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° o] Abstract. SEQUEST has long been used to identify peptides/proteins from their
0 tandem mass spectra and protein sequence databases. The algorithm has proven
to be hugely successful for its sensitivity and specificity in identifying peptides/
proteins, the sequences of which are present in the protein sequence databases.
In this work, we report on work that attempts a new use for the algorithm by applying it
to search a complete list of theoretically possible peptides, a de novo-like sequenc-
ing. We used freely available mass spectral data and determined a number of unique
peptides as identified by SEQUEST. Using masses of these peptides and the mass
accuracy of 0.001 Da, we have created a database of all theoretically possible

peptide sequences corresponding to the precursor masses. We used our recently
developed algorithm for determining all amino acid compositions corresponding to a mass interval, and used a
lexicographic ordering to generate theoretical sequences from the compositions. The newly generated theoret-
ical database was many-fold more complex than the original protein sequence database. We used SEQUEST to
search and identify the best matches to the spectra from all theoretically possible peptide sequences. We found
that SEQUEST cross-correlation score ranked the correct peptide match among the top sequence matches. The
results testify to the high specificity of SEQUEST when combined with the high mass accuracy for intact peptides.
Keywords: SEQUEST, Mass distribution of peptides, All theoretically possible peptides, De novo Peptide

sequencing

Abbreviations Da Dalton; FDR False discovery rate; FFT Fast Fourier Transform; HCD Higherenergy colli-
sional dissociation; mDa milliDalton; MS Mass spectrometry; PSM Peptide spectrum match; PTM Post-transla-
tional modification; Sp score Preliminary score; XCorr Cross-correlation score.
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Introduction

High throughput protein identification using tandem mass
spectrometry coupled to liquid chromatography is a well-
established and widely used technology for protein identifica-
tion [1, 2]. The methodology has various implementations but
can, in general, be classified into three major components,
which are sample preparation (protein extraction, protein sep-
aration and digestion, peptide separation using chromatogra-
phy) mass spectrometry and software for protein identification
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using tandem mass spectra and protein sequence databases [1].
The automated protein identification using software is a very
important component in the methodology as the number of
tandem mass spectra are in the tens of thousands and manual
annotation of spectra is not feasible. SEQUEST [3] was one of
the first database search engines developed to perform the task
of the automating protein identification. Along with the other
very few early search engines of the time, Mascot (probability
based) [4], error tolerant [5], and high mass accuracy concept
[6], it has contributed greatly to the development of the prote-
omics field and to its becoming widely accessible. Since the
development of the original search engines, a number of new
software have been developed that emphasized diverse and
increasing needs of the field. We can only note a few: proba-
bilistic OMSSA [7], X!Tandem [8], MyriMatch [9], Byonic
[10], Inspect [11, 12], and high mass accuracy Andromeda
[13]. The concepts of the probability-based peptide
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identifications and databases have also been employed for
modeling protein identifications from intact protein fragmenta-
tions [14, 15]. One of the important features of SEQUEST is its
multiple scoring criteria. At first, it filters the database peptide
sequences for candidate peptides using enzymatic specificity
and experimental precursor mass including its accuracy. For
each candidate peptide, a preliminary score, Sp, is computed.
Sp is fast and all database peptides meeting the mass filtering
criterion are assigned Sp scores. In the second stage, a certain
number (500 by default) of top Sp scoring peptides are used for
cross-correlation analysis with the experimental spectrum, to
generate XCorr. This step involves multiple fast Fourier trans-
formations (FFTs) per candidate peptide and is normally
slower than Sp scoring. To accelerate this process for high
mass accuracy data where the mass arrays are large, FFT
libraries referred to as the fastest FFT in the West were adapted
into the SEQUEST [16]. The XCorr reports the correlation
values between the experimental spectrum and theoretical pep-
tide sequence, Sp scoring accounts for total (explained) ion
current. The other score, ACn, is the difference between the
XCorr of a peptide and the highest ranked peptide, normalized
by the XCorr of the latter. As the database sizes increased and
more candidate sequences were correlated against the experi-
mental spectra, it became necessary to provide a probability of
a peptide identification being a true/false positive. A large
number of research papers have explored different statistical
approaches to employ the SEQUEST scores to assign the
probability of false or true match [17-19]. SEQUEST-
identified peptides have been used for further bioinformatics
confirmations of post-translational modifications (PTMs), such
as phosphorylations [20-23]. In brief, SEQUEST has stimulat-
ed a large number of studies in bioinformatics and statistical
approaches to automate and advance protein identification,
PTM determination, quantification, and many other diverse
applications of the proteomics. This is reflected in the number
of citations of the original SEQUEST paper, which is currently
the most cited article in the JASMS. It has been serving as an
inspiration for bioinformatics software development in the field
of proteomics, metabolomics, and other research areas using
mass spectrometry-based high throughput sequencing. In this
issue of JASMS, Dr. David Tabb provides a comprehensive
chronicle of the SEQUEST development and multiple software
that it has influenced. Recent review papers describe protein
identification [24] and interpretation of mass spectra [25].

