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Abstract. The nonlinear harmonics within the ion motion are the fingerprint of the
nonlinear fields. They are exclusively introduced by these nonlinear fields and are
responsible to some specific nonlinear effects such as nonlinear resonance effect. In
this article, the ion motion in the quadrupole field with a weak superimposed octopole
component, described by the nonlinear Mathieu equation (NME), was studied by
using the analytical harmonic balance (HB) method. Good accuracy of the HB
method, which was comparable with that of the numerical fourth-order Runge-Kutta
(4th RK), was achieved in the entire first stability region, except for the points at the
stability boundary (i.e., β = 1) and at the nonlinear resonance condition (i.e., β = 0.5).
Using the HB method, the nonlinear 3β harmonic series introduced by the octopole

component and the resultant nonlinear resonance effect were characterized. At nonlinear resonance, obvious
resonant peaks were observed in the nonlinear 3β series of ion motion, but were not found in the natural
harmonics. In addition, both resonant excitation and absorption peaks could be observed, simultaneously. These
are two unique features of the nonlinear resonance, distinguishing it from the normal resonance. Finally, an
approximation equation was given to describe the corresponding working parameter, qnr, at nonlinear resonance.
This equation can help avoid the sensitivity degradation due to the operation of ion traps at the nonlinear
resonance condition.
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Introduction

Quadrupole ion (Paul) trap, developed by Paul and
Steinwedel in 1953 [1], has now been widely used as a

mass analyzer in the mass spectrometry (MS) instruments. The
ideal Paul trap should produce a linear quadrupole electric
field. However, the electric field in the real trap always contains
nonlinear higher-order field components, such as hexapole and

octopole [2, 3]. Using the octopole field as an example, its
typical weight regarding the field strength is ca. 1% due to the
assembly misalignment and fabrication precision [4]. The
weight can increase to 10% or higher in some Paul trap geo-
metrical variations [5], such as cylindrical [6] and rectilinear
ion traps [7]. The nonlinear fields inevitably introduce a series
of nonlinear effects into the ion motion, such as frequency shift
[8–10], amplitude variation [11], nonlinear resonance [12–16],
and thus have great impacts on the trap performance, in terms
of mass resolution [8], mass accuracy [9], sensitivity [12], and
tandem MS (MS/MS) efficiency [10, 15], etc.

In the Paul trap, the ion motion consists of numerous har-
monic motions, which can be clearly observed from the high-
precision numerical frequency spectrum (Figure 1). Among the
harmonics, the ones generated by the quadrupole field are
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known as natural harmonics, including a fundamental secular
oscillation (marked in black) and an infinite number of higher-
frequency harmonics (marked in blue). The nonlinear fields
make the ion motion even more complex. They not only
change the frequencies and amplitudes of the natural harmonics
but also produce nonlinear harmonics (marked in red)
superimposed into the natural harmonics of ion motion [17,
18]. Generally, among the harmonics, the ion fundamental
secular oscillation has the largest amplitude and is therefore
the most important [2, 3]. By neglecting all the other small-
amplitude harmonics, including higher-frequency and nonlin-
ear ones, theoretical methods, such as the most often employed
pseudo-potential well (PW) model [19, 20], can focus on the
nonlinear effects of ion secular motion [10, 21–28].

The PW model can well describe the nonlinear frequency
shift effect for Mathieu parameter, q, up to 0.8 with a typical
error of less than 10% [10]. However, the PW model still
suffers from some limitations because of the omission of the
small-amplitude harmonics. The small-amplitude harmonics
are closely related to the Bfine structure^ of the nonlinear effects
[11]. For instance, in the PW method, the magnitudes of ion
secular frequency shift, |Δβ|, in the superimposed octopole
fields, e.g., ε = ±0.1, are undistinguishable. But in the harmonic
balance (HB) method, with the consideration of ion high-
frequency harmonics, the |Δβ| at ε = 0.1 has been found to be
greater than that at ε = –0.1. Herein, ε = A2/A4, A2 and A4
represent the dimensionless amplitudes of the quadrupole and
octopole fields, respectively. In addition, the small-amplitude
harmonics are important for the accuracy of the calculated ion
trajectory in the nonlinear fields. For instance, regarding the
calculated ion amplitude, the PW method can bring in an error
of ca. 26% at ε = 0.1 and Mathieu parameter, q = 0.6. Under the
same condition, the error decreases to ca. 2% in the HB
method. Such accuracy is necessary for characterizing the
nonlinear effects of ion motion because the typical ion ampli-
tude variation is only ca. 5% of the ion amplitude.

