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Abstract

In our previous study, we introduced a new hybrid approach to effectively approximate the total
force on each ion during a trajectory calculation in mass spectrometry device simulations, and
the algorithm worked successfully with SIMION. We took one step further and applied the
method in massively parallel general-purpose computing with GPU (GPGPU) to test its
performance in simulations with thousands to over a million ions. We took extra care to
minimize the barrier synchronization and data transfer between the host (CPU) and the device
(GPU) memory, and took full advantage of the latency hiding. Parallel codes were written in
CUDA C++ and implemented to SIMION via the user-defined Lua program. In this study, we
tested the parallel hybrid algorithm with a couple of basic models and analyzed the performance
by comparing it to that of the original, fully-explicit method written in serial code. The Coulomb
explosion simulation with 128,000 ions was completed in 309 s, over 700 times faster than the
63 h taken by the original explicit method in which we evaluated two-body Coulomb interactions
explicitly on one ion with each of all the other ions. The simulation of 1,024,000 ions was
completed in 2650 s. In another example, we applied the hybrid method on a simulation of ions
in a simple quadrupole ion storage model with 100,000 ions, and it only took less than 10 d.
Based on our estimate, the same simulation is expected to take 5-7 y by the explicit method in
serial code.
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. 2 depending on the efficiency of the algorithm. To complete
Introduction trajectory calculations, we need to calculate the total force

he quality of computational modeling of instrumentation on each ion by evaluating its interactions with every other
designs depends on how accurately the model reflects ~ 1°n and update the profile of all ions at every time step.
reality. In general, models of a complicated process taking ~ Obviously, as the technology used in mass spectrometry
place in a mass spectrometer are often oversimplified advances, increased sophistication in multi-physics model-
because of their high computational cost. The major cause M8 and efﬁc.lency - a ?omputatlc?r}al methgd becomes
is the number of ions involved in the process. When there ~ D€cessary to simulate the highly sensitive new instruments.
are n ions present, there will be operations in the scale of 1%/ For 51m91at19n containing a large .number of ions, a
massive weight is applied on the evaluation of the total force

- acting on each ion at every time step. We identified the
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developed our serial hybrid algorithm to only run on a CPU
system [1]. Even without GPU acceleration, we saw an
improvement of an order of magnitude [1]. In the second
and intermediate step in our GPGPU project with Compute
Unified Device Architecture (CUDA) [2], we developed the
parallel code in CUDA C++ to be used with SIMION [3-5].
SIMION is an ion optics simulation program that is a highly
versatile, Windows-based computer-simulation program,
which has been used to optimize the design of scientific
instruments such as mass spectrometers and ion mobility
devices. We have added one of the most popular GPU
(<$150) in the similar NVIDIA product line to the desktop
system, similar to the one we used in the previous study. Our
final goal for the project was to develop a code specific to
the system of multiple GPUs we are building for designing
and optimizing the new instruments, with additional new
modeling techniques.

Computational Method

All GPGPU simulations were performed on a 64-bit,
Windows-based personal computer system with a 3.4 GHz
Intel Core i7 quad processor with 4 GB of RAM, and
equipped with a NVIDIA GForce GTX460 (Fermi) graphic
processor unit with 1 GB of RAM. As mentioned earlier, the
parallel codes are written in CUDA C++ and implemented to
the SIMION wver. 8.1 through user-defined “Lua” [6]
program (the embedded scripting language in SIMION). A
single core was assigned to process the code with the highest
priority for accurate measurement of CPU time including
GPU waiting time.

SIMION Program
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We evaluated the performance by comparing the CPU
time. Two basic designs, (1) a Coulomb explosion model
without electrodes, and (2) a model of a quadrupole ion
storage device were tested, and their performance was
compared to that of other methods.

Hybrid Process and Application
in Massively Parallel Architecture

The complete discussion on how the hybrid process works
can be found in our previous work [1]. For the convenience
of readers, we would like to give a brief overview of the key
concepts used in the hybrid method. In the hybrid approach,
the computational load was reduced by efficiently approx-
imating the total force acting on an ion by not explicitly
calculating its interactions with all other ions. These other
ions were first divided into groups depending on their
distance from the ion under consideration. For those in the
short-range, interactions are treated as explicit two-body
interactions represented by Coulomb’s law (equation 1)

Fi= Z471'5

where the vector F; represents the exact total interactions
between ion i and other ions j; g, is the charge of ion i; r is
the separation of two charges carried by ions i and j; 7; is
the unit directional vector from the charge j to i; and € is the
vacuum permittivity. Obviously, the acceleration of an ion is
largely influenced by nearby ions. When considered indi-
vidually, the interaction between the current ion and one far
enough away is much less important, if not negligible,
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Figure 1.