In this paper, we report on our findings in using SEQUEST
for a de novo-like sequencing. Originally, SEQUEST was
designed as a database search engine to identify peptides from
their tandem mass spectra and protein sequence databases.
Here we adapt the algorithm for a small scale sequencing of
all theoretically possible peptides by making use of our algo-
rithm for generating amino acid compositions of all theoreti-
cally possible peptides from their intact masses and the mass
accuracy of intact peptides [26, 27]. We sought to find out how
SEQUEST scoring of a true match would fair with the large
number of peptides that are analyzed in an unbiased de novo-
like sequencing [28-35]. Our secondary purpose was to find
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out how large XCorrs can be obtained. The approach may also
contribute to false discovery rate control [36, 37] based on the
use of decoy databases.

In the Methods section, we describe the workflow and
generation of theoretical peptide sequences. The Results sec-
tion describes the application of the approach to study more
than 1400 tandem mass spectra from a publicly available data
set [38].

Methods

We start with identification of peptide sequences using their
tandem mass spectra and protein sequence databases (UniProt)
[39] utilizing SEQUEST. Then, given the mass of an intact
peptide and the enzymatic specificity of protein digest, we
generate the list of all theoretically possible amino acid com-
positions. The compositions are converted into peptide se-
quences using lexicographic ordering. The peptide sequences
for each precursor mass are assembled into a theoretical data-
base of candidate sequences. SEQUEST is used to search the
theoretical database of sequences with the tandem mass spectra
of the peptide. The procedure essentially amounts to the de
novo-like sequencing—without consideration for PTMs.

Generating Theoretical Peptide Sequences

Here, we briefly review the procedure for generating peptide
sequence for a given mass interval (determined by the mass of
peptide and the mass accuracy of the measurement). A peptide
is a sequence of letters from a 20-letter alphabet 4, the letters of
which correspond with the 20 amino acids. This sequence is a
realization from a composition represented by a numerical
vector (aj, a, ... , dxy), whose jth component is the number
of occurrences of the jth letter (amino acid) in the sequence, j =
1,2, ..., 20. The number of the amino acid compositions of
peptides of length L is given by the Bose-Einstein statistics:

N+L-\ _ (N+L-1)
( L )_ LI(N-1)!

The number of all sequences of length L, with a given
composition, is a multinomial coefficient:

L
alay! ... ay!

and the number of all distinct sequences is N*. Here N (=20) is
the number of amino acids in the alphabet. The formulas are
used to confirm the accuracy of the algorithms for determining
amino acid compositions and the following sequence
generations.

