fragment intensities was the total intensity of frag-
ments. The idler power ranged between 20 and 60 mW, so the
IRMPD yield was further normalized linearly with this power.
All IRMPD spectra shown here were obtained by plotting the
normalized IRMPD yields (by power and irradiation time)
versus wavenumber of irradiation.

Calculations

Initial α- and β-HexNAc structures were built in Gabedit [48]
using a systematic approach. Neutral monosaccharide confor-
mations (e.g., chair conformations 4C1 or

1C4) were considered
based on evidence from literature; various rotamers resulting
from rotations of the C-5–C-6 bond, such as gauche-gauche
(gg) and trans-gauche (tg), were explored to maximize hydro-
gen bonding interactions. This also included the clockwise (c)
or counterclockwise (r) orientation of the hydroxyl groups.
Lithium cations were initially placed above the sugar ring with
the distances of 2–3 Å from the closest atom on the ring, and
rotating moieties to maximize hydrogen bonding interactions.

4C1 chair conformations of each HexNAc isomer were
considered as the starting structures for the sugar ring, prior
to metal attachment and geometry optimization, since D-
hexopyranose monosaccharide residues in glycosaminogly-
cans (GAGs) typically adopt the 4C1 conformation (Scheme 1)
[34]. However, for ManNAc structures, due to acetamido axial
substitution at C-2, which is expected to be more hindered than

the corresponding equatorial substitution, the 4C1 chair confor-
mations may be disfavored. Thus, corresponding flipped 1C4

chair structures, and also skew forms 1S5 and
5S1, were built

and calculated. The geometry optimizations and spectral com-
putation of structures were performed on lithiated HexNAc, as
well as neutral molecules without lithium ion chelation, by
using the B3LYP/6-31 g+(d,p) level of theory in the Gaussian
09 package [49]. The energies are reported here as zero-point-
energy (ZPE)-corrected energies (at 0 K) without scaling, both
in atomic units (i.e., Hartrees), and as relative energies (kJ/
mol). For the computed IR spectra, a uniform scaling factor of
0.958 [24] and a Gaussian profile (full width-half maximum,
FWHM = 10 cm–1) were used to facilitate comparison with the
experimental results.

Results and Discussion
IRMPDSpectra of [GlcNAc+Li]+, [GalNAc+Li]+,
and [ManNAc + Li]+

Figure 1 displays the experimental IRMPD spectra of [GlcNAc
+ Li]+, [GalNAc + Li]+, and [ManNAc + Li]+, respectively, in
the wavenumber range from 3400 cm–1 to 3750 cm–1, where
vibrational bands are generally attributed to OH and NH
stretching modes. The vibrational patterns of these closely-
related molecules do exhibit some notable differences, which
is a useful feature in terms of their identification and differen-
tiation. The peaks observed in the higher-frequency 3640–3680
cm–1 range are most likely assigned to the various alcohol OH
stretching modes. The bands around 3430 cm–1 and 3460 cm–1

are probably due to NH stretching. The NH stretching band for
[GalNAc + Li]+ and [ManNAc + Li]+ exhibit a considerable 30
cm–1 blue-shift compared with [GlcNAc + Li]+. Also, this band
is rather broad for [GalNAc + Li]+, suggesting multiple, unre-
solved features. Another significant distinguishing feature in
the spectra of [GlcNAc + Li]+ is the broad IR band centered at
3540 cm–1, whereas nearly no photodissociation takes place for
[GalNAc + Li]+ and [ManNAc + Li]+ in this range. It is
possible that these bands arise from red-shifted OH stretches,
which, however, needs to be verified with computations.

Calculated Spectra and Conformer Analysis
for [GlcNAc + Li]+

In order to obtain a deeper insight into gas-phase structures and
interpret experimental IRMPD spectra, theoretical calculations
of lithiated HexNAc conformers were carried out. A compli-
cating factor in this is that each isomer in principle exists as a
mixture of two anomers, α and β, since the anomeric end is
unblocked and results in possible interconversion between α
and β in solution. The many rotamers and clockwise/
counterclockwise hydroxyl group orientations further increase
the complexity for sugar conformational investigation. A final
question lies in identifying the most favorable interactions
between lithium and Lewis base oxygens in these structures,
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Scheme 1. Chair conformations considered in the theoretical calculations for lithiated and neutral GlcNAc, GalNAc, and ManNAc.
Anomeric position is indicated by wiggly bond to denote presence of both α- and β-anomers. The numbering scheme for the carbon
atoms is indicated for GlcNAc

Figure 1. IRMPD spectra of lithiated GlcNAc, GalNAc, and ManNAc
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to rationalize how metal chelation affects the structure and thus
the vibrational features.

