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Abstract. Helium direct analysis in real time (He-DART) mass spectrometry (MS) of
some compounds, polysaccharides, for example, usually tends to be challenging
because of the occurrence of prominent in-source decay (ISD), which was consid-
ered as an undesired side reaction, as it complicated the resulting mass spectra. Our
approach is to take advantage of an efficient and practical method termed the
temperature-dependent ISD (TDISD) technique combined with fragmentation of the
dehydrated dimers using DARTQ-TOF tandemmass spectrometry for differentiation
of disaccharide isomers. In this study, cross-ring cleavages and non-ovalent com-
plexes were detected in the spectra of the saccharides. It was observed that the gas
heater temperature had a significant effect on the absence or presence of signal in

DART spectra. At high gas temperature, ions in high mass region began to appear. Based on the types of cross-
ring cleavages and noncovalent complexes, disaccharide isomers with different linkage positions can be
differentiated in both positive and negative ion modes at a lower DART gas temperature. Additionally, anomeric
configurations were assigned on the basis of the relative abundance ratio of m/z 198:342 obtained by the
comparison of the positive ion mode tandem mass spectrum of an α isomer dimer generated at higher DART
gas temperature and that of the corresponding β one. In general, this method is easy, fast, effective, and robust
for identifying disaccharide isomers.
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Introduction

Over the past few years, direct analysis in real time (DART)
has represented one of the numerous desorption/

ionization techniques that allows the rapid analysis of samples
or objects in their native state in the open environment. Com-
pared with conventional mass spectrometry (MS) techniques,

for instance, electrospray ionization (ESI), DART has clear
advantages, such as requiring minimal or no sample prepara-
tion, high throughput, lack of memory effects, and a relatively
low tendency toward ion suppression [1–3]. DART employs an
atmospheric pressure glow discharge for the ionization. Meta-
stable helium or nitrogen atoms, originating in the plasma, react
with ambient water, oxygen, or other atmospheric components
to ionize analytes [4–6]. The DART ionization mechanisms are
not yet fully understood, but the widely accepted mechanism is
Penning ionization [7]. During the gas-phase ionization pro-
cesses, protonation, deprotonation, and adduct ion formation
will occur in DART [8, 9].

Numerous DART MS methods have been developed to
rapidly analyze various samples in the past few years [10–
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14]. For instance, Liu’s research team reported its application to
the rapid determination of triazine herbicides in water [10].
Chernetsova and collaborators used DART MS to identify
phenolic compounds in propolis [14]. Although many types
of analytes have been studied, information on analyzing mono-
saccharides and disaccharides using DARTMS is limited [15].
The structures of the oligosaccharides are in many cases related
to their multiple important biological functions, while structur-
al analysis of carbohydrates is still challenging because of the
enormous structural diversity and microheterogeneity [16–18].
With the development of MS, MS-based technology has be-
come a pivotal methodology for structural elucidation of car-
bohydrates [19–28]. In our recent reports [22–24], oligosac-
charide isomers were successfully distinguished by laser-
enhanced in-source decay (LEISD) of matrix-assisted laser
desorption/ionization (MALDI) MS or 1-phenyl-3-methyl-5-
pyrazolone labeling technique in conjunction with electrospray
ionization (ESI) tandem mass spectrometry. The monosaccha-
ride structural isomers could exhibit different mobility drift
times in both drift tube and traveling wave ion mobility mass
spectrometry, depending on differences in their anomeric and
stereochemical configurations [26]. For disaccharide isomers,
they can be distinguished by traveling wave ion mobility mass
spectrometry using CO2 as drift gas [27] or data mining tech-
niques in conjunction with variable wavelength infrared mul-
tiple photon dissociation mass spectrometry [28].

Even if DART is generally considered as a soft ionization
process, a significant degree of in-source decay (ISD) fragmen-
tation can occur during the ionization event [6, 29, 30], espe-
cially when using He as DART gas. Interestingly, in-source
adducts after fragmentation were observed during analysis of
nucleotides by DART MS [30]. In the present paper, high
numbers of ISD fragments and complexes produced from
monosaccharides and disaccharides were observed for the first

time during our investigation of the feasibility of detecting
oligosaccharides using DART MS. The extent of fragmenta-
tion and generation of the complexes is dependent on the
DART gas temperature. The application of the identification
of the isomeric disaccharides is presented to demonstrate the
effectiveness of the temperature-dependent ISD (TDISD) of
DART quadrupole time-of-flight (Q-TOF) MS. The interesting
phenomena described in this paper will also provide new
insights into the complicated processes present in the DART
ion source.

