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Abstract. A method is developed for the prediction of mass spectral ion counts of
drug-like molecules using in silico calculated chemometric data. Various chemomet-
ric data, including polar and molecular surface areas, aqueous solvation free ener-
gies, and gas-phase and aqueous proton affinities were computed, and a statistically
significant relationship between measured mass spectral ion counts and the combi-
nation of aqueous proton affinity and total molecular surface area was identified. In
particular, through multilinear regression of ion counts on predicted chemometric
data, we find that log10(MS ion counts) = –4.824 + c1•PA + c2•SA, where PA is the
aqueous proton affinity of the molecule computed at the SMD(aq)/M06-L/MIDI!//M06-
L/MIDI! level of electronic structure theory, SA is the total surface area of themolecule

in its conjugate base form, and c1 and c2 have values of –3.912 × 10–2 mol kcal–1 and 3.682 × 10–3 Å–2. On a 66-
molecule training set, this regression exhibits a multipleR value of 0.791 with p values for the intercept, c1, and c2
of 1.4 × 10–3, 4.3 × 10–10, and 2.5 × 10–6, respectively. Application of this regression to an 11-molecule test set
provides a good correlation of prediction with experiment (R = 0.905) albeit with a systematic underestimation of
about 0.2 log units. This methodmay prove useful for semiquantitative analysis of drugmetabolites for which MS
response factors or authentic standards are not readily available.
Keywords: Chemometric data, Aqueous proton affinity, Total surface area, Mass spectral ion counts of drug-like
molecules
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Introduction

Metabolite identification studies play a critical part of the
early pharmaceutical discovery process and are required

to speed up lead optimization and candidate selection for
development. However, a major limitation of these studies is
that neither radiolabeled material nor analytical standards of
drug metabolites are usually available for quantification of the
amounts of the various metabolites formed. The ionization
efficiency of even closely related molecules within the ion-
source of a mass spectrometer may vary, and simple metabolic
modifications to a drug can drastically alter the mass spectral
response, prohibiting comparison of MS peak areas to estimate
abundance of the identified metabolites. Furthermore, it is
known that both molar absorptivity (ε) and the maximum

absorption wavelength (λmax) may be altered as a drug is
metabolically modified, making the comparison of UV-
derived peak areas without correction factors ambiguous.
Therefore, development of a sensitive and specific technique
for the quantitation of drug metabolites without the use of
synthetic analytical standards or radiolabel would represent a
major advance in preliminary metabolism screening in drug
discovery.

Efforts toward obtaining a universal quantitative detection
have been focused upon several detectors such as ultraviolet
(UV) [1], evaporative light scattering detector (ELSD) [1, 2],
chemiluminescence nitrogen detector (CLND) [1, 3], and
charged aerosol detector (CAD) [4], among others. All of these
detectors, however, have advantages as well as limitations.
Proton nuclear magnetic resonance (1H NMR) [1, 5] and
Electronic REference To access In-vivo Concentrations
(ERETIC) method [1, 6] has also been utilized as a BGold
Standard^ to enable quantification by integrating protonCorrespondence to: Amin M. Kamel; e-mail: amin.kamel@biogen.com
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signals. However, the ERETIC method is time-consuming and
cost-ineffective [1].

The objective of this study is to develop a novel mass
spectrometric quantitative detection strategy without a require-
ment for specific analyte standards to achieve a rapid, cost-
effective, and readily automated quantification method. The
major challenging aspect of this work is the correct identifica-
tion of the most important parameters that influence analyte
response during the electrospray ionization (ESI) process. Var-
ious solution-phase factors such as mobile-phase additives, so-
lution pH, pKa, analyte concentration and solvent composition
[7–13] and gas-phase reactions including proton affinity [14, 15]
have been reported to have a significant effect on ESI response.