NMR results showed that gg-4C1 predominated in both α-
and β-D-glucopyranose conformational populations in solution
[50]. In vacuo DFT studies gave energies of D-glucopyranose
rotamers in favor of the gg- and tg-4C1 conformation [37, 51].
For GlcNAc with the 2-acetamido substitution, Sattelle and
Almond found a α-gg-4C1-r model as the most populated
conformer in a 20 explicit solvent simulation [52]. Contreras

et al. proposed and demonstrated a favored tg-4C1-c conforma-
tion in their study of anomerically locked methyl GlcNAc
complexed to Li+ by experimental IRMPD spectra in carbonyl
stretching band positions. The calculated energies for opti-
mized neutral gg-4C1(-c/-r) and tg-4C1-c GlcNAc in our study
revealed an α-gg-4C1-r-GlcNAc structure as the most stable
conformer (Supplementary Table S1, Supplementary Fig-
ure S1, Supporting Information), which is very analogous to
the lowest-energy structure in Sattelle’s solution-phase

Figure 2. Geometry-optimized 4C1 chair conformers of lithiated α-/β-GlcNAc generated from DFT calculations, with hydrogen
bonds shown as dashed lines. More detail on these structures is given in Table 1

Table 1. ZPE-Corrected Energies for Lithiated GlcNAc (structures presented in Figure 2, IRMPD spectrum of four low-energy conformers in shading shown in
Figure 3)
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computation [52]. Therefore, the theoretical investigation in the
structural preference of lithiated GlcNAc mainly focused on
gg-4C1 and tg-4C1 rotamers complexed to Li+ here.

The calculated geometry-optimized gg-4C1 and tg-4C1

structures of lithiated α-/β-GlcNAc are presented in Table 1
and Figure 2. For the sake of simplicity, the structures are
referred to as structures A–H, to denote the Figure in which

they appear. The numbering system for the OH groups follows
the same numbering system as the corresponding carbon on the
pyranose ring; in other words, OH-3 denotes the hydroxyl
group bound to C-3. Here, we also specify each oxygen
interacting with Li+ using the nomenclature adopted by Heaton
and Armentrout et al. [53], where [CO,O3] for instance denotes
the coordination of lithium ion with both the oxygen of the
carbonyl group and oxygen of the OH-3 group. The calculated
lowest-energy structure of lithiated GlcNAc (structure A)
adopts the α-gg-4C1-c motif in which the lithium ion interacts
with both the oxygen of the carbonyl group and oxygen of the
OH-3 group. Although the counterclockwise orientation of
hydrogen bonds in neutral GlcNAcwas preferred as mentioned
above, the lithium ion interaction causes the change in the
orientation of hydrogen bonds in the lowest-energy
Li+[CO,O3] model. The minimum-energy tg-4C1 conformers
(structure E and F) with a cooperative OH-3…OH-4…OH-6
hydrogen bonding possess similar Li+ coordination as well. In
an alternative binding pattern investigated here, Li+ interacts
with the carbonyl oxygen and the oxygen of OH-1 for both gg-
(structure C and D) and tg- (structure G and H) rotamers. More
detail on these structures is given in Table 1, such as the ZPE-
corrected energies in atomic units (i.e., Hartrees), as well as
their chair configurations and anomericities.

The experimental IRMPD spectra of lithiated GlcNAc and
the calculated infrared spectra for the four lowest-energy struc-
tures, shown in shading in Table 1, are presented in Figure 3
with their relative energies indicated. The four structures are all
in the gg-4C1 conformation with both α- and β-anomericity and
different lithium ion binding patterns, which implies that gg-
conformation was more stable for lithiated GlcNAc than tg-
conformation by ~90 kJ/mol. In Figure 3, the annotation of the
vibrations follows the same scheme as for the OH groups, but
in order to distinguish between chemical moieties and vibra-
tions, groups are hyphenated (e.g., OH-2), whereas vibrations
(e.g., OH2) are not. The computational results suggest that for
lithiated GlcNAc, the anomeric configuration has little effect
on the IR absorption spectra, but that the interaction patterns
between the lithium ion and sugar molecule result in significant
shifts in IR spectra. A comparison of the experimental IRMPD

Figure 3. Comparison of experimental IRMPD spectrum with
calculated infrared spectra for four lowest-energy 4C1 chair
conformers of lithiated GlcNAc shown in Figure 2

Table 2. ZPE-Corrected Energies for Lithiated GalNAc (structures presented in Figure 4, IRMPD spectrum of four low-energy conformers in shading shown in Figure 5)
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spectrum for [GlcNAc + Li]+ shows that conformers A and B,
other than C and D, can account for the bands that are observed
experimentally. The calculation results indicate that the char-
acteristic IR band at 3540 cm–1 is explained by the stretching
modes OH3 that are red-shifted remarkably by lithium ion
interaction. The minor differences between the computed spec-
tra for structures A and B do not provide sufficient evidence to
discriminate between both anomers, or determine their relative
contributions in the gas phase.