Among the small-amplitude harmonics, the nonlinear har-
monics of ion motion are especially interesting. First, they are
the fingerprints of the nonlinear fields. For example, the octo-
pole field mainly generates the characteristic 3β harmonic
series (Figure 1) [17, 18]. From these characteristic harmonics,
the detailed composition of the nonlinear fields in the trap can
be readily determined. Second, the nonlinear harmonics of ion
motion are the unique reason for the nonlinear resonance effect
[12–16]. Depending on the corresponding types of the nonlin-
ear harmonics, the nonlinear resonance can be classified into
single-direction (i.e., z or r direction) and r-z coupled reso-
nances [16]. At nonlinear resonance, the natural and nonlinear
harmonics match with each other, producing an effect of am-
plified ion amplitudes. This effect can give rise to possible ion
losses and sensitivity degradation in the ion trap instruments.
For instance, in the MS/MS experiments, the loss of daughter
ions because of the nonlinear resonance has been knows as the
black holes or black canyons [29]. But in the dipolar resonance
experiments, the effect can accelerate the ion ejection and
improve the mass resolution [30]. In addition, the nonlinear
resonance may result in peak splitting effect in the quadrupole
mass filter operated in the second stability region [31].

Theoretical characterization of the nonlinear harmonics of
ion motion can shed light on the real ion motion in the nonlin-
ear fields and help the design and optimization of the current
high-performance instruments. However, the associated study
has long been a challenge because the nonlinear harmonics are
very weak in the ion motion and their typical amplitudes are
1% of ion secular harmonic or lower (Figure 1). In this article,
taking advantage of the HB method, the ion motion in the
quadrupole field with a superimposed weak octopole field
was theoretically studied, in which the amplitudes, D2n, and
the frequencies, 2n + 3β, of the nonlinear 3β harmonics series
were calculated and the resultant nonlinear resonance effect at β
= 0.5 was characterized.

Theory
The Nonlinear Mathieu Equation (NME)

Paul trap has a hyperbolic ring electrode and two hyperbolic
endcap electrodes. To operate the trap, an electric voltage,
Φ0 =U−Vcos(Ωt), is applied between the ring and the endcap
electrodes [2, 3]. Herein,U is the direct-current (DC) voltage, V
is the radio-frequency (rf) voltage with angular frequency Ω,
and t is time. For a symmetric trap, the electric field only
contains even multipole components, mainly including a quad-
rupole and a weak octopole [4]. The electric potential, Φ,
within the trap can be represented by:

Φ ¼ Φ0 A2
r2 − 2z2

2r20

� �
þ A4

3r4 − 24r2z2 þ 8z4

8r40

� �
þ…

� �
ð1Þ

where r and z represent the radial and axial coordinates, re-
spectively. The cross term, –24r2z2, of the octopole field can
result in the coupling of ion motions in the r- and z-directions,
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Figure 1. Frequency spectrum of ion motion at a = 0, q = 0.8,
and ε = 0.1. The spectrum is obtained by using the fast Fourier
transform (FFT) to the ion trajectory, which is calculated by the
numerical fourth-order Runge-Kutta (4th RK) method. The fun-
damental secular, higher-frequency, and nonlinear frequencies
of ion motion are marked by black, blue, and red colors, re-
spectively. The initial displacement and velocity of the ion are
set to 0.1 r0 and 0, respectively. This initial condition is used
throughout this article, unless otherwise specified
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making the ion motion equation more difficult to solve analyt-
ically. For simplicity, only the ion motion along the r- and
z-axis (i.e., z = 0 and r = 0, respectively) is considered, where
the cross term vanishes and the ion motion is uncoupled. From
Equation 1, it can be found that the electric potentials in the
r- and z-directions have the same equation but different coef-
ficients. Therefore, only the ion motion equation in the
z- direction is solved as an example, considering that the ion
ejection is operated in that direction. The ion motion in the
r-direction can be studied by using exactly the same method.