Experimental
Chemicals and Reagents

Glucose and lactose were obtained from Beihua Fine Chemicals
Co., Ltd. (Beijing, China). Sophorose, maltose, isomaltose, and
nigerose were purchased from Sigma (St. Louis, MO, USA).
Cellobiose and gentiobiose were bought from J&K Chemical
Ltd. (Beijing, China). Laminaribiose was acquired from
Megazyme (Wicklow, Ireland). Kojibiose was acquired from
Carbosynth (Berkshire, UK). Methanol (HPLC grade) was ob-
tained from Fisher Chemical Company (Fair Lawn, NJ, USA).
High-purity helium and nitrogen (99.999%) were supplied by
Changchun Juyang Gas Co., Ltd. (Changchun, China). Ultra-
pure water (specific conductivity, 18.2 MΩ/cm) was produced
by a MilliQ device (Millipore, Milford, MA, USA).

DART MS Analysis

Analysis was performed on a fourth generation DART source
with standard voltage, pressure, and angling capability (SVPA)
(IonSense, Inc., Saugus, MA, USA) interfaced to a 6520 Q-
TOF mass spectrometer (Agilent Technologies, Palo Alto, CA,
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Figure 1. Structures of the set of disaccharides. (a) kojibiose (α1→2), (b) nigerose (α1→3), (c) maltose (α1→4), (d) isomaltose (α1→6),
(e) sophorose (β1→2), (f) laminaribiose (β1→3), (g) cellobiose (β1→4), (h) gentiobiose (β1→6), and (i) lactose (β1→4)
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USA). The DART ion source was operated with helium for
analysis and nitrogen in the standby mode. The DART gas
temperature was varied between 200 and 450°C, and gas flow
rates were set to 2 L/min. Grid electrode voltages were set to
350 V (positive ion mode) and –300 V (negative ion mode),
respectively. Automated acquisition of mass spectra was exe-
cuted by Agilent Mass Hunter Qualitative Analysis software.

The analytes were introduced into the DART sample gap
using the closed end of a melting point capillary tube that was
directly dipped into the sample vial. For each sample, the
capillary tube was held close to the DART cap for about 30 s,
which was positioned 1 mm below and 1 mm in front of the
tapered ceramic exit cap on the DART-SVPA source.

The settings for the Q-TOF mass spectrometer were as
follows: gas temperature, 250°C; drying gas, 2 L/min;
fragmentor voltage, 10-400 V; and capillary voltage, 3500 V.
Selected precursor ions were fragmented with collision-
induced dissociation (CID) at collision energy ranging from 1
to 20 V with ultra-high purity nitrogen gas (99.999%) to
preserve the signal intensity of the precursor ion in the range
of 5%–20%.

Results and Discussion
In this study, the DART ion source was interfaced with a time-
of-flight (TOF) mass spectrometer enabling accurate mass
measurements and providing elemental compositions. The

Domon and Costello nomenclature [31] has been employed
throughout this work to define the fragment ions from the
monosaccharides and disaccharides. According to this nomen-
clature, the ions retaining the charge at the nonreducing termi-
nus are designated as Ai for cross-ring cleavages, and Bi and Ci

for glycosidic bond cleavages. The subscript I represents the
number of the glycosidic bond cleavage, counted from the
nonreducing end. Those retaining the charge at the reducing
terminus are designated as Xj for cross-ring cleavages, and Yj

and Zj for glycosidic bond cleavages. The subscript j represents
the number of the glycosidic bond cleavage, counted from the
reducing end. In the case of ring cleavages, superscript num-
bers are given to show the ruptured bonds. Oligosaccharides
predominately produced ammonium-adducted peaks in the
positive ion mode. The structures of the nine disaccharide
isomers are shown in Figure 1.