Calculated Spectra and Conformer Analysis
for [GalNAc + Li]+

GalNAc is the C-4 hydroxyl epimer of GlcNAc. 1HNMR [32,
54, 55] and X-ray crystallography [32, 56–58] analysis of
galactose and its derivative demonstrated 4C1 chair as the
dominant conformation in galactose analogs. β-Anomericity
of galactose was reported to be strongly favored in solution
[59], whereas the α-anomer was preferred by previous in vacuo
DFT results [37, 38]. Momany et al. reported that the α-gg-4C1-
c conformation was the lowest-energy glucopyranose structure
from a DFT study. Our computational results of neutral gg-

GalNAc showed that an α-gg-4C1-r conformer with the coun-
terclockwise hydrogen-bonding orientation was energetically
preferred (Supplementary Table S2, Supplementary Figure S2).
For lithium–methyl GalNAc complexes, IRMPD spectra in the
range 900–1800 cm–1 provided the evidence for the predomi-
nant gg-4C1-r conformation. By referring to these experimental
and theoretical results, conformational preferences of lithium-
GalNAc adducts were explored based on gg-4C1 and tg-4C1

models in this study. The structures and energy of the
geometry-optimized conformers are shown in Table 2 and
Figure 4.

The calculated minimum-energy conformer for lithiated
GalNAc is shown as structure A in Figure 4, with the α-gg
conformation and a tridentate interaction between Li+ and
electron lone pairs of O-3, O-5, and oxygen at acetamido
group. It exhibits three intramolecular hydrogen bonds between
OH-4 and OH-6, OH-6, and O-5, and the glycosidic oxygen
and amide hydrogen. The calculated structure B for lithiated β-
GalNAc, which is second-lowest in energy, has a similar Li+–
oxygen tridentate interaction as well, but contains only two
hydrogen bonds between OH-4 and OH-6, and OH-6 and O-5.
As shown in Figure 4, after geometry optimization of [GalNAc

Figure 4. Geometry-optimized 4C1 chair conformers of
lithiated α-/β-GalNAc generated from DFT calculations, with
hydrogen bonds shown as dashed lines. More detail on these
structures is given in Table 2

Figure 5. Comparison of experimental IRMPD spectrum with
calculated infrared spectra for four lowest-energy 4C1 chair
conformers of lithiated GalNAc shown in Figure 4
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+ Li]+ motifs, Li+ exhibits a tridentate interaction with three
oxygen atoms due to the axial position of OH-4.

As mentioned before, our particular interest in the experi-
mental IRMPD spectrum of [GalNAc + Li]+ is the broad and
unresolved band, which is not typically attributed to a single
NH stretching mode. The comparison of the experiment and
theoretical spectra of four lowest-energy conformers shown in
shading in Table 2 is presented in Figure 5, indicating a best

match between the experimental result and calculated structure
C, which is Li+(α-gg-4C1-r-GalNAc)[O4, O5, O6] and very
analogous to that found by Contreras et al. in their study of
anomerically lockedmethyl-D-GalNAc complexed to Li+ [22].
As expected, the peaks observed at 3640 cm–1 and 3670 cm–1

are assigned to OH stretching, namely OH1 and OH6, even if
the latter peak shows a 30 cm–1 red shift compared with the
calculated OH-6 stretching band. The broad band between

Table 3. ZPE-Corrected Energies for Lithiated ManAc (structures presented in Figure 6, IRMPD spectrum of four low-energy conformers in shading shown in Figure 7)