The ion motion in the electric field can be described by the
Newton’s second law. Along the z-axis (i.e., r = 0), the ion
motion equation yields:

m
d2z

dt2
¼ eEz ¼ −e

∂Φ r ¼ 0ð Þ
∂z

ð2Þ

where m is ion mass, e is electron charge, t is time, Ez is field
strength of the electric field in the z direction. Substituting the
electric potential, Φ(r = 0) in Equation 1 into Equation 2, it
yields:

d2z

dξ2
þ az − 2qzcos 2ξð Þ½ � zþ 2

r20
εz3

� �
¼ 0 ð3Þ

Equation 3 is the NME [17], in which az and qz are dimen-
sionless Mathieu parameters, ξ is dimensionless time and they
are defined as:

az ¼ −
8A2eU

mr20Ω
2 ð4Þ

qz ¼ −
4A2eV

mr20Ω
2 ð5Þ

ξ ¼ Ωt
2

ð6Þ

The Harmonic Balance (HB) Method

Both theoretical methods and numerical methods can be uti-
lized to solve the NME. Each sort of the methods has its own
advantages and disadvantages. Generally, the numerical

methods are more accurate, and their typical calculation error
is ca. 1% of the ion amplitude. Hence, the numerical fourth-
order Runge-Kutta (4th RK) is always utilized to determine the
accuracy of the theoretical methods [32]. However, the theo-
retical methods can provide better understanding about the
observed nonlinear effects. In order to keep the advantages
simultaneously, it is highly desired that there is a theoretical
method that is as accurate as the numerical methods.

The HB method is such a high-accuracy theoretical method
[11]. In the HBmethod, a trial solution, which is the addition of
ion motion harmonics, is employed and substituted into the
NME. By balancing the coefficient of each harmonic, the
amplitudes and the frequencies of all the harmonics can be
obtained. The employed trial solution is important for the
accuracy of the HB method. To accurately and systematically
describe the nonlinear effect introduced by the superimposed
octopole field, the trial solution should contain all the har-
monics of ion motion, including the natural harmonics and
the nonlinear harmonics. Regarding the octopole field, the
nonlinear harmonics of ion motion mainly refer to the 3β
harmonics series. Higher-order nonlinear harmonics, such as
5β and 7β series, are too small to be observed in the frequency
spectrum (Figure 1). Hence, the trial solution of the HBmethod
yields:

z ξð Þ ¼ κ
0X∞
n¼−∞

C2n cos 2nþ βð Þξ þ D2n cos 2nþ 3βð Þξ½ �

þ κ
00X∞
n¼−∞

C2n sin 2nþ βð Þξ þ D2n sin 2nþ 3βð Þξ½ �

ð7Þ

where κ' and κ" are arbitrary constants, depending on the initial
condition of the ion. C2n and D2n are the amplitudes of the
natural harmonics and nonlinear harmonics, respectively. β is
the frequency of the secular harmonic. C2n, D2n, and β can be
exactly solved from az and qz. For an initial ion velocity of zero,
the κ" is equal to zero and the Equation 7 becomes:

z ξð Þ ¼ κ
0X∞
n¼−∞

C2n cos 2nþ βð Þξ þ D2n cos 2nþ 3βð Þξ½ � ð8Þ

The non-zero initial ion velocities are discussed in
BIntroduction^ in the Supporting Information.

Substituting Equation 8 into Equation 3, it yields
(BTheory^ in the Supporting Information):

κ0
X∞
n¼−∞

2nþ βð Þ2 − a
h i

C2n þ qC2n�2 −
ε
2r20

aκ02Sum1þ ε
2r20

qκ02Sum2
� �

cos 2nþ βð Þþ

2nþ 3βð Þ2 − a
h i

D2n þ qD2n�2 −
ε
2r20

aκ02Sum3þ ε
2r20

qκ02Sum4
� �

cos 2nþ 3βð Þ

8>><
>>:

9>>=
>>;