Recognition of the Linkage Types of Disaccharide
Isomers

The observation of cross-ring fragmentation ions and
noncovalent complexes in the DART mass spectra of glucose
(Figure S-1 of Supporting Information) is hoped to be helpful
for distinguishing disaccharide isomers. With this aim, the
eight glucose-containing disaccharides were determined. As
anticipated, disaccharide isomers with different linkage posi-
tions were differentiated based on the types of cross-ring
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Figure 2. DART mass spectra of 0.1 mg/mL (a) kojibiose (α1→2), (b) nigerose (α1→3), (c) maltose (α1→4), and (d) isomaltose (α1→6)
at heated helium gas temperature of 250°C in positive ion mode
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cleavages. Figure 2 presents the DARTmass spectra of the four
α-linked disaccharides at heated helium gas temperature of
250°C in positive ion mode. Besides B- and Y-type ions,
valuable A-ions marked in bold are detected in Figure 2. The
mass spectrum in Figure 2a shows the base peak,m/z 240.1082,
which corresponds to 1,3A2 ion, whereas no cross-ring cleavage
ion is observed in Figure 2b. In comparison with Figure 2a,
besides the ion at m/z 240.1078, another cross-ring cleavage
ion at m/z 300.1292 is detected in Figure 2c. As for the α1→6
linked disaccharides, three noticeable A-ions at m/z 240.1080,
270.1187, and 300.1295 were generated (Figure 2d). In con-
trast, considerable noncovalent dimers such as the ions at m/z
225.0578 and 269.0881 were represented in the spectra of the
four α-linked disaccharide isomers in negative ion mode
(Figure 3). The characteristic fragment ions are also
marked in bold in Figure 3.

In an effort to determine whether the anomeric configura-
tions can be discriminated, the four β-linked disaccharides were
analyzed again in positive and negative ion modes under the
same experimental conditions (Figures S-2 and S-3 of
Supporting Information). The characteristic ions were similar
to those of α-linked disaccharides. Thus, the anomeric config-
urations cannot be distinguished under these conditions. In
addition, to confirm the generality of the method, lactose
(Galβ(1→4)Glc) was also determined (Figure S-4 of

Supporting Information). No obvious difference was found
between lactose and cellobiose (β1→4), which indicated that
the monomer units in a disaccharide did not affect the observed
absence/presence of diagnostic ions.

In short, according to the fragmentation characteristic, the
disaccharide isomers with different linkage positions can be
differentiated in either positive or negative ion mode. The
characteristic fragments in positive ion mode are as follows:
1→2, m/z 240.1082 (1,3A2); 1→3, no cross-ring cleavage ion;
1→4, m/z 240.1078 (2,4A2) and m/z 300.1292 (0,2A2); 1→6,
m/z 240.1080 (0,4A2), m/z 270.1187 (

0,3A2), and m/z 300.1295
(0,2A2). In negative ion mode, the characteristic fragment ions
are as follows: 1→2, m/z 221.0620 (1,3A2), m/z 239.0721
(Y1+C2H4O2), and m/z 311.0918 (0,1A2); 1→3, no character-
istic fragment ions; 1→4, m/z 239.0721 (Y1+C2H4O2) and m/z
299.0922 (Y1+C4H8O4); 1→6, m/z 239.0721 (Y1+C2H4O2)
and m/z 311.0925 (0,1A2).

Influence of DART Gas Temperature
and Fragmentor Voltage on Mass Spectrometric
Analysis of Disaccharides

Among several parameters of the DART ion source affecting
the analyte signal, helium gas temperature [32, 33] is a key
factor for fragmentation and cluster ion formation. The
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temperature effect was investigated in both positive and nega-
tive ion modes. By raising the temperature in increments of
50°C from 200 to 450°C, the greatest signal intensity was
observed at a temperature of 450°C for both positive and
negative ion modes. The representative results with gas tem-
perature of 450°C in positive and negative ion modes are
illustrated in Figure 4a and b, respectively, which is not-so-
easily explainable. The high degree of ISD fragmentation and
cluster of the analyte, which are not typically observed in
DART MS, were detected in our investigation. They were
different from those with a lower temperature, and abundant
ions in the higher mass region (m/z>400) of the spectrum
appeared, as displayed in Figure 4a and b. In positive ionmode,
the complexes consisting of 1,3A2 ion at m/z 240.1067 are
observed in Figure 4a. Alathough actual signal intensity using
DART-MS in the negative ion mode was less compared with
that in positive ion mode, fragmentation ion and cluster ion
formation were still readily apparent. Most of the complexes

detected were Y1-related cluster ions such as the ions at m/z
269.1013, 405.1428, and 449.1704 (Figure 4b).