In order to establish bounds on concentrations of trace
analytes, it would be substantially more convenient to rely on
validated relationships between computed (i.e., in silico) mo-
lecular properties and ionization response factors, since many
computed properties can be determined efficiently and quickly.
Various workers have employed uni- or multivariate statistical
models to identify correlations between electrospray ion inten-
sities and various computed (or measured) molecular properties
for alkaloid cations [16], polar metabolites [17], alcohols [15],
small molecule pharmaceuticals [13], and tripeptides [18]. Key
quantities identified as having potential utility in multivariate
relationships include polar and nonpolar surface areas, gas-
phase basicities/proton affinities, solvation free energies
[13, 18], molecular volume, octanol-water distribution co-
efficient (log D), and absolute mobility [17].

Advances in electronic structure theory [19] and quantum
mechanical continuum solvation models [20, 21] have made
the computation of proton affinities [22–24] and solvation free
energies [25, 26] increasingly accurate and affordable (and
molecular surface areas are trivially computed, of course).
Importantly, insofar as the goal is to determine a statistically
relevant relationship between ESI MS response factors and
molecular properties, it is not necessarily critical to find com-
putational models that are accurate in an absolute sense—all
that is required is that they be systematically accurate in a
relative sense (that is, trends in a computed property must be
predicted accurately in order to identify correlations with ex-
perimental properties, but the absolute quantities themselves
may be off so long as they are off by systematic amounts). This
reduced demand on computational accuracy permits a wide
range of efficient theoretical models to have potential utility
in developing useful multivariate predictive models.

In this work, we report the assembly of a training set of 66
drugs and drug-like molecules for which we computed various
chemometric quantities, including polar and molecular surface
areas, aqueous solvation free energies, and gas-phase and
aqueous proton affinities. We identify a statistically significant
relationship between measured mass spectral ion counts at a
specific concentration and the combination of aqueous proton
affinity and total molecular surface area. When applied to a test
set of 11 drug-like molecules, the derived protocol provides a
good correlation of prediction with experiment, suggesting its
potential utility for broader application.

Experimental
Chemicals and Materials

Unless otherwise indicated, reagents used were purchased from
Sigma-Aldrich (St. Louis, MO, USA). N-acetyl mesalazine
was purchased from Enamine (Monmouth Junction, NJ,
USA). Novartis compounds were synthesized in-house. LC-
MS grade acetonitrile and water were purchased through VWR
International (Radnor, PA, USA).

Mass Spectrometry

A linear ion trap hybrid Orbitrap Elite (Thermo Scientific, San
Jose, CA, USA) mass spectrometer interfaced with a Dionex
UltiMate 3000 (Thermo Scientific) HPLC and a CTC PAL
autosampler was used in this study. Allm/zmeasurements were
performed within the Orbitrap. Data was collected in full scan
profile mode between m/z 100 and 1000 in positive ionization
mode. The resolutionwas set at 30,000 atm/z 400 with anAGC
target of 1.00e6. The following source parameters were used
for all samples analyzed; sheath gas flow rate 40, aux gas flow
rate 30, sweep gas flow rate 2 (all units arbitrary), spray voltage
4.00 kV, capillary temperature 275 °C, and S-Lens rf level of
60%.

Sample Preparation and Introduction

Stock solutions (1–10 mM corrected for salt, purity ≥99%) of
66-molecule training set in LC-MS grade acetonitrile were
diluted to 10 μM in 1:1 acetonitrile:water with 0.1% formic
acid. For flow injection analysis the HPLC was controlled
using Chromeleon Xpress (Thermo Scientific), the mass spec-
trometer was controlled using Tune Plus (Thermo Scientific),
and the autosampler using Xcalibur. Fifteen μL was injected
with a flow rate of 700 μL/min with a mobile-phase composi-
tion of 50% acetonitrile, 50% water, and 0.1% formic acid. For
flow injection analysis, each compound was injected three
times on three different days. Data was analyzed using
Xcalibur Qual browser (Thermo Scientific) and Microsoft Ex-
cel. Extracted ion chromatograms were generated using the
theoretical monoisotopic masses, including any observed ad-
ducts or neutral losses ±5 ppm. Peak areas were used for all
calculations. The intra- and inter-day variability was ≤5%
(zonisamide) (intra-day) and ≤4% (acetaminophen) (inter-
day) percent relative standard deviation (%RSD).

