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Abstract. Matrix-assisted laser desorption/ionization mass spectrometry (MALDI-
MS) experiments require a suitable match of the matrix and target compounds to
achieve a selective and sensitive analysis. However, it is still difficult to predict
which metabolites are ionizable with a given matrix and which factors lead to an
efficient ionization. In the present study, we extracted structural properties of
metabolites that contribute to their ionization in MALDI-MS analyses exploiting our
experimental data set. The MALDI-MS experiment was performed for 200
standard metabolites using 9-aminoacridine (9-AA) as the matrix. We then
developed a prediction model for the ionization profiles (both the ionizability and
ionization efficiency) of metabolites using a quantitative structure–property

relationship (QSPR) approach. The classification model for the ionizability achieved a 91 % accuracy, and
the regression model for the ionization efficiency reached a rank correlation coefficient of 0.77. An analysis of
the descriptors contributing to such model construction suggested that the proton affinity is a major
determinant of the ionization, whereas some substructures hinder efficient ionization. This study will lead to
the development of more rational and predictable MALDI-MS analyses.
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Introduction

MALDI-MS has come to play a unique role in the
analysis of low-molecular-weight biological

compounds, principally metabolites [1, 2]. It is well known
that the scope of detectable compounds in the MALDI-MS
analysis is strongly associated with the molecular species of

the matrix. To date, extensive research has been contributed
to elucidate fundamental mechanism of MALDI [3].
However, to clarify whether a target molecular species can
be sensitively detected by MALDI-MS, an experimental trial
is still required because there is currently no decisive
rationale to predict which compounds will be ionizable with
which matrices. This problem is largely attributable to the
chemical and structural diversity of metabolites, which
might hinder the rational understanding of the
interrelationships between metabolites and the potential
factors affecting their ionization.

In the present study, we aimed to model the relationship
between the structural properties of the metabolites and their
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ionizability in MALDI. In the targeted analyses, the merit of
property modeling lies in the prediction of the probability of
the ionization of metabolites yet to be analyzed in MALDI-
MS. In the non-targeted analyses, on the other hand, the
model would work to screen chemical structures plausibly
assigned to a detected peak, even if compounds with similar
m/z values are not distinguishable. Furthermore, the
expected signal response calculated from the ionization
efficiency model would provide insights into the abundance
of the compound of interest. As a practical case study, we
selected 9-AA as the matrix because it is one of the most
frequently used matrices for the metabolite analyses
MALDI-MS [4]. The MALDI-MS analyses with 9-AA (9-
AA-MALDI-MS) have been utilized for various studies,
including high-throughput and highly sensitive metabolite
analyses [5–8] as well as metabolite MS imaging [9, 10].

First, 200 metabolite standard compounds were selected
to cover a wide range of structural diversity and biological
importance, and their ionization profiles in MALDI-MS with
9-AA were examined. Second, a quantitative structure–
property relationship (QSPR) analysis was performed to
model the experimental evaluation using molecular
descriptors of the compounds. As there were hundreds of
descriptors available, the Random Forest method was
employed because of its robust applicability to large
multivariate data and unbiased modeling performance [11].
The importance of the descriptors was estimated and
discussed with regard to the relevance to the ionizability
and ionization efficiency of the compounds.

Methods
The detailed methods for the MALDI-MS analysis and
QSPR analysis are described in the Supplemental Materials.

MALDI-MS Analysis of Metabolite Standards

The ionizability and ionization efficiency in MALDI-TOF-
MS (AXIMA Confidence, Shimadzu, Japan) analysis for
each standard compound was assessed using 9-AA as the
matrix. Ionization efficiency was represented as limit of
detection (LOD) value in ppm.

Summary of the QSPR Analysis

MDL Molfiles of individual metabolites were acquired from
the PubChem website (http://pubchem.ncbi.nlm.nih.gov),
using a list of PubChem Compound IDs (CIDs) as the
query. The acquired MDL Molfiles were applied for the
calculation of the molecular descriptors by the PaDEL-
Descriptor software program [12]. The types of molecular
descriptors included 1-2D and 3D type descriptors and
fingerprints. Descriptors with zero variance or 95 % identical
values (including NAs) were excluded from the subsequent
analysis.

