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Abstract
The functional design and application of a data-independent LC-MS precursor and product ion
repository for protein identification, quantification, and validation is conceptually described. The ion
repository was constructed from the sequence search results of a broad range of discovery
experiments investigating various tissue types of two closely relatedmammalian species. The relative
high degree of similarity in protein complement, ion detection, and peptide and protein identification
allows for the analysis of normalized precursor and product ion intensity values, as well as
standardized retention times, creating a multidimensional/orthogonal queryable, qualitative, and
quantitative space. Peptide ionmap selection for identification and quantification is primarily based on
replication and limited variation. The information is stored in a relational database and is used to
create peptide- and protein-specific fragment ion maps that can be queried in a targeted fashion
against the raw or time aligned ion detections. These queries can be conducted either individually or
as groups, where the latter affords pathway and molecular machinery analysis of the protein
complement. The presented results also suggest that peptide ionization and fragmentation
efficiencies are highly conserved between experiments and practically independent of the analyzed
biological sample when using similar instrumentation. Moreover, the data illustrate only minor
variation in ionization efficiency with amino acid sequence substitutions occurring between species.
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Finally, the data and the presented results illustrate how LC-MS performance metrics can be
extracted and utilized to ensure optimal performance of the employed analytical workflows.

Key words: Protein and peptide identification, Quantification and validation, LC-MS, Label-free, Data-
independent analysis, Fragment ion identification repository, Targeted and non-targeted proteomics

Introduction

The controversy surrounding the quality of discovery data
generated from shotgun LC-MS proteomic experiments

continues without resolution. For example, Ptolemy and
Rifai [1] suggest a serious review of both the terminology
and validation schema utilized in biomarker discovery
experiments. The basis of their report is the apparent
disconnect between the level of funding and effort associated
with biomarker discovery and the limited number of protein
biomarkers actually in use in routine clinical management. In
addition, Ransohoff [2] details how the strong claims from both
the genomic and proteomic biomarker initiatives suffer from
relatively poor experimental design, reproducibility, and
applicability. Likewise, White [3] discusses the potential cost
of high-throughput proteomics, describing a culture that
motivates laboratories to generate large lists of protein, peptide,
and post-translational modification biomarker candidates,
typically at the expense of accuracy and reproducibility.
Fundamental data acquisition and data processing changes
may be required to address accuracy and reproducibility issues
[4–6]. The protein complement of comparable biological
samples is known to be qualitatively and quantitatively similar.
However, measurement efforts based on shotgun LC-MS
experiments generally lack sufficient reproducibility. Stochastic
and serendipitous data sampling arguments have been advanced
as an explanation for why these experiments are not reproducible
[7, 8], despite the protein complement and hydrophobicity and
ionization efficiency of their proteolytic peptides being vastly
the same. There is, however, a growing body of evidence that
suggests that the selectivity of LC-MS/MS-based strategies may
be insufficient to deal with the complexity of a proteolytically
digested (sub)proteome [9–11].

A significant source of error in proteomic experiments results
from the algorithmic interpretation of product ion spectra
derived from chimeric and composite MS spectra. To date, in
the instance of complex mixture experiments, most search
engines do not acknowledge the fact that a typical data-
dependent analysis (DDA) product ion spectrum is most likely
to arise from co-fragmented peptides. Approximately two-thirds
of all precursor ion detections in a complex protein digest
mixture are at least two-and-a-half orders of magnitude lower in
intensity than the most abundant ions [10, 12]. Consequently,
the incidence of overlapping isotopic clusters of similar m/z and
intensity is significant. The specificity of DDA acquisitions is
challenged under such conditions, especially when the search