In theory, lower source temperature is in favor of the for-
mation of noncovalent complexes since their thermal dissoci-
ation occurs at higher temperature [34]. Conversely, herein, a
higher helium gas temperature formed more complexes. A
reasonable explanation is that the final ion internal energy is
not high attributable to the energy expenditure during the loss
of water and in-source fragmentation in the gas phase at higher
temperatures. On the other hand, the ions in high mass range
can just be desorbed at the above mentioned conditions. Thus,
more complexes were observed in our study.

The influence of fragmentor voltage on the mass spectro-
metric analysis of saccharides was also investigated.
Fragmentor voltage was adjusted from 10 to 400 V, but no
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Figure 5. DART tandem mass spectra of the ions at m/z
684.2506 from 0.1 mg/mL (a) kojibiose (α1→2) and (b)
sophorose (β1→2) with heated helium gas temperature of
450°C in positive ion mode. The CID energy was 20 V
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significant difference was found in the results except that the
absolute abundances were higher at higher fragmentor voltage.
This provided some evidence that the fragmentation occurred
in the ion source.

Identification of Anomeric Configurations
by the TDISD Method

In an effort to identify anomeric configurations, tandem mass
spectrometric analysis was performed. As expected, the
anomeric configurations can be differentiated by the compari-
son of the tandem mass spectra of the ions at m/z 684.2507 in
the mass spectra of α- and β-linked disaccharide isomers at
higher DART gas temperature in positive ion mode. To clarify
this question, we took the tandem mass spectra of the ions at
m/z 684.2506 from α1→2- and β1→2-linked disaccharides as
examples. From Figure 5a and b, it can be seen that the
dominant noncovalent product ions at m/z 378.1575 cor-
responding to 2Y1 are generated, which allowed us to
draw a conclusion that the precursor ions at m/z
684.2506 must be noncovalent. Additionally, the frag-
ment ions with the m/z values at 504.1914 and
522.1973 were determined to be formed from the neutral
losses of C6H12O6 (180 Da) and C6H10O5 (162 Da),
respectively. Therefore, it was deduced that these product
ions must be formed directly from the dissociation of the dimer
without the breakdown of the noncovalent bonds. In Figure 5a,
the relative abundance ratio ofm/z 198:342 is far greater than 1.
Inversely, the ratio value is much less than 1 in Figure 5b. It is
speculated that the results are due to the fact that β glycosidic
bonds were more stable than the corresponding α-linked ones
[22, 35].

In addition, the other eight disaccharides were also
studied under the same conditions. Table 1 displays the
relative abundance ratios of m/z 198:342 in the tandem
mass spectra of the nine analytes. The relative abundance
ratios of m/z 198:342 in α-linked disaccharides are far
greater than 1. Inversely, the ratio values of β-linked
disaccharide are less than 1 in Table 1. In brief, anomeric
configurations were distinguished on the basis of the relative
abundance ratios ofm/z 198:342 obtained by the comparison of
the positive-ion-mode tandem mass spectrum of an α isomer
dimer generated at higher DART gas temperature and that of
the corresponding β one.

In short, the TDISD method is a fast and efficient technique
for differentiation of disaccharide isomers with potential ana-
lytical applications such as for food quality control [36]. Di-
saccharides are often the products of enzymatic activity; hence,
our method can also be applied to this field.

Conclusions
A convenient method named as TDISD is developed to identify
disaccharide isomers using DART source coupled to the Q-
TOF mass spectrometer. To our knowledge, abundant ISD
ions, including both glycosidic bond and cross-ring cleavage
ions, and complexes arising from glucose and disaccharides,
have never been observed in DART mass spectrometry before.
We observed a remarkable effect of the temperature of the
helium gas flow into the DART ionization source on the
intensity and types of signals in the gaseous phase. Prominent
ions in the higher mass region (m/z>400) of the spectra, which
were not detected at lower gas temperature, only appeared at
higher gas temperature.

On the basis of types of cross-ring cleavage ions and
noncovalent complexes, the disaccharide isomers with differ-
ent linkage positions can be differentiated with lower heated
gas temperature in either positive or negative ion mode. In
addition, anomeric configurations were distinguished accord-
ing to the relative abundance ratios ofm/z 198:342 obtained by
the comparison of the tandem mass spectra of the ions at m/z
684.2507 in the full mass spectra of α- and β-linked disaccha-
ride isomers at higher DART gas temperature in positive ion
mode. The work presented here suggests that the chemistry
associated with oligosaccharides in DART is complicated,
providing new insights into DART. The simplicity of the
method makes it an attractive option for unequivocal identifi-
cation of disaccharide isomers.
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