¼ 0 ð9Þ

where
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Sum1 ¼
X

iþ j−k ¼ n;
i− jþ k ¼ n;
‐iþ jþ k ¼ n

C2iC2 jC2k þ 3
X

−i− jþk¼n

C2iC2 jD2k þ 3
X∞

iþ j−k ¼ n;
i− jþ k ¼ n

C2iD2 jD2k ð10Þ

Sum2 ¼
X

iþ j−k ¼ n� 1;
i− jþ k ¼ n� 1;
‐iþ jþ k ¼ n� 1

C2iC2 jC2k þ 3
X

−i− jþk¼n�1

C2iC2 jD2k þ 3
X∞

iþ j−k ¼ n� 1;
i− jþ k ¼ n� 1

C2iD2 jD2k ð11Þ

Sum3 ¼
X

iþ jþk¼n

C2iC2 jC2kþ3
X

i− jþ k ¼ n;
−iþ jþ k ¼ n

C2iC2 jD2k þ
X

iþ j−k ¼ n;
i− jþ k ¼ n;
‐iþ jþ k ¼ n

D2iD2 jD2k ð12Þ

Sum4 ¼
X

iþ jþk¼n�1

C2iC2 jC2k þ 3
X

i− jþ k ¼ n� 1;
−iþ jþ k ¼ n� 1

C2iC2 jD2k þ
X

iþ j−k ¼ n� 1;
i− jþ k ¼ n� 1;
‐iþ jþ k ¼ n� 1

D2iD2 jD2k ð13Þ

The functions, such as ∑
g1 i; j; kð Þ ¼ n;
g2 i; j; kð Þ ¼ n

f i; j; kð Þ, are defined as

X
g1 i; j; kð Þ ¼ n;
g2 i; j; kð Þ ¼ n

f i; j; kð Þ ¼
X

g1 i; j;kð Þ¼n

f i; j; kð Þ þ
X

g2 i; j;kð Þ¼n

f i; j; kð Þ ð14Þ

where ∑
g i; j;kð Þ¼n

f i; j; kð Þ means the summation of f(i, j, k) for all

the i, j, and k, such that g(i, j, k) = n.
The Equation 9 can only be satisfied such that

2nþ βð Þ2 −a
h i

C2n þ qC2n�2 −
ε
2r20

aκ02Sum1þ ε
2r20

qκ02Sum2 ¼ 0

f or − ∞ < n < ∞ ð15Þ
ð15Þ

2nþ 3βð Þ2 −a
h i

D2n þ qD2n�2 −
ε
2r20

aκ02Sum3þ ε
2r20

qκ02Sum4 ¼ 0

f or − ∞ < n < ∞ ð16Þ
ð16Þ

By solving Equations 15 and 16, the β, C2n/C0 (n ≠ 0), and
D2n/C0 can be obtained, and the NME is analytically solved. In
this article, Equations 15 and 16 were solved by using the
Gauss-Seidel relaxation method with a truncation to C±8 and
D±8 (i.e., n = ±4) [33]. It should be noted that the current HB
method is inapplicable for instable ion motion, e.g., at the
stability boundary, β = 1, and at the nonlinear resonance
condition, β = 0.5. But the nonlinear resonance effect can

still be observed from the stable ion motions in the vicinity of
β = 0.5, e.g., β = 0.49 and 0.51.

Results and Discussion
To illustrate the impact of the nonlinear harmonics in the ion
motion, their amplitudes in comparison with those of ion
secular motion, D2n/C0, were first calculated by using the HB
method. In the nonlinear 3β harmonic series, the 3β and –2 + 3β
harmonics have the largest amplitudes (Figure 1). As an exam-
ple, their amplitudes, D0/C0 (black curve), and D-2/C0

(red curve), along the q-axis at ε = 0.1 and ε = –0.1, are shown
in Figure 2a and b, respectively. The initial displacement and
velocity of the ion were set to 0.1 r0 and 0, respectively. This
initial condition was used throughout this article, unless other-
wise specified. From Figure 2, it can be found that for most
q values, the D0/C0 and D-2/C0 are very small, typically less
than 1%, regardless of the polarity of the superimposed octo-
pole field. However, obviously increased amplitudes can be
observed at high q values, e.g, q > 0.8, and at the nonlinear
resonance condition, e.g., around β = 0.5 (or q = 0.64). Espe-
cially, the nonlinear –2 + 3β harmonic (red curve) can even
achieve an amplitude greater than 10% of the ion secular
motion (i.e., D-2/C0 > 0.1). The result indicates that at those
q values, the 3β harmonic series should have large impact on
ion motion.