We have previously used our algorithm to build and
study the mass distribution of all theoretically possible
peptides [40] and applied them to distinguish
phosphopeptides from unmodified peptides [41]. The
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algorithm accounts for the digest specificity and number of
missed cleavages. Here, we used this algorithm to generate
amino acid compositions for all sequences, the mass of
which fits the mass of an intact peptide with a given mass
accuracy. The compositions are then used by a lexico-
graphic algorithm to generate all possible unique peptide
sequences from the compositions. Since the number of
sequences is very large (20%), we made use of the mass
degeneracy of the Lue and Ile by using Lue only to reduce
the complexity of theoretical databases. This effectively
reduces the number of amino acids to 19. We used full
trypsin digest specificity with no missed cleavages. To
reduce the complexity, we have considered only peptides
with intact mass less than 1200 Da, and have assumed
mass window of 0.002 Da (2 mDa) centered on the pre-
cursor mass.

We used SEQUEST to search the theoretical sequence
databases and identify the best matches to the spectra. Then
we compared these peptides with the results that SEQUEST
has identified from the UniProt database. No PTMs were
considered in this study. Mass accuracy was 1 mDa for precur-
sor ions. Figure 1 summarizes the workflow used in this study.

Results

To evaluate our approach, we used spectra obtained from first
strong anion exchange fraction of MCF7 cell line,
20100719 Velosl TaGe SA MCF7 Ol.raw [37]. The mass
spectra were acquired using Orbitrap Velos, the product ions
were generated using higher energy collisional dissociation
(HCD). As mentioned above, because of the computational
complexities, we have limited the range of peptides to those
with masses less than 1200 Da. Only +2 charged peptides were

Tandem MS pep_comp
A4 N
UniProt Sequest Theoretical
Database q Peptides
Peptide De novo
Sequence Sequence

Figure 1. The workflow of the SEQUEST peptide identification
using theoretically complete peptide sequences. The green
colored path indicates normal database search procedure that
SEQUEST is used for. The blue path indicates the generation of
theoretical peptides, creation of the theoretical FASTA data-
base, and de novo like sequence identification with SEQUEST
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considered. For each peptide, we then created a separate
FASTA database of all theoretical peptide sequences that fit a
2 mDa mass window around the peptide’s mass. We then used
these databases in SEQUEST searches to determine the best
match to the corresponding tandem mass spectra. In total, there
were 1400 spectra in the data set.

An example of the results is the peptide sequence,
GAGTDDHTLIR, from human protein Annexin A5, with
UniProt ID P08758. It has the mass of (monoisotopic mass
of the amino acid sequence plus the mass of proton)
1155.57528 Da. SEQUEST identifies this peptide with
XCorr value of 2.71. We used the peptide composition
algorithm [26] to generate all amino acid compositions in
the mass range of [1155. 574, 1155.576] Da. There were
802 unique compositions (after accounting for the Leu and
Ile degeneracy). Using lexicographic ordering, from the
compositions we generated a new peptide sequence data-
base, specifically for this peptide. The size of the database
was about 9 Gb. It had more than 600,000 candidate
peptides for the spectrum. The best scoring peptide among
the theoretical peptides was QGTDDHTLLR. It had an
XCorr of 2.75. No other theoretical peptide sequence
scored higher than the true peptide sequence, GAGT
DDHTLIR. We note that the two sequences differ only
on the prefix, “Q” in theoretical peptide versus “GA” in
the true peptide. The annotated spectrum of the peptide is
shown in Figure 2. Most of the y-ions of the peptide were
observed in the tandem mass spectrum.

The peptide SGGGGGGGGSSWGGR of heterogeneous
nuclear ribonucleoprotein A0, UniProt ID QI13151, was
one of the higher mass peptides with the mass of
1192.50899 Da. It had XCorr value of 4.22. The
[1192.508, 1192.510] Da mass interval was used to gener-
ate theoretical peptide compositions for this peptide. There
were 983 unique compositions. After converting the com-
positions to sequences, the database size of the theoretical
peptides exceeded 16 Gb. It had more than 1.2 million
candidate sequences. The best scoring peptide among the
theoretical peptides was the sequence, GSGGGGGGGS
SWNR. It had XCorr score of 4.2. SEQUEST correctly
identified this peptide among all theoretically possible
peptides for this tandem mass spectrum. In this case as
well, we see that there is long subsequence, GGGG
GGGSSW, common to the true peptide and best scoring
theoretical peptide sequences.