Schematic flow diagram describing our implementation of the parallel CUDA C++ hybrid codes to the SIMION

trajectory calculation via the user-defined Lua program. SIMION communicates with CUDA kernels on GPU via the segment
call, segment.accel_adjust. Massively parallel computations occur in the sections in blue in the box on the right
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compared with the interaction with one in the neighborhood.
However, a collection of these long-range interactions can
significantly contribute to the ion’s trajectory. In the hybrid
method, we took a collection of these ions within a certain
range and treated it by approximating its influence on the
current ion as a Coulomb force between the ion and a

C D
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conducting spherical surface that we called a “charge
diffused cloud.” We defined a charge diffused cloud as a
collective charge distribution of ions in a cubic or rectangu-
lar space that we called a block. The number of blocks and
their sizes are specified at the beginning of the simulation
and fixed in space during the simulation. As the charge
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Figure 2. Schematic process flow diagram of major processes in the parallel hybrid algorithm
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distribution in a block changes over time as ions flow in and
out, the property of the charge diffused cloud has to be
updated for all blocks at every time step. Depending on the
characteristic of a problem, it may so happen that there are
ions that are far away enough that they make a negligible
contribution to the total force. In such cases, the distinction
can be made by defining an “active region,” the union of the
short-range and the long-range, and the outside of the active
region. The sizes of short- and long-range interaction regions
are defined by the block dimensions and control parameters
[ and m, respectively. Subscripts may be used when they
vary depending on coordinates. Short-range interactions are
confined in the region of (2/+1) cubic block edge lengths
centered at the block in which the current ion is located.
Long-range interactions are confined in the region of
(2m+1)* cubic block edge lengths outside of short-range
interaction region. For example, suppose the set {/,=1,
m;=7 for i = x, y, z} defines the active region. We omit
the subscripts now because they take the same values for
x, y, and z If 1 mm?> cubic blocks are used for the
hybrid calculation purpose, the short-range interaction
region is the 3 mm® cube, and the outer boundary of the
long-range interaction region, which is also the boundary
of the active region, consists of the outer edges of the
15 mm® cube. In the previous study, we demonstrated
the dependency of the properties defining the active
region on the simulation result.

In the SIMION trajectory simulation program, a user may
make changes and additions through user-defined Lua
program that can call for processes run outside SIMION.
In a parallel version of the hybrid algorithm, there are two
main processes carried out on GPU: (1) Coulomb inter-
actions (ion—ion and ion—cloud interactions), and (2) the
evaluation of the profiles of charge diffused clouds by
blocks. For either process, ions are divided into groups and
their profiles are called in to the specified GPU kernel. In
developing parallel CUDA C++ codes it is of extreme
importance to reduce the time used in the barrier synchro-
nization to optimize the code’s overall performance and to
minimize data transfer between the host (CPU) memory and
device (GPU) memory. In addition, we took full advantage
of latency hiding to eliminate the process waiting time.
These techniques are critical for efficient parallel executions
on massively parallel computing systems. After repeatedly
testing the codes, we have reached the significant improve-
ments that we discuss below. Figure 1 shows how it
communicates with the SIMION program, and Figure 2
shows the flow of the main processes in the parallel codes.

Results and Discussion

In the following two sections we, would like to discuss
details of the simulations and improvements we made with
GPU acceleration by using the massively parallel computa-
tional method.
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Simulation #1: Coulomb Explosion