The LOD was used as the response variable, which could
be considered as an inverse measure of the ionization
efficiency. In the classification model, the responsive
variable was converted to a categorical value denoted as
ionized or not ionized, corresponding to whether the LOD
value could be evaluated or not. In the regression model,
where not ionized observations were eliminated, the LOD
values were used in the molar concentrations. Modeling of
the inter-relationships between the descriptors and the
ionization profiles of metabolites was conducted using the
Random Forest method [11]. The importance of variables for
constructing a model was evaluated as the mean decrease in
accuracy. All of the analyses were performed using the R
language [13]. Random Forest and decision tree models
were constructed by the party package [14]. The accuracy of
the prediction model was evaluated based on the correct rate
given as a fraction of the number of correct predictions to
the number of the examined metabolites. The performance
of a regression model was evaluated by Spearman’s rank
correlation coefficients between the measured LODs and the
predicted values.

Results and Discussion
First, we investigated the ionizability and ionization
efficiency of 200 compounds to clarify the coverage of 9-
AA-MALDI-MS for the metabolite analysis (Table 1). As a
result of the test analysis, 104 out of 200 compounds were
detected as deprotonated peaks. The LOD value ranged from
0.00125 to 100 ppm. As the chemical diversity defines the
applicability of models constructed using the dataset, the
taxonomy superclass of the metabolites in the sample set
was summarized in Table 1 (see the Supplemental Materials
for the details of the experimental result). Interestingly,
distinct ionization profile was observed even in compounds
with a similar structure (e.g., alanine and β-alanine, or
leucine and isoleucine, Figure 1a, b). In these cases, β-
alanine and isoleucine exhibited concentration-dependent
peak intensity in MALDI-MS analysis, whereas alanine and
leucine were not detected. Generally, structural similarity of
low-molecular-weight compounds should give similar
physicochemical properties. In contrast, these observations
strongly indicated that apparent properties of the molecule,
such as the presence of functional groups, are insufficient to
explain the diverse ionization profiles of the compounds.

The physicochemical factors of the metabolites that
influenced the ionization profiles were of interest. To
address these factors, we performed non-hypothesis-based
statistical modeling, where the source of efficient MALDI
was sought by molecular descriptors of target compounds.
First, we constructed a Random Forest QSPR model for the
ionizability prediction (ionized or not ionized) using the
whole descriptor provided by the PaDEL-Descriptor (Global
model). The overall accuracy of the prediction was 86.0 %,
and there were no significant biases with regard to the
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estimation error and the metabolite class (Table 1, Global
model for whole compounds).

The prediction model was then investigated to estimate
the prerequisite properties for the ionization of a compound
in a 9-AA-MALDI-MS analysis. In the Global model, the
descriptors with higher importance indicated the
electrotopological state of strength for potential hydrogen
bonds and the area of the negatively charged surface
(Supplemental Figure S-1a and Supplemental Table S-1).
These descriptors belong to the 2D and 3D descriptors,
respectively. The electrotopological state value (E-state
value) is a kind of 2D descriptor that combines both the
electronic characteristics and the topological environment of
each skeletal atom in the molecule [15]. The importance of
the E-state value indicated that the strength of possible
hydrogen bonds positively correlated with the ionizability in
MALDI. It was clear that the ionization profiles were
strongly influenced by the interaction between molecules.
In addition to the global model, which incorporated all the
type of descriptors available, the respective types of
descriptors were applied to construct Random Forest
prediction models to investigate the relevance of each
descriptor types to the prediction performance (Table 1).
As the result, 3D model exhibited the highest performance
followed by 2D model (91.0 % and 88.5 % accuracy rate for
whole compounds, respectively). Considering the variable
importance of these models (Supplemental Figure S-1b, c),
although the strength of hydrogen bonds well represented
the ionization profile, the information of charged surfaceT
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Figure 1. Distinct ionization profiles of structurally similar
compounds in MALDI-MS analysis and their Random forest
prediction. (a) Structural formulas and LODs of four
representative compounds with similar structures but distinct
ionization profiles. (b) The prediction of ionizability by the 3D
descriptor model for whole compounds (gray bar) and by the
3D descriptor amino-acid-specific model (blue bar)
represented as the votes of the ensemble trees. When the
ratio of positive vote (ionizable) exceeds 50 %, the
corresponding compound is predicted to be ionizable
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area led to a better ionizability model. This result was
reasonable because the charged surface area indicated the
electron distribution within the molecules that should cover
the effect of hydrogen bond acceptors. The further
functioning of the negatively charged surface area could be
the effectiveness of proton abstraction in the interaction with
matrix molecule, 9-AA.