Table 1 summarizes the results for a sample of six
spectra that were used in this study. The peptides that we
have chosen did not have very high XCorr values, in
general. In spite of this, SEQUEST produced results where
the true peptides were always amongst the top highest
scoring peptides in the large, unbiased databases compris-
ing all theoretically possible peptides. This testifies to high
specificity of SEQUEST when combined with the high
mass accuracy for intact peptides. Among the small num-
ber of peptides in this table, the misassignments by
SEQUEST included replacement of Ala and Gly by Gln,



R. G. Sadygov: Pseudo De Novo Peptide Sequencing with SEQUEST

20100719_Velos1_TaGe_SA_MCF7_01#10962 RT:61.49 AV:1 NL: 3.68E5
T: FTMS + ¢ NSI d w Full ms2 578.29 @hcd40.00 [100.00-1170.00]

1004 75.12 Ya

Y1 v
/

©
o

502.34
90

253.09
‘ 271.18

239.11 | Yo

| b3 288.20

\ ‘L215.1z
\

368.12

be

4
354.14

336.19 ‘

‘ 526.19

609.2

)

[4)) [$)]
o o
NN N N N T N N R A N T |
O
\V]
i w

il L A | IM ‘WL il

o

564.24 621.38

1861

GAGTDDHTLIR
Ys
"

639.39

Y6

754.42

Y7

869.45

Ys Yo

851.4. L 5
L 933\83970 o i ‘ I 110\0'841165'01
|

665.29 722.31
‘ 694.32

100 400 500 600

T T T T T T [AAAN RARERARA AR
700 800 900 1 000 1100

m/z

Figure 2. Annotated HCD spectrum of the peptide GAGTDDHTLIR. The blue color indicates y-ions and the red color indicates the
b-ions. All y-ions, except for y;o have been observed in the spectrum. The XCorr value of this peptide was 2.71. The search of the all
theoretically possible peptides using SEQUEST returns a slightly different sequence as the highest XCorr peptide, QAGTDDHTLIR,
XCorr = 2.75. This was the only theoretical peptide to score higher than the true peptide

two Glys by Asn, and in some cases, amino acid
scrambling.

In Figure 3, we show the scatter plot of XCorrs computed
for the peptides identified from UniProt and theoretical se-
quence databases for all of the spectra used in this study
(1413 spectra). For 465 spectra (~33% of all spectra) the
sequences identified from the theoretical and UniProt databases

were identical (as mentioned above, we did not differentiate

between Leu and Ile). In addition, 157 peptide sequences (11%
of the total) in UniProt and the corresponding theoretical pep-
tides had the same amino acid compositions. The complete list
of all scan numbers, identified sequences, and their XCorrs are
provided in the Supplementary Materials. The XCorrs for
theoretical peptides are always higher than or equal to the
corresponding values for UniProt database peptides. For
SEQUEST identifications, an important value has been the

Table 1. Summary for the Peptide Sequences, Their Tandem MS Scan Numbers (from the raw file 20100719 Velosl TaGe SA MCF7 0Ol.raw [37]), and

Corresponding XCorrs

Peptide Scan Mass® XCorr® Theoretical peptide
GSGGGSSGGSIGGR 5202 1092.503 3.76/3.73 GSGGGSSGGSLNR
SGGGGGGGGSSWGGR 6946 1192.509 4.22/42 GSGGGGGGGSSWNR
GAGTDDHTLIR 10962 1155.575 2.71/2.75 QGTDDHTLLR
LGSLVENNER 13339 1130.580 2.23/2.31 LGSLVENGGER
IVQMTEAEVR 15962 1175.609 2.5/2.68 VLAGMTEEAVR
LTMQVSSLQR 18267 1162.624 2.5/2.4 TLAMGVSSGALR

Underlined are the common subsequences between the actual and theoretical peptide sequences. All precursors were +2 charged. All true peptides were among the
three highest scoring peptides in their respective SEQUEST searches against the theoretical peptide databases
“The XCorrs are for the true peptide (the first score) and the best scoring theoretical peptide (the second score)