To examine data reproducibility, six commercially available
compounds (acetaminophen, traxoprodil, N-acetyl mesalazine,
zonisamide, verapamil, and dexamethasone) from the 66-
molecule training set were carefully selected based on the
diversity of their chemical structures and to cover a wide range
of molecular weight (150–450 Da), aqueous proton affinity (–
250 to –300 kcal/mol), and total molecular surface area (~203
to 600 Å2). To account for the effect of mobile composition on
the MS ionization efficiency, all six compounds were well
separated and spread out at the entire HPLC gradient system
used for the standard biotransformation protocol. Compounds
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(10 μM) were spiked into 0.1M phosphate buffer pH 7.4 and
vortex mixed. The sample was then diluted with three volumes
of LC-MS grade acetonitrile. The samples were vortex mixed
and centrifuged at 10,000 rpm for 10 min. Two hundred μL of
the supernatant was transferred to a 96-well plate and the
sample was dried to completion under nitrogen. The sample
was redissolved into 200 μL of 95%water, 5% acetonitrile with
0.1% formic acid; 20 μL was injected onto a Waters (Milford,
MA, USA) Symmetry C18 column (2.1 × 150 mm, 5 μm
beads) and analyzed by LC-MS. Buffer A was LC-MS grade
water with 0.1% formic acid and buffer B was LC-MS grade
acetonitrile with 0.1% formic acid. The following gradient was
used: 0–5min 5%B, 15min 40%B, 25min 95%B, 25–30min
95% B, 31 min 5% B, 31–36 min 5% B. The column eluent
from the first 5 min was diverted to waste. To make sure the
results were reproducible, a total of three injections were made.
Data was analyzed using Xcaliber Qual browser and Excel.
Extracted ion chromatograms were generated using the theo-
retical monoisotopic masses, including any observed adducts
or neutral losses ±5 ppm. Peaks were manually picked and
peak areas were used for all calculations.

Computational Procedures

For each studied molecule, the structure was first drawn in
GaussView [27] (a visualization tool that accompanies the
electronic structure suite Gaussian 09 [28], used for all density
functional calculations described below) and saved as a Gauss-
ian input file. That structure was then imported to the molecular
mechanics software program PC Model [29]. Next, the
GMMX search algorithm within the PC Model program was
employed to search for the lowest energy conformer (typically
1000 steps of search with otherwise default selection of param-
eters; this search covers rotation about single bonds (including
amide and ester bonds) and ring conformations) using the
MMX force field that is part of the PC Model program. The
lowest energy conformer from the MMX search was then
optimized (gas phase) at the M06-L [30] level of density
functional theory, using the MIDI! basis set [31, 32] and a
density fitting basis set that improves efficiency when
employed with a local density functional [19] (this level of
theory is denoted M06-L/MIDI!), The optimized structure was

re-imported into PC Model and its polar, saturated nonpolar,
unsaturated nonpolar, and total molecular surface areas were
computed using the standard van der Waals radii employed by
the package (we note that the definitions of Bpolar,^ Bsaturated
nonpolar,^ and Bunsaturated nonpolar^ surface areas are not
universal, however, as we found no significance for these
variables in our analyses, we do not consider their details
further here).

The most basic site of the molecule was then identified
(either through chemical intuition or, when necessary, through
examination of multiple possibilities), and the molecule was
protonated at that site. Again, the structure was optimized (gas
phase) at the M06-L/MIDI! level of theory (see Figure 1).