Figure 6. Geometry-optimized 4C1 chair,
1C4 chair,

1S5 skew, and
5S1 skew conformers of lithiated α-/β-ManNAc generated from

DFT calculations, with hydrogen bonds shown as dashed lines. More detail on these structures is given in Table 3
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3400 cm–1 and 3500 cm–1 is attributed to two unresolved
modes of NH and OH4. By comparing with structure C with
α-anomericity, the β-anomer structure D possesses a different
hydrogen bonding pattern and thus shows distinguishing vi-
brational features. The spectra of the two lowest-energy con-
formers, structure A and B, appear to be different with the
strong OH4 feature not seen in the experiment. Despite being
energetically favorable, these two conformers are not supported
by the experiment, and are probably absent or only present in
trace amounts in the gas phase. Interestingly, the best-matched
IR spectrum for Li+(α-gg-4C1-r-GalNAc)[O4,O5,O6] (struc-
ture C) also correlates with the lowest-energy structure of the
neutral α-gg-4C1-r-GalNAc form (structure C in Supplementa-
ry Table S2, Supplementary Figure S2). These results suggest
that the global minimum structure may not always be accessi-
ble for metal-chelated sugars, and that the energetics of the
neutral forms can play a role in which metal-chelation pattern is
preferentially adopted.

Calculated Spectra and Conformer Analysis
for [ManNAc + Li]+

ManNAc is the C-2 acetamido-substituted epimer of GlcNAc.
Some previous studies of mannopyranose have shown that the
hydroxyl epimerization at the C-2 position does not change the
4C1 chair conformation, for example in the crystal environment
and solution [33, 60]. Appell et al. gave an energy sequence of
mannopyranose conformation 4C1 chair < 1C4 chair < skew
forms < boat forms in a general observation by DFT computa-
tions [39]. Specifically, tg was favored in both α- and β-
mannopyranose with 4C1 chair conformation and gg was pre-
ferred among 1C4 conformers. With regard to ManNAc, the
configuration at the C-2 position places the acetamido group in
the axial position in the 4C1 pyranose ring, which brings about
much more steric hindrance compared with an axial hydroxyl
group. Our calculation results of neutral tg-4C1-ManNAc and
gg-1C4-ManNAc (Supplementary Table S3, Supplementary
Figure S3) showed that 4C1was still the preferred conformation
despite of the C-2 epimerization effects.

So far, few investigations have been conducted towards
the conformational preference of mannose analogs complexed
to metal cations. For theoretical calculations of lithiated
ManNAc, the tg-4C1 and gg-1C4 conformation, which ex-
change the positions of the axial and equatorial substituents,
were studied here. Because the interaction between lithium
ion and oxygen atoms of more axial hydroxyl groups, par-
ticularly in Bflipped^ 1C4 chair conformations, may be ener-
getically favored, more putative structures with various lithi-
um binding motif and hydrogen bonding orientation were
calculated. Beside chair conformations, lithium-adducted
gg-1S5-ManNAc and gg-5S1-ManNAc were also considered,
since they were theoretically the most stable skew forms of in
vacuo mannopyranose [39]. These geometry-optimized con-
formers of lithiated ManNAc are shown in Table 3 and
Figure 6.

Two minimum-energy structures, G and E, adopt the
β-gg-1C4 conformation with different lithium coordination
towards four and three oxygen atoms, respectively. Struc-
ture G is the most favored energetically because it is
stabilized by a tetradentate interaction between Li+ and
oxygen atoms at acetamido, OH-1, OH-3, and OH-6, with
1.9–2.0 Å distance between Li+ and each oxygen atom.
The enhanced chelation of the metal cation via a larger
coordination number results in a lower energy, despite the
fact that putative hydrogen bonding interactions are
disrupted. Similar with structure E, structure H exhibits
the tridentate interaction between Li+ and O-3, O-5 and
the oxygen at the acetamido group, but the non-identical
distance between parallel axial hydroxyl groups in chair
and skew forms leads to different hydrogen bonds in their
structures. Structure C is the lowest-energy conformer
with coordination number of two, where lithium ion in-
teracts with oxygen at acetamido and OH-1, and a NH…
OH-3…OH-6 hydrogen boding chain is observed, since
the parallel axial configuration of OH-3 and the 5-

Figure 7. Comparison of experimental IRMPD spectrum and
calculated infrared spectra for four low-energy conformers (1C4

chair and 1S5 skew included) of lithiated ManNAc with struc-
tures shown in Figure 6
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hydroxylmethyl group decreases the distance between
OH-3 and OH-6.

Consistent with energy calculation results, the theoretical IR
spectra of structure G shows the best match to the experimental
spectra of lithiated ManNAc (Figure 7). Conversely, other low-
energy structure E, C, and H all predict modes that are not
confirmed experimentally. The broad peak at 3630–3690 cm–1

is assigned to coupled OH-1, OH-3, OH-4, and OH-6
stretching modes. The low-intensity, resolved band at 3460
cm–1 corresponds to the NH stretching mode and shows a 20
cm–1 red shift comparedwith the calculated result. In summary,
the comparison with theory suggests that the β-1C4 conforma-
tion with a tetradentate Li+ coordination is predominantly
observed in the gas phase.