engine peptide score is primarily based on the intensity of the
matched product ions relative to the unmatched. Acquiring
DDA data faster or with higher sensitivity hardly reduces these
sources of error. An increase in speed and sensitivity without a
concurrent increase in specificity will generally produce
compromised information by generating more low abundant
mixed spectra. Overloading the separation column can also
exacerbate the chimeric and composite challenge since this will
produce peak broadening and tailing of higher abundance
peptides and enhances the incidence of interference. On the
other hand, improving the overall separation capacity of the LC-
MS method can have a positive impact on error rates. This is
however only achieved if column flow rate, gradient and sample
loading are harmonized to reduce the incidence of composite
and chimeric spectra. A secondary benefit of increased
chromatographic resolution is that chromatographic peak widths
are reduced, which improves electrospray sensitivity by present-
ing a higher peptide concentration per unit time to the mass
spectrometer. Multidimensional chromatography, when proper-
ly implemented, should have a positive impact on overall
separation capacity [13, 14]. Alternatively, an additional
dimension of separation such as ion mobility (IM) can be very
effective in reducing chimeric and composite interferences and
the benefits of this approach have been demonstrated in data-
independent analysis (DIA) strategies [14, 15]. The application
and combination of IM with DDA is less common. The
technical advantages and limitations of DDA and DIA methods,
including their main differences, have been discussed in detail
[9, 10, 16]. Lastly, data processing errors associated with charge
state assignment, de-isotoping and centroiding can be especially
problematic when processing low abundance, overlapping
isotopic cluster data [11, 17–19].

Different statistical approaches have been used to estimate
the contribution to error from peptide sequence database search
algorithms. The most widely used method to date has been the
use of a decoy database strategy, whereby the decoy database is
concatenated to the database of interest to infer a false positive
rate (FPR) or false discovery rate (FDR) at the peptide and/or
protein level [20–22]. This approach is based on the assumption
that peptides from a random or reverse decoy database can be
identified at a rate similar to that of the peptides from the original
database [20]. The amino acids sequences of proteins are,
however, not organized randomly or in a reversedmanner.More
specifically, the frequency of various sequence motifs common-
ly found in a given proteomemay not be correctly represented in

K. Thalassinos et al.: Precursor and Product Ion Repository 1809



a decoy version of the database, resulting in an apparent low
number of hits to the decoy database, in turn leading to an
underestimation of identification error rate [3]. Generic statisti-
cal tools have been employed and their merits demonstrated
[23–25] to calculate peptide and protein FDR and FPRs as well.
Which peptides are identified and how they are scored varies
significantly between the various employed methods.

Assuming that high resolution exact mass measurement of
peptide precursor and product ions, peptide fragmentation
efficiency, relative retention time, and drift time are similar on
comparable instruments, operated in a comparable manner,
querying these metrics, as well as the relative intensity values
of peptide precursor and product ions, should provide means to
identify and quantify proteins in complex mixtures. To that
end, spectral library searching has been suggested as an
alternative to the more traditional sequence database search
approach [26]. In this strategy, an unknown spectrum is
compared with a library of known spectra and a match
achieved based on the similarity of physicochemical properties.
Spectral searching and the use of libraries have been the
premise of GC-MS for the interpretation of unknown spectra
for some time [27–29]. Its utility in proteomics research has
been further explored by a number of research groups, and it is
moving gradually into more mainstream use and acceptance
[30–34]. Spectral libraries must contain correctly identified
spectra to have value. This generally requires the accumulation
of replicate spectra, which results in challenging data storage
and computational requirements, forming the motivation to
cluster spectra and develop so-called spectral archives [35–37].
Currently, the sharing of experimental MS/MS data between
laboratories to more effectively use spectral libraries and
archives is not widespread. Several identification and data
repositories such as PRIDE [38], Tranche [39], PeptideAtlas
[40], and Peptidome [41] facilitate spectral upload, viewing,
and comparison, but generally do not offer the ability to build
validated composite MS/MS spectra, or conduct spectral or
fragment ion searches against the validated composite spectra.

The work described in this paper demonstrates that the
construction of a fragment ion repository using high-specificity
product ion spectra, in combination with appropriate aggregation
and query of the repository, provides promise as a strategy for
characterizing complex protein digests both qualitatively and
quantitatively. It will be shown how the strategy can be utilized
in a targeted fashion to monitor the presence of a single or a
number of proteins in a complex mixture as well as determining
the stoichiometry of proteins in biological pathways. The
strategy is based on maximizing the selectivity and specificity
of the analytical workflow and on the use of signal replication.
The method relies on technical and biological replication of DIA
acquired precursor and product ion information of similar and
dissimilar samples from a multitude of tissues and species,
prepared, processed, and acquired in multiple laboratories. The
quality of the fragment ion repository relies on the fact that no
two datasets, either technical or biological, are likely to be fully
identical in all analytical dimensions. The peptides and

associated product ions detected in these mixtures illustrate
however reproducible behavior and their physicochemical
properties can be confirmed. These concepts and their applica-
tion will be disclosed and discussed.