Next, for the gas-phase geometries of both the conjugate
base and acid forms (i.e., as single points), aqueous solvation
free energies were computed using the SMD aqueous solvation
model [33] (this level of theory is denoted SMD(aq)/M06-L/
MIDI!//M06-L/MIDI!). The aqueous proton affinity is comput-
ed as the difference in the single-point energies in solution of
the protonated species and the neutral species (typically in the
range of –250 to –300 kcal/mol; note that this quantity is
consistent with the typical ion convention in solution, which
takes the free energy of the solvated proton to be zero [34]). In
preliminary work, we examined whether reoptimization of
structures in aqueous solution led to improved results. Such
reoptimizations were found to have negligible statistical signif-
icance. As reoptimization in solution roughly doubles the com-
putational time per molecule, we relied on single-point calcu-
lations alone to compute aqueous proton affinities (see also
Results and Discussion section).

Results and Discussion
Measurement of Target Property

A total of 66 drug-like molecules including eight Novartis
compounds (compounds A, B, C, D, E, F, G, and H) and
commercially available drugs (training set) were chosen based
on their availability and diverseness of molecular weight,
structure (phase I and phase II metabolism), and physical
chemical properties. Flow injection analysis demonstrated

Carbaryl Aminoglutethimide Captan
Figure 1. Representative electrostatic potentials (ESPs) for the optimized structures of carbaryl, aminoglutethimide, and captan,
three compounds chosen for this study, showing a ball-and-stick representation of the optimizedM06-L/MIDI! geometries with gray
balls representing carbon, white hydrogen, blue nitrogen, red oxygen, green chlorine, and yellow sulfur. Themost red site on the ESP
represents the most negative electrostatic potential (attractive to a positive test charge) and was selected for protonation. Blue
regions are repulsive while intermediate colors of the spectrum reflect the quantitative change from attractive to repulsive

280 C. J. Cramer et al.: Prediction of Mass Spectral Response for Drugs



concentration-dependent peak areas between 10 and 100 μM
(data not shown). A concentration of 10 μM was chosen
because at that concentration the detector was not saturated
and that concentration is the substrate concentration used in our
standard biotransformation assays. Compounds used for data
reproducibility (acetaminophen, traxoprodil, N-acetyl
mesalazine, zonisamide, verapamil, and dexamethasone) elut-
ed between 7 and 18 min and peak areas for all compounds
were reproducible with a % RSD ≤ 7.4%.

Chemometric and Statistical Analysis

Beginningwith a training set of data for 40molecules (Table 1),
we considered a number of different quantities, including the

aqueous free energy of solvation of the neutral form of the
solute, computed either from a single-point energy calculation
at the gas-phase optimized geometry or including relaxation in
aqueous solution (columns 2 and 3 in Table 1), the solute
proton affinity, computed either in the gas phase or including
solvation free energies from either single-point calculations at
gas-phase geometries or including relaxation effects in solution
(columns 4–6 in Table 1), as well as the saturated nonpolar,
unsaturated nonpolar, polar, and total molecular surface areas
for the M06-L/MIDI! optimized structures (columns 7–11 in
Table 1).

Insofar as the chemometric quantities in Table 1 are either
free energies, or surface areas, which are likely to be correlated
linearly with free energy quantities associated with surface

Table 1. Chemometric Data for 40 Molecules

log10 Neutral ΔGo
S
a Proton affinitya Surface areab

Molecule Ions SPc Optd Gas Aq. SPc Aq. optd Saturated Unsaturated
nonpolar nonpolar Polar Total