To study how simulation time grows with the number of
ions, we ran Coulomb explosion simulations of: 1000, 8000,
16,000, 32,000, 64,000, 128,000, 512,000, and 1,024,000
singly charged ions with each ion carrying a mass of 100 u.
We varied the size of the cubic simulation domain by 40, 80,
98, 124, 160, 196, 320, and 392 mm?> with respect to these
cases. For every case, we used 20x20x20 blocks spanning
the entire simulation domain, regardless of its size. lons
were given zero kinetic energy and initially normally
distributed at the coordinate origin with standard deviations
of 1.00, 2.00, 2.52, 3.17, 4.00, 5.04, 8.00, and 10.08 mm in
any coordinate direction for the cases of 1000, 8000, 16000,
64,000, 128,000, 512,000, and 1,024,000 ions, respectively.
Short-range interactions were restricted within the center
block in which the current ion resides by setting the
parameters to /,=/,=1.=0 (i.e., no blocks outside the center
block are included in the short range). The active range was
defined by the boundary set by other control parameters,
my=m,=m.=9, (ie., the long range was limited to +9
blocks in the x-, y-, and z-directions from the center block;
hence the entire domain is covered when the ion is in the center
block located at the origin. We measured the time it took for
each ion to reach the domain boundary, and the simulation was
considered “complete” when 90 % of the ions had achieved
this. A uniform time step of 50 pus was used.
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Figure 3. Normalized arrival time distribution for Coulomb
explosion simulations on GPGPU by the parallel hybrid
method and the parallel explicit two-body calculation meth-
od. The same number of blocks (20x20x20) was used for
every case for the hybrid method, regardless of the size of
the domain; and the active region was similarly defined in
every case (see text). As the initial condition, normally
distributed, singly-charged ions carrying 100 u each were
initially released at the center of the domain in the properly-
scaled, field-free region. The number in the legend corre-
sponds to the number of ions released in the simulations.
The similarity in results was as expected
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Figure 3 shows that the arrival time distributions for the
simulations by the parallel hybrid algorithm were all
similar to those produced by the fully explicit method,
regardless of the number of ions. Figure 4 shows the
similarlity between the evolution of the radial distribu-
tions of 64,000 ions obtained by the explit and hybrid
methods in which data was taken every 50 ps. As
expected, the radial distributions gradually lose their
intensity as the ions spread outward. Radial distributions
obtained by both methods show fairly persistent tails
extending toward the origin. These slow moving ions are
not affected by the outer layer of ions due to the
spherical symmetry imposed on the initial distribution.
Figure 5 shows that the effect of GPU acceleration is
more apparent when a larger number of ions were
involved. The case of 128,000 ions only took 309 s to
complete, whereas with the explicit method—where all
two-body interactions were evaluated (serial codes)—the
simulation took 63 h. That is an over 700 times faster
performance. In the case of 1,024,000 ions, the simula-
tion took only 2650 s by using the massively parallel
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Figure 4. Radial distributions taken at every 50 us for
Coulomb explosion simulations of 64,000 ions on GPGPU
by the parallel hybrid method and the parallel explicit two-
body calculation method. Exactly the same parameters were
used for the hybrid method (see text). The similarity in results
was as expected
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Figure 5. Comparison of computational time for Coulomb
explosion simulations. This summary shows all the results
from our previous and current studies. The explicit two-body
method results are shown with filled symbols, and the hybrid
algorithm with open symbols. The effects of varying the size
of the active region and the number of blocks, and the
performance improvement made by using a GPU, can be
seen in the figure. All single thread calculation results from
our precious study are shown in solid lines. See text for the
specifications of the machines on which these calculations
were run

hybrid algorithm. Accouting for the fact that the CPU
time required for a simulation increases much more
rapidly as the number of ions flowing in the simulations
increases, a simulation of such magnitude would take
more than a month under the same conditions when CPU
alone is used.

Simulation #2: Quadrupole lon Storage Device

For the modeling of a basic device design of a rf-only
quadrupole based ion storage, we used rectangular blocks in
the rectangular domain space as shown in Figure 6. We
assigned the inscribed radius (rj,), rod radius (r.q), and
length of the rod (/,oq) to be 4, 3.6, and 80 mm, respectively.
Both the entrance and exit electrode plates were separated
from the ends of the rod electrodes by 4 mm, and their
voltages were set at 100 V. rf Voltage on the quadrupole rod
electrodes was set at 138 V,,_;, at 1.1 MHz to maximize the
pseudopotential. Neutral helium (2 mTorr) was used as the
collisional damping gas. Each of the 100,000 ions was
assigned the mass of 100 u. The initial kinetic energies of all
ions were set to zero, and the ions were distributed
uniformally in the 60 mmXx2 mmXx2 mm rectangular space
located along the longitudinal (x-) axis (i.e., at the center of
the quadrupole configuration at the time of release). lon-
neutral collisions were simulated using the Collision Model
HS1 [5]. Briefly, the model is based on the kinetic theory of
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b, blocks