Materials and Methods
Relational Database Repository

A development repository derived from data-independent CID
spectra of 740,278 redundant, 100,434 non-redundant peptide
ions was created from 207 DIA LC-MS data sets of tryptic
digest of variousRattus norvegicus andMusmusculus tissue and
body fluid samples. The digestion methods and experimental
conditions were generic and described in more detail elsewhere
[12, 42–45]. ProteinLynx Global SERVER ver. 2.4 was used as
the database search algorithm for the preliminary data-indepen-
dent identifications using either the reviewed entries of Rattus
norvegicus (release 2010_11, 7,551 entries) or Mus musculus
(release 2010_11, 16,320 entries) UniProtKB databases. Se-
quence information of internal standard proteins was added to
the databases to normalize the data sets or to conduct
quantification [46]. Guideline identification criteria were applied
throughout [47]. In addition to the information provided by the
search algorithm, including identification score and FDR [48],
normalized fragment ion intensities f1 and f2 and a normalized
peptide intensity p1 are calculated. Their definition and an
explanation are provided in Results section. In addition, the
peptide retention times are standardized as described by
Tarasova et al. [49], by obtaining linear fit parameters based
on hydrophobicity [50] and standardizing to a reference. This
approach affords initial population of the repository with
orthogonal identification information from different instruments
and laboratories. A variant, based on repository content based
retention time normalization is applied in this study, which
requires the upload of a sufficient number of identification
results and in silico information to construct a reliable and robust
reference retention normalization mechanism. Grouping nor-
malized parameters f1, f2, and p1 creates a so-called ion map of
which the utility will be explained in detail in the section 3.
Finally, a normalized protein molar P1 amount is expressed.
Parameters f1, f2, p1, and P1 are related to unique repository
identifiers. In addition, accurate precursor and product ion mass
information is uploaded into the relational database, as well as, if
applied, their associated ion mobility values. Direct comparison
of the experimental drift time with a standard mobility database
is likely to enhance peptide ion identification [51]. As for mass,
drift time values are not normalized or standardized. The
relational database and queries rely on the native accuracy and
precision of the mass and mobility measurements.

Taxonomy (ftp://ftp.ncbi.nlm.nih.gov/pub/taxonomy/) and
tissue (http://www.brenda-enzymes.info/ontology/tissue/tree/
update/update_files/BrendaTissueOBO) identifiers are
appended as ancillary, queryable information to the content of
the repository during upload of the data. In addition, the protein
accession numbers are mapped to the UniParc database [52].
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Isoform/Homology Filtering

The protein concentrations are estimated as described [46].
Briefly, the average ion intensity of the three most abundant
peptides identified to a protein is standardized to that of an
internal standard spiked into the sample at known concentra-
tion. However, the observed signal intensity of sequence
common peptides can be a summed value arising from
redundant identifications. This is advantageous from a quali-
tative perspective since the intensity of the redundant peptides
is cumulative. From a quantitative perspective, it hampers
data analysis, especially if the contribution of the
individual protein isoform cannot be addressed or
accessed. Certain quantification schemes therefore disre-
gard or down-weight these peptides to express a quanti-
tative value, which could be problematic for highly
homologous proteins since the number of proteotypic
peptides could be small. An extension to the earlier
presented absolute quantification schema is discussed.

The average intensity, in contrast to calculating the average
intensity of the n best ionizing peptides, is calculated from the n
most abundant proteotypic peptides. These averaged intensities

are subsequently used to segment the total observed intensity of
the common peptide belonging to each parent protein. In
instances where no proteotypic peptides can be identified, the
identified proteins will be grouped and an absolute amount
assigned to the group as a whole. Next, the peptides are re-
ordered based on their segmented intensities for the sequence
common and non-segmented intensities of the proteotypic
peptides and the molar amounts calculated. The segmentation
process is illustrated in Supplementary Figure 1. This leads to
improved estimation of the amount and concentration of
protein isoforms and homologues. In the instance of compar-
ative analysis, the method also provides a better estimate of the
relative amounts or fold changes for different homologous
proteins between two or more conditions, since the
information content obtained from non-proteotypic pep-
tides is more detailed and comprehensive.