Aminoglutethimide 7.51 –10.6 –11.0 –219.0 –267.3 –268.3 150.5 38.06 97.05 286.5
Bromacil 7.06 –7.03 –7.08 –226.7 –267.9 –267.9 194.2 12.04 63.04 269.9
Caffeine 6.09 –7.06 –8.00 –221.4 –267.7 –267.9 134.8 25.05 73.03 233.7
Carbaryl 6.00 –6.05 –7.03 –223.4 -267.0 –268.0 139.2 71.00 49.06 259.8
Carbofuran 7.49 –8.01 –8.06 –228.4 –267.9 –268.4 187.3 45.01 58.04 290.8
Celecoxib 7.11 –9.00 –9.07 –214.7 –258.6 –259.8 207.2 107.1 84.09 399.2
Citalopram 8.51 –5.05 –6.02 –252.3 –299.1 –299.2 264.0 98.03 37.04 399.7
Dapsone 7.37 –17.4 –17.9 –234.1 –266.8 –266.8 97.05 96.09 98.06 293.0
Diazinon 8.49 –3.04 –3.09 –237.3 –281.9 –283.1 249.5 28.00 52.03 329.7
Diclofenac 6.97 –8.09 –9.02 –213.4 –259.7 –262.5 170.8 88.06 55.01 314.5
Linezolid 8.07 –14.4 –15.6 –243.2 –287.3 –288.1 257.9 42.05 88.08 389.2
Methomyl 5.64 –5.01 –5.06 –226.1 –271.6 –271.7 155.3 6.005 60.03 222.1
Mirtazapine 8.16 –8.05 –9.01 –248.4 –294.8 –295.4 234.7 93.07 8.00 336.3
Naproxen 5.03 –7.08 –8.02 –205.8 –261.3 –262.6 171.8 61.08 59.08 293.3
Nefazadone 8.75 –18.0 –19.2 –221.5 –269.3 –270.3 396.5 96.06 54.03 547.4
Traxoprodil 8.32 –14.6 –16.8 –260.5 –300.2 –300.4 243.8 97.08 58.09 400.5
Valdecoxib 6.98 –11.1 –11.8 –212.3 –258.7 –259.3 114.9 116.2 88.00 319.0
Zaleplon 7.76 –10.7 –11.3 –211.8 –253.2 –253.6 178.2 106.0 78.09 363.1
Zileuton 6.98 –12.5 –12.8 –234.6 –273.5 –274.8 145.3 51.09 78.02 275.4
Zomepirac 7.21 –9.04 –9.08 –233.1 –273.9 –274.6 157.3 73.02 85.05 315.9
Zonisamide 5.81 –10.5 –10.9 –205.6 –258.0 –259.2 79.02 55.03 96.05 231.0
Acyclovir 7.09 –24.7 –26.4 –247.8 –288.7 –288.9 95.03 34.03 140.0 269.6
Acecainide 8.01 –14.6 –16.8 –259.4 –298.1 –298.2 235.9 49.08 78.08 364.5
Atropine 8.34 –10.0 –10.8 –244.5 –295.6 –296.1 285.5 48.02 56.04 390.1
Azelastine 8.06 –10.0 –10.0 –241.3 –297.5 –297.5 285.2 98.05 51.02 434.9
Clindamycin 8.26 –16.6 –17.7 –237.1 –286.3 –288.1 347.6 0.00 93.02 440.7
Fleroxacin 8.31 –16.8 –18.0 –234.3 –293.8 –294.7 213.0 54.08 98.06 366.3
Galanthamine 8.09 –10.2 –10.6 –250.7 –294.0 –294.8 249.4 48.07 45.04 343.5
Pirmenol 8.47 –8.00 –8.06 –264.2 –303.0 –302.4 327.6 86.05 31.00 445.2
Quinine 8.32 –10.8 –11.2 –249.6 –293.3 –293.8 264.9 71.05 46.01 382.5
Tramadol 8.08 –6.05 –7.03 –246.3 –295.8 –295.8 277.1 41.07 32.01 350.9
Venlafaxine 8.14 –5.07 –7.00 –253.1 –297.8 –297.5 307.2 36.08 30.00 374.0
Verapamil 8.74 –9.07 –9.07 –248.3 –295.9 –295.9 449.3 82.06 69.00 600.9
Vildagliptin 8.15 –14.4 –15.1 –250.3 –296.2 –295.5 281.9 11.01 72.09 365.8
9-Methylguanine 7.27 –18.7 –20.3 –225.0 –278.9 –279.3 57.03 33.03 109.8 200.3
APAP 6.45 –11.1 –11.4 –223.7 –273.9 –274.1 88.03 51.08 63.08 203.9
APAP sulfate 6.49 –13.4 –14.1 –195.2 –244.0 –245.2 95.08 45.04 114.6 255.8
APAP glucuronide 5.43 –22.7 –23.6 –227.5 –273.3 –274.0 139.3 49.00 168.9 357.2
Mesalazine 6.82 –10.1 –10.4 –223.3 –270.0 –269.9 49.04 32.04 99.01 181.0
N-acetyl mesalazine 6.03 –10.6 –11.0 –218.5 –266.1 –266.5 89.00 31.05 108.9 229.5
R with log10 ions 1.00 0.015 0.007 0.669 0.676 0.679 0.748 0.217 0.451 0.702