The constructed prediction models for amino acids
(“Amino Acids, Peptides, and Analogues” class) exhibited
relatively poor accuracy, even though they were a major
class in our data set. Our models were effective for a broad
spectrum of metabolites, but they still lacked the ability to
model rather faint structural differences of amino acids. The
reason of this defect could be strongly attributed to the
relevance of hydrogen bonds. As both amines and carboxyl
groups in amino acids can form hydrogen bonds, the
ionizabilities of amino acids could be overestimated. To
address these issues, we attempted to improve the prediction
performance for amino acids because they are one of the
most important classes in the metabolite analysis because of
their significant metabolic and regulatory versatility [16].
We thus developed new models specific for amino acids to
improve the predictive accuracy and investigate the relevant
structural properties. Again, the models were constructed
using the whole or the individual types of descriptors. As a
result, the accuracy of model prediction improved for all
types of descriptors (Table 1). Especially, the 3D model
achieved a perfect prediction of the ionizability, even for the
above-mentioned pairs of structurally similar amino acids
(Figure 1c). Fingerprinting descriptors provided still a
moderate accuracy (86.4 % correct rate for the highest value
by the MACCSFP model), indicating that the presence
of substructures was insufficient to fully represent the
ionizability of amino acids. Unlike the class-independent
model (whole-data model), the relevant 3D descriptors were
not involved with the charged surface areas, but Weighted
Holistic Invariant Molecular (WHIM) descriptors [17]
(Supplemental Figure S-1d). WHIM descriptors provide
information about the whole 3D-molecular structure in terms
of the size, shape, symmetry, and atom distribution. This
result was intriguing because the shape of the molecules
itself was relevant rather than electronic properties. It has
been reported that cation affinities of amino acids were
associated with degree of linearity [18], which is a direct
index of the flexibility of molecule [19]. It was thus
suggested that the shape properties of target compounds
affect their interaction with other molecules to promote or
inhibit their ionization.

The Random Forest method is applicable to a regression,
averaging the output of decision trees [11]. The
experimentally evaluated ionization efficiency, indicated by
LOD values, was also modeled by the Random Forest
method using individual types of descriptors. While the
Global and 3D ionization efficiency models both reached
ρ = 0.77 (Supplemental Figure S-2a, b, and the variable
importance for Global model was shown in Supplemental

Figure S-1e), the best predictive performance was achieved
with 2D descriptors, evaluated as ρ = 0.78 (2D model,
Figure 2, and the variable importance was shown in
Supplemental Figure S-1f). The MACCSFP also provided
a highly accurate model compared to the 2D, 3D, and
Global models (ρ = 0.69, Supplemental Figure S-2b). It was
supposed that the fundamental trend of the ionization
efficiency was reasonably modeled. The 2D model indicated
that the quantitative extent of ionization was mainly
associated with E-state index of double-bonded oxygen and
the strength of the potential hydrogen bonds (Supplemental
Figure S-1f). Hence, overall results indicated that the partial
negative charge in the molecule could be a prerequisite for
ionization, and that the richness of carbonyl oxygen should
be preferable for efficient negative MALDI because of the
basic condition brought by 9-AA. However, Sun et al.
showed that pH condition altered the ionized metabolite
profiles specifically to analyzed molecular species [20].
They also reported that multiplexed solvent could be used
for optimization of analyte-matrix interaction during co-
crystallization [8]. The formation of hydrogen bonds, which
could be affected by pH condition, might result in specific
crystal structures with the advantage of binding energy,
leading to distinct MALDI efficiencies. Noteworthy,
structural flexibility of the target compounds might play a
special role to specific interaction with other molecules,
presumably the matrix molecules to reduce ionization
energies [21], which determine the fate of their ionization
profiles.

Conclusions
This study was primarily intended to lead to more rational
and predictive MALDI-MS analyses. In contrast to empirical
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approaches, this study employed a systematic analysis of the
ionization profile in 9-AA-MALDI-MS for the first time. In
the MALDI-MS analysis, the ionizability prediction model
evaluates the likelihood of peak identification. On the other
hand, the ionization efficiency model would help to estimate
the abundance of the metabolite based on the observed
signal intensity. The relevant descriptors found in this study
can be interpreted as the structural preference specific to 9-
AA and/or negative mode MALDI-MS analysis. The QSPR
approach should also be applicable for other MALDI
matrices to characterize the structural properties of target
compounds for preferred ionization. Such information will
play an indispensable role in the strategic development of
MALDI-MS-based studies.
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