To confirm the assumption, the HB methods with and
without (i.e., D2n = 0) 3β harmonic series are employed. The
ion trajectories at q = 0.8 and q = 0.625 (or β = 0.4931) with
ε = 0.1, were calculated and shown in Figure 3a and b, respec-
tively. The results with and without 3β series are represented by
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the red and blue curves, respectively. As an accuracy standard,
the numerical results calculated by the 4th RK method are also
shown for comparison. From Figure 3c and d, enlarged plots of
Figure 3a and b respectively, it is obvious that the HB method
with 3β series (red curve) has significantly higher accuracy
than that without 3β series (blue curve). Moreover, with 3β
series, the analytical HB (red curve) and the numerical 4th RK
results (black curve) are almost the same. This should not be a
surprise because all the ion motion harmonics appearing in the
numerical frequency spectrum (Figure 1) have now been fully
considered in the HB method. To clearly show the influence of
the 3β series, the ion trajectories contributed by the 3β series are
extracted from Figure 3a and b and shown in Figure 3e and f,
respectively. In Figure 3e, it can be found that at q = 0.8, all the
harmonics in the 3β series together have an amplitude of 0.006
r0 (red curve), which is ca. 1.5% of the ion trajectory amplitude,

0.4 r0 (Figure 3a). However, the 3β series can introduce an
error (i.e., zdiff = zHB(without 3β series) – zHB(with 3β series)) of 0.04 r0
(or 10% of the ion trajectory amplitude) into the HB method
(blue curve). This is because in the HB method, the 3β series
has both direct (Equation 8) and indirect impacts (Equation 15)
on the ion trajectory. Herein, the direct impact means that the
3β series, D2n, itself is a composition of the ion trajectory
amplitude. The indirect impact means that the D2n is also
coupled with ion natural harmonics, C2n. The result of
Figure 3e indicates that even a small 3β series (e.g., 1.5%)
may give rise to large calculation error (e.g., 10%) in the
theoretical methods. In Figure 3f, it can be found that at around
nonlinear resonance, q = 0.625, the amplitude of the 3β series,
0.02 r0, is ca. 10% of the ion amplitude, 0.2 r0 (Figure 3d).
Therefore, it is not a surprise that neglecting such a large 3β
series can produce the same large calculation error.
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Figure 4a and b show the maximum of ion trajectory am-
plitude, zmax, along the q-axis at ε = 0.1 and ε = –0.1, respec-
tively. In Figure 4, it can be observed that the zmax has an
obvious resonant peak around the nonlinear resonance condi-
tion, β = 0.5 (green circle regions), where the resonant pairs of
nonlinear harmonics and natural harmonics match with each
other, e.g., 2 - 3β = β. The increment of the maximum ampli-
tude with the q values can be attributed to the rf heating effect.
To explore the underlying mechanism of the nonlinear reso-
nance, the amplitudes of ion natural harmonics, C-2/C0 (black
curve) and C2/C0 (red curve), at ε = 0.1 and ε = –0.1 are shown
in Figure 4c and d, respectively. The ion secular frequency,
β, at ε = 0.1 and ε = –0.1 are shown in Figure 4e and f,
respectively. In Figure 4c–f, no resonant patterns can be ob-
served in the natural harmonics with respect to the amplitudes
(Figure 4c and d) and the frequencies (Figure 4e and f). To-
gether with the results in Figure 2, it is obvious that it is the
nonlinear 3β harmonic series alone that produces the nonlinear
resonance effect. This phenomenon is dramatically different
from that in the normal resonance. For example, in the dipolar
resonance [34], when the frequencies of the ion secular motion
and external AC excitation match with each other, both of them
should have resonant peaks and they together produce the
dipolar resonance.

To discover more interesting effects, the nonlinear reso-
nances (green circle regions in Figure 4) under a series of
different superimposed octopole fields were studied. Figure 5a
shows the zmax as a function of q under positive superimposed
octopole fields: ε = 0.01 (red curve), ε = 0.05 (blue curve), and
ε = 0.1 (green curve). Figure 5b shows the zmax as a function
of q under negative superimposed octopole fields: ε = –0.01
(red curve), ε = –0.05 (blue curve), and ε = –0.1 (green curve).