a Kcal mol–1.
b Å2.
c Single-point.
d Optimized in solution.
APAP = acetyl-para-aminophenol, acetaminophen
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tensions, volatilities, etc., their variations should be associated
with log variations in concentration measures. In the case of ion
counts, the observed quantity may be related to a concentration
(while all analytes are at a common total concentration, their
conjugate acid/base speciation may vary, which may influence
ionization counts), but is also related to efficiency of ionization
and other factors associated with the electrospray experiment.
As the measured data may be expected to have some
concentration-like character, and as they span nearly three
orders of magnitude in ion counts (and no computed molecular
quantity is likely to span so similarly large a range in linear
space), we chose to seek a correlation with the common loga-
rithm of the ion counts measured from experiments with 10 μM
analyte concentrations (column 1 of Table 1). The last row of
Table 1 indicates the single variable correlation coefficient R
between the various individual tabulated quantities and the
log10 ion counts. It is immediately apparent that the solvation
free energy of the neutral solute is completely uncorrelated
with the ion count data (R < 0.02), whereas strong correlation
is observed with the gas-phase and aqueous proton affinities
computed with or without solvent relaxation (R > 0.66),
as well as with the saturated nonpolar and total surface
areas (R > 0.70).

The observation of a good correlation with proton
affinity (basicity) is consistent with prior multivariate
analyses along similar lines [7, 8]. Considering the vari-
ous proton affinity computational protocols, they provide
data that are highly correlated (R > 0.94 between
methods). As single-point solvated calculations include
the important physical effect of aqueous solvation at very
small cost, we elected to continue to explore further with
this descriptor. With respect to the surface areas, the
saturated nonpolar and total surface areas show the
highest correlation with the target ion count data. Those
two descriptors are also highly correlated with one anoth-
er (R = 0.915). As the total surface area is much more
unambiguously defined, we elected to carry this descriptor
forward for further analysis as well.

Considering multilinear regressions that included,
along with the single-point aqueous proton affinity and
the total surface area, other descriptors not already
strongly correlated with those two (i.e., neutral molecule
solvation free energy, unsaturated nonpolar surface area,
and polar surface area) failed to provide meaningful
statistical improvements. However, the correlation coeffi-
cient between the proton affinity and total surface area
descriptors themselves over the 40 molecules in Table 1
is R = 0.482, suggesting that the training set could be
improved through addition of molecules reducing this
cross-correlation.

To that end, we added an additional 26 molecules, comput-
ing only the necessary two descriptors (Table 2). When taken
together over the 66 molecules in the expanded training set, the
cross-correlation between the proton affinity and total surface
area descriptors is reduced to R = 0.228, which we deem
acceptable.