Figure 6. Simple quadrupole ion storage device model used in this study. Variables used in the discussion in the text are
defined as shown in the figure: 4 is the radius of a rod electrode; /o4 is its length; 7, is the distance from the center to the
edge of a rod; and <r(/)>, is the “average radius,” the measure of the spread of » ions at time ¢, is the average of ion-to-center
distances; by is the number of blocks in the x-direction. In this particular example, the model has 20 blocks stacked in the x-
direction, so b,=20, while no division is made in the y- and z-directions; hence, by, = b, = 1

gases, and the individual collision between ion and gas
particles are modeled, in which colliding particles are treated
as elastic hard-spheres. Detail of the model can be found in
the newer version of the SIMION manual [5]. In this
simulation, Mathieu parameter ¢

del

szl’inz

q= (2)

is set at 0.7. To avoid confusion, it should be emphasized
that all trajectory calculations are performed using direct
nuemerical simulations. We would like to point out here that
ion-neutral collisions can also be improved by converting
the code in parallel. However, we do not expect a great
amount of overall performance improvement because the
ratio of computational load of the collisions to the Coulumb
interaction calculations is in the scale of n to n*/2. Hence we
decided to just parallelize the two main processes in the right
box in Figure 1.

Returning to Figure 6, the block dimensions were defined
by setting the number of blocks to 5,=20 and b, = b.=1, and
we set the active region parameters to /, = [, = [.=0 and m, =
m, = m;=1. Hence, the domain contains a single layer of
blocks stacked in the x-direction, the ions in the short range
are in the same block as the current ion, and the ion—cloud
interactions are limited to two blocks immediately adjacent
to the center block. At every time step, the ions’ average
distance to the x-axis was calculated, and the average was
recorded as the “average radius” of the distribution at that
time, and the simulation was continued until equillibrium
was reached. Initially, ions rapidly oscillate as the amplitude
diminishes and the value converges. The average radius of
oscillation ranges from 0.7 to 1.5 mm in the first few ps. The
progress of the average radius and its convergence to
equilibrium for the simulation of 100,000 ions is shown in
Figure 7. We note here that the number of ions used in this

study is far less than the theoretial threshold, where repulsive
interactions overcome the pseudopotential produced in this
paricular storage device. By using the formula

Hmax = Volume X qVRFfo , (3)
eri

it is estimated as 80 million ions for this setup [7-10]. As
expected, we observed very small deviation in the limits, the
average radius at 600 ps in the simulation with 100,000 ions
and that of 5000 ions obtained by the explicit method from
our previous study. From this observation, we are expecting
this ion storage design to be able to focus on many more
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Figure 7. The progress of the average radius (see text) of
the ion distribution for 0 < time < 600 ps in a simulation with
100,000 ions in a basic rf-only quadrupole ion storage device
model. The result is very similar to the simulation of 5000
ions performed with the explicit calculation method in our
previous study; and we did not see a significant deviation
from the limit observed in the simulation of 5000 ions
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ions before we start seeing repulsive interactions effectively
defocusing ions. We did not run a larger number of ions in
the simulations at this time because it requires substantial
computing time on the system based on multiple GPUs.
Parallelization had a much greater effect on the ion
storage device than the Coulomb explosion simulation. At
600 ps, the ion storage simulation of 100,000 ions was
completed in only about 10 d on our hardware with added
GPU power. The total number of time steps (ranging from
0.02 to 0.025 us) required for the entire process were
approximately 25,000 steps, compared with the ~25 steps
required for the Coulomb explosion simulation. When the
explicit method is used, two-body Coulomb interaction
calculations must be repeated approximately 1000 times
more for the ion storage simulation than the Coulomb
explosion simulation containing same numbers of ions;
hence approximately 1000 times more computation time is
expected. Based on this basic comparison, we can expect
approximately 5 to 7 y to complete the simulation if each
and every two-body interaction were to be explicitly
calculated on the system without GPU acceleration.

Conclusion

The original hybrid algorithm used in our previous study was
reconstructured for GPGPU, and our massively parallel hybrid
codes were demonstrated to work much more efficiently and as
accurately as the fully explicit method on the CPU-only
system. The Coulomb explosion simulation of 128,000 ions
was over 700 times faster; and we were able to successfully
simulate over a million ions within a couple of thousands of's.
We also tested the simulation of a quadrupole ion storage
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device with 100,000 ions; the 600 us simulation with ~25,000
time steps was completed in only about 10 days, which may
take 5~7 years if done with the explicit method. In this work,
we have achieved the goal we set for the project and will
continue to the next level by developing parallel codes for the
system with multiple GPUs, and for the simulation of much
more complicated device designs. Our algorithm can be
effective in speeding up SIMION trajectory calculations for
any generic device designs that involve large scale calculations
of more than one million ions.
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