The zmax as a function of q in the quadrupole field, ε = 0 (black
curve) is also shown for comparison. In Figure 5, it can be
observed that greater nonlinear resonant responses, zmax, can be
observed at larger nonlinear field strengths, |ε|. This is because
larger |ε| can produce larger 3β series,D2n, which plays a role of
external excitation as in the dipolar resonance. Especially, it is
interesting to find that nonlinear resonant excitation (i.e., in-
creased amplitude compared with the background, ε = 0) and
absorption peaks (i.e., decreased amplitude) can be observed in
one spectrum, simultaneously. For instance, in the positive
superimposed octopole fields (Figure 5a), the excitation and
absorption peaks appear at β < 0.5 and β > 0.5, respectively. In
the negative superimposed octopole fields (Figure 5b), the
excitation and absorption peaks appear at β > 0.5 and β < 0.5,
respectively. This is the second dramatic difference between the
nonlinear and normal resonances. For the normal resonance,
only one resonant pattern, either excitation or absorption, can be
observed in one spectrum [34]. The ion excitation and de-
excitation at nonlinear resonance can accelerate and delay the
ion ejections in the dipolar resonance experiments [30]. In a
linear ion trap, when the external AC frequency is scanned
around the nonlinear resonance condition, simultaneous incre-
ment and decrement of the bandwidth of the frequency response
profiles (FRP, i.e., ion ejection time versus the external AC
frequency) have been observed.

The nonlinear resonance potentially gives rise to the ion loss
and the sensitivity degradation of the ion trap instruments
[12–16]. It is meaningful to predict the rf working voltage
(represented by the q value), at which the nonlinear resonance
occurs. However, because of the frequency shift, the q value at
the nonlinear resonance condition (i.e., β = 0.5), qnr, is also
dependent on the superimposed octopole, ε, and the initial
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condition of the ion, [z(0)/r0]
2 [17, 22, 26]. Figure 6a shows

the β as a function of q under positive superimposed octopole
fields: ε = 0.1 (black curve), ε = 0.05 (red curve), and
ε = 0.01 (blue curve). Figure 6b shows the β as a function of
q under negative superimposed octopole fields: ε = –0.1
(black curve), ε = –0.05 (red curve), and ε = –0.01 (blue curve).
From Figure 6a and b, it can be observed that around β = 0.5,
the β and q values have good linear correlation. As a result,
even if the HB method is inapplicable at β = 0.5, the qnr can be
obtained by the linear fitting from its adjacent values between

β = 0.49 and β = 0.51 (inset of Figure 6a). Using the method,
the qnr at different ε and [z(0)/r0]

2 were calculated. Figure 6c
shows the qnr as a function of ε at z(0) = 0.1 r0. Figure 6d shows
the qnr as a function of [z(0)/r0]

2 at ε = 0.1. It can be found that
the qnr has good linearity with the ε (Figure 6c) and [z(0)/r0]

2

(Figure 6d). As a result, the qnr can be conveniently evaluated
by using an approximation equation, which yields:

qnr ¼ qnr0 1−
α
r20

εz2 0ð Þ
� �

ð17Þ
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where qnr0 = 0.6393 is the qnr at ε = 0, and α ≈ 9.1 is the slope of
the linear fitting (Figure 6c and d). The Equation 17 can help
predict the nonlinear resonance conditions in various practical
ion trap operations, and thus avoid the possible sensitivity
degradation in the ion trap experiments.

Conclusion
The HB method is a high-accuracy theoretical tool for charac-
terizing the nonlinear effects in the Paul trap. For an ion in the
quadrupole field with superimposed octopole field, its nonlin-
ear harmonic motions and the perturbed natural harmonic
motions are mutually coupled (Equations 15 and 16). Without
the consideration of nonlinear harmonics, the real ion motion or
the individual natural harmonic motions cannot be accurately
obtained. The nonlinear harmonics give rise to the nonlinear
resonance effect at β = 0.5, when they match with the natural
harmonics, e.g., 2 - 3β = β. At nonlinear resonance, it is the
nonlinear ion harmonics that contribute to the nonlinear
resonance effect, not the natural ion harmonics. Both the exci-
tation and absorption peaks can be observed at the two sides of
β = 0.5, simultaneously. The peak’s position (i.e., at β > 0.5 or
β < 0.5) is determined by the polarity of the superimposed
octopole field. The rf voltages, q, at β = 0.5 in various ion trap
experimental conditions are also given in Equation 17.