"Shown is the mass of a peptide’s monoisotopic mass plus the proton mass
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Figure 3. The scatter plot of the XCorr values for the theoret-
ical and UniProt sequences. There were 465 (from the total of
1413) spectra for which the theoretical and database se-
quences were identical

ACn. This is the XCorr difference between the two highest
ranked sequences, scaled by the XCorr of the highest ranked
sequence. In Figure 4, we show the distribution for a similar
value, which is the XCorr difference between the theoretical,
XCorr™ and UniProt, XCorr”™, database peptides, scaled by
the XCorr of the theoretical peptide. The overall correlation
between the XCorr'' and XCorrV™ was 0.82 (Pearson’s cor-
relation). Pearson’s correlation coefficient between the adapted
ACn and XCorr™ is very small, 0.06, as can be seen from
Figure 4.
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We compared the two results from the two sequencing
strategies when a combined (forward and reverse) database is
used to control the false discovery rate (FDR) in the database
searching. For this small dataset, 643 peptide spectrum matches
(PSMs) passed the 1% FDR threshold; 202 of these PSMs had
identical sequences to those obtained from the de novo-like
sequencing; 87 of these PSMs (passing 1% FDR threshold) had
identical amino acid compositions, thus differing only by ami-
no acid scrambling from the corresponding sequences identi-
fied in our approach. Among the rest of the PSMs filtered at 1%
FDR, there were 80 sequences that had subsequences of at least
three amino acids long that were common to both results. We
note again that the size of the dataset is very small, and while
FDR filtering helps to control some erroneous matches, the
distribution of XCorrs is not likely to represent the true sample
distribution for this system. We also tested using ACn as a cut-
off criterion (ACn > 0.1) in addition to FDR. The relative
statistics of the PSMs identified in the de novo-like sequencing
and database searching did not change substantially (about
5%).

Combined, forward and reverse, database searching is com-
monly used to control false discovery rate in large-scale peptide
identifications. As the peptide size increases, normally in the
species specific protein sequence databases, there are less pep-
tides with the similar mass, particularly when precursor masses
are determined in high resolution and mass accuracy instru-
ments. The current study accounted for all possible theoretical
peptides, as it generated a comprehensive list of all peptides.
We used a smaller mass window, 2 mDa, centered on the
peptide mass to control the size of the theoretical databases.
In most of the cases that we studied, there were long common
subsequences between the best theoretical match and the true
peptide match. The long common subsequence is important as
Blast searches of the theoretical peptides will likely map to
correct proteins if the common subsequences (with the true
peptides) are long. The study shows that for relatively short
peptides (<1200 Da), peptide mass accuracy is very important
and it will lead to correct peptide identifications even if the
protein sequence database is unbiased (nonspecies-specific)
and very large (includes all theoretically possible peptides).

We note that in the current implementation of this approach,
there are large computational resource requirements. It is pos-
sible to automate the approach and generate the theoretical
sequence databases on the “fly.” However, the databases are
still large and the computation takes considerably longer time
compared with the regular database search.

Conclusions

We have implemented a workflow that allowed us to use
SEQUEST scoring techniques for a de novo-like peptide iden-
tification. For every spectrum search, we have generated se-
quences of all possible peptides, using the intact peptide mass
with the mass accuracy of 1 mDa. For a given mass interval
(centered on intact peptide’s mass) we first determined all
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possible compositions. From the compositions, we generated
all theoretical sequences using a lexicographic ordering.
SEQUEST then was used to search the theoretically created
database against the experimental spectrum. We have applied
this approach to peptides with a mass less than 1200 Da. We
found that when used with high mass accuracy for intact
peptide mass, SEQUEST was highly specific; 33% of peptides
identified in the theoretical sequence databases were the same
as the corresponding original sequences in UniProt. In general,
only a few theoretical sequences scored higher than the true
peptide sequence in each case. In many cases, there were long
common subsequences between the theoretically identified
sequences and the true peptides. The current results testify to
the high specificity of SEQUEST.
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