Theoretical Calculations of Neutral GlcNAc,
GalNAc, and ManNAc

In order to study the influence of lithium ion chelation
on the preferred conformations and IR spectra of these
saccharides in more detail, theoretical computions of
neutral GlcNAc, GalNAc, and ManNAc molecules were
compared with the lithiated results. Unfortunately, the
experimental spectra of these neutral monosaccharides
acquired in the condensed phase have poor resolution
in the hydrogen stretching region [61] due to solvent
absorption and strong intermolecular interactions (e.g.,
hydrogen bonds), and are hence of limited use here.

Note that IR spectra in the far-IR (i.e., THz) range are
highly informative in terms molecular identification [62].
The corresponding α-/β-GlcNAc and α-/β-GalNAc with
4C1 chair conformation, and α-/β-ManNAc with both 4C1

and 1C4 chair conformations, were considered and shown
in Supplementary Figures S1–S3, and their corresponding
energies shown in Supplementary Tables S1–S3.

There are some general observations that can be made when
comparing the computations for the neutral and lithiated forms.
Lithium ion chelation causes significant energy differences
between α- and β-anomers, whereas in the neutral form α-
and β- are much closer in energy. More elaborate hydrogen
bonding networks are formed within HexNAc molecules with-
out lithium ion interaction.

For ManNAc, the C-2 epimer of GlcNAc is remark-
ably sensitive to lithium ion internal coordination in
terms of energy and thus conformational preference. For
the neutral form, the 4C1 chair conformation is favored
over the 1C4 conformation. The reverse is true in the
lithiated case, implying that the chelation effect upon
ManNAc by lithium ion is the dominant determinant
for the structural preference.

Fragmentation Patterns

The IRMPD spectra exhibit vibrational features that in
principle allow a differentiation between these three
lithium-adducted isomers. Representative mass spectra

Figure 8. IRMPD mass spectra of lithiated GlcNAc, GalNAc, and ManNAc with IR irradiation at the corresponding wavenumber
where maximum fragmentation was obtained
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of these three lithiated N-aceytlhexosamines at the corre-
sponding wave number of maximum IRMPD yields are
shown in Figure 8. The dissociation patterns of lithiated
HexNAc indicate the presence of some diagnostic prod-
uct ions, as summarized in Supplementary Table S4,
such as m/z 121,151, and 180 for [GlcNAc + Li]+ and
m/z 127 and 192 for [ManNAc + Li]+. The combination
of characteristic IR absorbances and photodissociation
products illustrate the selective information on isomers
that can be obtained with these measurements.

As a comparison, lithiated ManNAc was also dissoci-
ated via collision-induced dissociation (CID), as shown
in Supplementary Figure S4. Similar fragment types were
produced in both IRMPD and CID spectra, except for
the prominent absence of the m/z 150 CID product. As
the appearance of fragmentation products is dependent on
the activation energy and timescale, and these parameters
are different for IRMPD and CID, it is not surprising to
see some differences in the results. Another important
difference in IRMPD vis-à-vis CID is the fact that in
IRMPD photofragment products may absorb subsequent
photons at a resonant frequency, and may hence be
subject to sequential fragmentation. It is likely that the
m/z 150 product strongly absorbs photons at 3642 cm–1,
and is hence not observed in the IRMPD mass spectrum.

Conclusions
The monosaccharide epimers GlcNAc, GalNAc, and

ManNAc were complexed with lithium and studied via
IRMPD spectroscopy in the hydrogen stretching region.
A structural interpretation of these results was based on
DFT computations, yielding the following conclusions.
There are differences in the IRMPD spectra and photo-
dissociation product ions between the various monosac-
charide epimers; the selective information on each isomer
is useful in terms of differentiating these molecules by
mass spectrometry. The comparison between experimen-
tal IRMPD spectra and calculated results of low-energy
conformations can rationalize the experimental band po-
sitions, thus allowing investigation of conformational
preferences of gas-phase lithium-monosaccharides, as
well as an interpretation of the role of metal ion chela-
tion on structure and the observed IR spectrum. Whereas
the 4C1 chair conformation is favored for lithiated
GlcNAc and GalNAc, the 1C4 structure is favored for
ManNAc; a tetradentate interaction of lithium with oxy-
gen atoms at acetamido and hydroxyl groups is found to
be responsible for stabilizing the 1C4 chair conformation.
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