Acknowledgments
The authors acknowledge support for this work by grants from
the National Natural Sciences Foundation of China (grants no.
21175139, 21305144, 21475139, 21205123, 21321003, and
21127901), and the Chinese Academy of Sciences.

References
1. Paul, W., Steinwedel, H.: A new mass spectrometer without a magnetic

field. Z. Naturforsch. 8A, 448–450 (1953)
2. Dawson, P.H.: Quadrupole mass analyzers: performance, design, and some

recent applications. Mass Spectrom. Rev. 5, 1–37 (1986)
3. March, R.E.: An introduction to quadrupole ion trap mass spectrometry. J.

Mass Spectrom. 32, 351–369 (1997)
4. Beaty, E.C.: Calculated electrostatic properties of ion traps. Phys. Rev. A.

33, 3645–3656 (1986)
5. March, R.E., Todd, J.F.J.: Radio frequency quadrupole technology: evolu-

tion and contributions to mass spectrometry. Int. J. Mass Spectrom. 377,
316–328 (2015)

6. Wells, J.M., Badman, E.R., Cooks, R.G.: A quadrupole ion trap with
cylindrical geometry operated in the mass-selective instability mode. Anal.
Chem. 70, 438–444 (1998)

7. Ouyang, Z.,Wu, G., Song, Y., Li, H., Plass,W.R., Cooks, R.G.: Rectilinear
ion trap: concepts, calculations, and analytical performance of a new mass
analyzer. Anal. Chem. 76, 4595–4605 (2004)

8. Moradian, A., Douglas, D.J.: Mass selective axial ion ejection from linear
quadrupoles with added octopole fields. J. Am. Soc. Mass Spectrom. 19,
270–280 (2008)

9. Wells, J.M., Plass, W.R., Patterson, G.E., Ouyang, Z., Badman, E.R.,
Cooks, R.G.: Chemical mass shifts in ion trap mass spectrometry: experi-
ments and simulations. Anal. Chem. 71, 3405–3415 (1999)

10. Michaud, A.L., Frank, A.J., Ding, C., Zhao, X., Douglas, D.J.: Ion excita-
tion in a linear quadrupole ion trap with an added octopole field. J. Am. Soc.
Mass Spectrom. 16, 835–849 (2005)

11. Xiong, C., Zhou, X., Zhang, N., Zhan, L., Chen, Y., Chen, S., Nie, Z.: A
theoretical method for characterizing nonlinear effects in Paul traps with
added octopole field. J. Am. Soc. Mass Spectrom. 26, 1338–1348 (2015)

12. Dawson, P.H., Whetten, N.R.: Nonlinear resonances in quadrupole mass
spectrometers due to imperfect fields I. The quadrupole ion trap. Int. J.
Mass Spectrom. Ion Phys. 2, 45–59 (1969)

13. Wang, Y., Franzen, J., Wanczek, K.P.: The nonlinear resonance ion trap.
Part 2. A general theoretical analysis. Int. J. Mass Spectrom. Ion Processes
124, 125–144 (1993)

14. Eades, D.M., Johnson, J.V., Yost, R.A.: Nonlinear resonance effects during
ion storage in a quadrupole ion trap. J. Am. Soc. Mass Spectrom. 4, 917–
929 (1993)

15. Franzen, J.: The nonlinear ion trap. Part 5. Nature of nonlinear resonances
and resonant ion ejection. Int. J. Mass Spectrom. Ion Processes 130, 15–40
(1994)

16. Zhou, X., Xiong, C., Zhang, S., Zhang, N., Nie, Z.: Study of nonlinear
resonance effect in Paul trap. J. Am. Soc. Mass Spectrom. 24, 794–800
(2013)

17. Zhou, X., Zhu, Z., Xiong, C., Chen, R., Xu, W., Qiao, H., Peng, W., Nie, Z.,
Chen, Y.: Characteristics of stability boundary and frequency in nonlinear ion
trap mass spectrometer. J. Am. Soc. Mass Spectrom. 21, 1588–1595 (2010)