Over the 66 molecules in the training set, bilinear regression
of the log10 ion counts (IC) on the aqueous proton affinity (PA)
and total molecular surface area (SA) provides

log10 ICð Þ ¼ −4:824− 3:912� 10−2 mol kcal−1
� � � PA

þ 3:682� 10−3 )
−2

� �
� SA ð1Þ

with multiple R value 0.791, multilinear regression F ratio of
52.5, and p values for the intercept, c1 and c2 of 1.4 × 10–3, 4.3
× 10–10, and 2.5 × 10–6, respectively. The standard errors on the
intercept, c1 and c2 are 1.447, 0.530 × 10–2 mol kcal–1, and
0.711 × 10–3 Å–2, respectively. Note that qualitatively, Equa-
tion 1 predicts that molecules having proton affinities (or, more
loosely, basicities) that are larger in magnitude—recalling that
the quantity itself is negative—will show increased ion counts,
as will molecules that are larger in overall surface area. Thus,
many of the molecules in Tables 1 and 2 with larger observed
ion counts include basic amine-type functionality of one sort or
another.

A plot of predicted versus experimental log data for a
training set of 66 molecules (purple circles) and a test set of
11 molecules (brown squares, see below for further discussion)
at nominal 10 μM concentration is provided in Figure 2. Note
that the most significant outliers are at lower left, that is,
compounds with very low measured ion counts but reasonably
high predicted ion counts. The three lowest points are naproxen
and two glucuronides.

Table 2. Chemometric Data for an Additional 26 Molecules

log10 Proton affinitya Surface areab

Molecule Ions Aq. SPc Total

N-methyl piperdine 7.18 –296.8 178.8
Dexamethasone 7.81 –279.6 413.4
Meropenem 8.01 –292.7 379.5
Phencyclidine 7.93 –298.3 329.8
Procainamide 8.03 –303.4 323.8
Compound A 7.74 –271.4 527.9
Compound B 7.68 –271.1 670.7
Coumarin 5.52 –267.8 185.6
Umbelliferone 5.64 –269.7 192.1
Umbelliferone Gluc 5.25 –268.2 348.4
Hymecromone 6.09 –271.1 212.7
Hymecromone Glucuronide 6.03 –269.8 369.9
Nefamostat 8.31 –291.9 405.4
4-Guanidinobenzoic acid 7.54 –291.6 217.8
6-Amidino-2-napthol 7.77 –298.4 233.4
Phenolphthalein 7.06 –274.4 357.9
Phenolphthalein Glucuronide 7.18 –271.9 516.4
Compound C 7.76 –278.3 418.1
Compound D 8.48 –293.2 579.8
Compound E 8.39 –293.2 560.6
Clozapine 8.49 –287.3 381.1
Clozapine N-oxide 8.39 –286.3 381.2
Clozapine N-desmethyl 8.32 –287.4 358.2
Compound F 6.95 –265.3 478.6
Compound G 6.61 –265.9 439.5
Compound H 7.62 –278.6 393.7

a Kcal mol–1.
b Å2.
c Single-point.
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If one treats these three compounds as outliers, regression
on the remaining data leads to a significantly improved F ratio
(67.5). However, the regression itself is affected primarily in
the intercept, which is expected in the event of removing such
outliers (that are over-predicted). On the whole, regression on
the full data set seems likely to be the most general and useful
in the absence of further expansion of the training set. While
one could consider making the presence of a glucuronide group
a variable (a constant), with only four in the training set, this
seems statistically dubious. Over the full 66-molecule training
set, the mean absolute deviation between experiment and pre-
diction from Equation 1 is 0.44 log units.

To assess the robustness of our fit, we next considered a test
set of 11 molecules, chosen from a proprietary list of Novartis
compounds and having limited similarity to molecules used in

the training set. Employing Equation 1, we predicted log ion
count data that compare very well to experimental measure-
ment, as illustrated in Figure 2. There is an excellent correlation
of predicted values with the variation in the data, and the mean
absolute deviation between the predicted and experimental
values is 0.29 log units. This deviation is smaller than that
observed over the full training set. It is also systematic (i.e.,
every prediction somewhat overestimates the observed value).
We reconsidered whether a regression equation removing the
lowest outliers mentioned above would have improved predic-
tive performance on the 11-molecule test set, but it was essen-
tially unaffected.