18. Zhou, X., Xiong, C., Xu, G., Liu, H., Tang, Y., Zhu, Z., Chen, R., Qiao, H.,
Tseng, Y., Peng, W., Nie, Z., Chen, Y.: Potential distribution and trans-
mission characteristics in a curved quadrupole ion guide. J. Am. Soc. Mass
Spectrom. 22, 386–398 (2011)

19. Dehmelt, H.G., Bates, D.R., Immanuel, E.: Radiofrequency spectroscopy
of stored ions. I: storage. Adv. At. Mol. Phys. 3, 53–72 (1968)

20. Gao, C., Douglas, D.J.: Can the effective potential of a linear quadrupole be
extended to values of theMathieu parameter q up to 0.90? J. Am. Soc.Mass
Spectrom. 24, 1848–1852 (2013)

21. Doroudi, A.: Calculation of coupled secular oscillation frequencies and
axial secular frequency in a nonlinear ion trap by a homotopy method.
Phys. Rev. E 80, 056603 (2009)

22. Doroudi, A.: Comparison of calculated axial secular frequencies in nonlin-
ear ion trap by homotopy method with the exact results and the results of
Lindstedt-Poincare approximation. Int. J. Mass Spectrom. 296, 43–46
(2010)

23. Doroudi, A., Asl, A.R.: Calculation of secular axial frequencies in a
nonlinear ion trap with hexapole, octopole and decapole superpositions
by amodified Lindstedt-Poincare method. Int. J. Mass Spectrom. 309, 104–
108 (2012)

24. Sevugarajan, S., Menon, A.G.: Field imperfection induced axial secular
frequency shifts in nonlinear ion traps. Int. J. Mass Spectrom. 189, 53–61
(1999)

25. Sevugarajan, S., Menon, A.G.: Transition curves and iso-βu lines in non-
linear Paul traps. Int. J. Mass Spectrom. 218, 181–196 (2002)

26. Zhao, X., Granot, O., Douglas, D.J.: Quadrupole excitation of ions in linear
quadrupole ion traps with added octopole fields. J. Am. Soc. Mass
Spectrom. 19, 510–519 (2008)

27. Wang, Y., Huang, Z., Jiang, Y., Xiong, X., Deng, Y., Fang, X., Xu, W.:
The coupling effects of hexapole and octopole fields in quadrupole ion
traps: a theoretical study. J. Mass Spectrom. 48, 937–944 (2013)

28. Guo, D., Wang, Y., Xiong, X., Zhang, H., Zhang, X., Yuan, T., Fang, X.,
Xu, W.: Space charge induced nonlinear effects in quadrupole ion traps. J.
Am. Soc. Mass Spectrom. 25, 498–508 (2014)

29. Guidugli, F., Traldi, P.: A phenomenological description of a black hole for
collisionally induced decomposition products in ion-trap mass spectrome-
try. Rapid Commun. Mass Spectrom. 5, 343–348 (1991)

30. Williams, S., Siu, K.W.M., Londry, F., Baranov, V.: Study of the enhance-
ment of dipolar resonant excitation by linear ion trap simulations. J. Am.
Soc. Mass Spectrom. 18, 578–587 (2007)

31. Du, Z., Douglas, D.J., Konenkov, N.: Peak splitting with a quadrupolemass
filter operated in the second stability region. J. Am. Soc. Mass Spectrom.
10, 1263–1270 (1999)

32. Xiong, C., Zhou, X., Zhang, N., Zhan, L., Chen, S., Nie, Z.: Nonlinear
effects in Paul traps operated in the second stability region: analytical
analysis and numerical verification. J. Am. Soc. Mass Spectrom. 25,
1882–1889 (2014)

33. Press, W.H., Teukolsky, S.A., Vetterling, W.T., Flannery, B.P.: Press
syndicate of the University of Cambridge (2nd ed.): New York (1992)

34. Zhao, X., Douglas, D.J.: Dipole excitation of ions in linear radio frequency
quadrupole ion traps with added multipole fields. Int. J. Mass Spectrom.
275, 91–103 (2008)

C. Xiong et al.: Ion Nonlinear Harmonics in the Paul Trap 351


	into Nonlinear Resonance Effect
	Abstract
	Section12
	Section13
	Section24
	Section25

	Section16
	Section17
	Acknowledgments
	References