We further examined the robustness of our predictive
protocol by pooling all 77 data and randomly assigning
each point to one of seven 11-member subsets in order to
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data set

Table 3. Results from Leave-11-Out Cross-Validation Studies on Combined Data

Subset Intercepta c1
a c2

a Ftrain
b Rtrain

c MUEd Rtest
e

1 –4.178 –3.728 × 10–2 3.298 × 10–3 80.2 0.847 0.569 0.681
2 –4.244 –3.724 × 10–2 3.428 × 10–3 62.7 0.816 0.294 0.886
3 –3.978 –3.670 × 10–2 3.193 × 10–3 67.6 0.826 0.378 0.82
4 –3.501 –3.512 × 10–2 3.164 × 10–3 59.9 0.81 0.478 0.868
5 –4.471 –3.870 × 10–2 2.939 × 10–3 58.7 0.807 0.281 0.854
6 –5.031 –3.999 × 10–2 3.405 × 10–3 69.6 0.83 0.479 0.836
7 –4.687 –3.870 × 10–2 3.431 × 10–3 70.7 0.832 0.383 0.84
Mean –4.299 –3.768 × 10–2 3.265 × 10–3

StdDev 0.496 0.160 × 10–2 0.181 × 10–3

a Bilinear regression coefficients for Equation 1 (cf. text for units).
b Multilinear regression ratio on training subset.
c Pearson correlation coefficient for bilinear regression on training subset.
d Mean unsigned error (absolute residuals) for 11-molecule test set using bilinear regression from 66-molecule training set.
e Pearson correlation coefficient for experimental and predicted values in 11-molecule test set using bilinear regression from 66-molecule training set.
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perform a cross-validation analysis. We carried out bilinear
regression to generate equations analogous to Equation 1 on
the remaining 66 molecules associated with each subset,
and we examined the utility of those equations for
predicting log ion count data treating the left-out 11 mole-
cules in each case as test sets. The results are summarized in
Table 3. For the seven different bilinear regressions, we
obtained intercepts of –4.299 ± 0.496, coefficients multi-
plying the aqueous proton affinity of (–3.768 ± 0.160)
× 10–2 mol kcal–1, and coefficients multiplying the total
surface area of (3.265 ± 0.181) × 10–2 Å–2. These values
all fall within the standard error ranges associated with these
parameters for Equation 1 itself. The multilinear regression
F ratios predicted for the seven fits range from 58.7 to 80.2,
whereas the Pearson correlation coefficients R (for the
training set) range from 0.807 to 0.847.

Considering the application of each regression to make
predictions for its specific test set, the mean unsigned
residuals over the various test sets range from 0.281 to
0.569, whereas the associated Pearson correlation coeffi-
cients R range from 0.681 to 0.886. In all cases but that of
subset 1, R > 0.8; this reflects the presence of two of the
outliers having very low ion counts in subset 1, which also
contributes to this subset exhibiting the largest unsigned
error in the residuals.

The good observed performance overall of the various
bilinear regressions analogous to Equation 1 on the dif-
ferent randomized 11-molecule test sets is encouraging.
We anticipate that this overall model may prove to be
useful in the future for estimating concentrations of un-
known analytes through the comparison of predicted ion
count data to observed data.

Conclusions
We have demonstrated that semiquantitative information on
drugs and metabolites can be obtained by an in silico approach
and without using radiolabeled compounds and chemically
synthesized metabolite standards. We propose that the reported
methodology herein would allow a quick semiquantitative
assessment of drugs and metabolites much earlier in drugs
discovery, hence, identifying metabolism-related liabilities of
key compounds and effectively managing the development of a
lead series. Additionally, this semiquantitative approach could
be applied in early development to assess whether humans
produce metabolites that are adequately covered by preclinical
species or form unique/disproportionate metabolites that re-
quire additional safety testing.
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