Fragment Ion Repository/Relational Database

The fragment ion repository is a multi-user application, with
the information stored in a mySQL relational database server
and the website run on Apache. Data entry and queries are

annotated spectra

annotated spectra

validation
identification

validation
curation

DIA spectra initial assessment data quality
normalization/standardiz t
appending CV (taxonomy and tissue) to data (OLS - EBI)
mapping accession number (UniParc - PICR - EBI)
calculation f , f , p and P

(flagging)
ation r

1 2 1 1

user protein db
search engine

fragment ion
search results

curated fragment ion
search results

annotated/normalized
fragment ion search results

relational SQL database
(fragment ion repository)

upload minimal
required information

automatic processing
input

(web)
interfaces

140

Figure 1. Workflow/activity diagram of the upload, annotation, processing, and creation of a multi-user relational database-
base, data-independent fragment ion repository. Data are uploaded and species and tissue taxonomy meta data entered. The
calculation of fragment, precursor, protein relationships, and standardized elution times is conducted automatically and
appended to the database, including species-independent protein accession number mapping. A web front-end is used to
query the database
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achieved using a combination of PHP, Perl, and JavaScript.
A single or multiple zip archives are uploaded to the server.
Each zip file consists of the search results in comma-
separated values format and the search criteria in text file
format. The latter also holds instrumental performance and
acquisitions settings and is used as a first pass assessment of
the quality of the uploaded data. Equivalent and additional
proteomics LC-MS performance metrics [53, 54] can be
readily retrieved from the repository content for one-
dimensional LC-MS experiments. An example is provided
in Supplementary Figure 2, illustrating the interquartile
retention time range, median retention time, interquartile

retention time ratio, average chromatographic peak width at
half height and number of identified peptides/min within the
interquartile retention time range prior to retention time
standardization, excluding in-source fragment, losses, and
variable modifications. Performance metrics have intrinsic
value but are not discussed in detail.

Results
The upload, annotation, and processing workflow of data-
independent analysis (DIA) LC-MS data into the fragment
ion repository is shown in Figure 1. A more detailed
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Figure 2. Intra- (tissue/experiment) and inter- (sequence) relative fragment ion intensity f1 distribution examples for one- and
two-* dimensional LC-DIA-MS experiments of different mouse and rat proteomes. The statistical distribution of ratio f1 values
for three fragment ions originating from three different peptides are shown as a box plot for each of the experiments deposited
in the database. The overall distribution of the ratio f1 values for each of the fragment ion is shown in the right-hand panel.
Outlier data are marked as black squares
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description of this process and the developed software is
provided in the Materials and Methods section. Briefly, the
uploaded results are initially quality flagged on the basis of
the automatically derived precursor/product ion search
tolerances and data resolution as calculated by the utilized
search engine. This information is currently stored in the
database and provides the possibility to reject data in case
the quality is suspicious from an MS perspective. Currently,
no rejection criteria are applied during the database
population process. LC quality metrics are under study and
their significance discussed in the Materials and Methods
section. and Supplementary Figure 2, respectively. The
protein accession numbers are mapped to a universal
identifier using user provided species taxonomy as a filter.
During this process, tissue information is appended to the
processed data as well. Next, the data is processed (i.e.,
normalized on retention time, fragment ion intensity, precursor
ion intensity, estimated molar amounts, fragment ion to
multiple parent peptide, and protein relationships determined.
These normalized parameters describe fragment and precursor
ions relationships and are calculated as follows:

Ifragment ion f; p=Ipeptide ion p f1ð Þ
and

Ifragment ion f; p=
X

i
Ifragment ion f ið Þ; p f2ð Þ

where Ifragment ion f, p=intensity fragment ion of peptide p
and Ipeptide ion p the intensity of peptide p. Normalized ratio
f1 describes the fragmentation efficiency for a given
fragment ion in relation to the precursor intensity and
normalized ratio f2 the preferred fragmentation pathway of
a particular fragment ion for a given sequence. Alternatively,
the intensities of y″max and bmax could be subtracted from
the precursor and summed fragment ion intensity to account
for unfragmented peptide precursor. Relative, normalized
peptide intensities are calculated as follows:

Ipeptide p; P=
X

i
Ipeptide pðiÞ;Pðp1Þ

where Ipeptide p, P=intensity peptide precursor ion of protein
P. Finally, a normalized protein molar amount is expressed:

nP=
X

i
nPðiÞ P1ð Þ

where nP=estimated (molar) amount of protein P1 [47].
Relative and normalized molar amounts can be used for
stoichiometry and pathway analyses purposes. Already
foreseen is a final, automated validation and curation
process, based on variation converging with either technical
or biological experiment increment, before final upload of
the normalized spectral information into the fragment ion
repository/relational database. In order to demonstrate the
importance of normalized DIA spectrum intensity values and
their use to create a fragment ion repository, no attempts
were made to remove outlier data at this stage.

The results of 207 DIA LC-MS experiments were uploaded
to the relational database, representing the experimental results
from six different laboratories and 10 tissue types. Currently, the
database holds in total the identification results from 69,907
proteins and 1,032,110 peptides. Note that these results do not
represent unique protein identifications, but unique protein-
sample and peptide-sample combinations. Peptide identifica-
tions include in-source fragments and the losses of water and
ammonia from precursor ions. These peptides can be readily
mapped to multiple proteins of which the relationships can be
retrieved by means of standard SQL language queries. The total
number of redundant fragment ion identifications equals
7,480,798. This number of identifications is reduced to
2,181,901 by excluding the y and b ion losses of water and
ammonia, ymax, bmax, in source fragments and variable
modifications. More than 85.6% of these fragment ion
identifications replicated at least twice across the database
content. With decoy entries excluded this amounts to 86.5%.
This highlights the quality of the current content of the fragment
identification repository, which is a primary prerequisite, as will
be illustrated later, for successful and confident identifications.
In contrast, only 8.3% of the decoy entries were identified in at
least two LC-MS experiments. This number readily decreases to
0.7% when a replication rate of at least five is applied. With the
same criteria applied, the replication rate of the non-decoy
fragment ion identifications equals 72.5%. This is expected, as
decoy signals are not amplified during the process of
identification replication. Interestingly, two fragment ions,
associated with two particular data sets, account for themajority
of the replicating decoy identifications. Excluding these two
ions, reduced the number of replicating decoy fragment ion
identifications further down to 0.4%. The same logic was
applied throughout the analysis of the database content unless
mentioned otherwise. These basic database entry statistics
suggest however that accurate mass product ion signal
replication is a very strong metric and that the value of product
ion mass accuracy with respect to improving specificity is most
likely underestimated by most sequence search algorithms.

The fragment ion relationships f1 and f2 describe the
fragmentation efficiency for a given fragment ion in relation
to the precursor intensity and the preferred fragmentation
pathway of a particular fragment ion for a given sequence.
Examples for f1 and f2 for three highly replicating fragment
ions are shown in Figures 2 and 3, respectively. Outlier data
are marked by a black square and are indicative of incorrect
identifications or interfered ion intensity measurements. The
value and specificity of f1 and f2 increases substantially by
supplementing the fragment ion signature with additional
orthogonal information, such as standardized peptide reten-
tion time [49], drift time [51, 55] or collision cross section
[56]. Supplementary Figure 3 illustrates the addition of the
standardized retention time to f1 and f2, thereby creating a
subset ion map for the three fragment ions of interest,
indicating substantially improved specificity compared with
the results shown in Figs. 2 and 3. Panel (a) of Supplemen-
tary Figure 3 illustrates that experimental retention time
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correlate linearly with predicted normalized hydrophobicity.
Panel (b) shows f1 and f2 as a function of non-standardized
(raw) retention time, and panel (c) f1 and f2 as a function of
retention time after normalization and standardization [49].
Drift time and collision cross section information were not
acquired and/or available for the results described. Drift time
is expected to further increase specificity [51], whereas cross
section information is believed to be useful for the analysis
of post-translationally modified peptides [56]. Median
values for f1 and f2 were 31.8% and 28.5%, respectively.
Fragment ion relationships f1 and f2 can be utilized to create

queryable library-like database spectra. An example is
shown in Fig. 4. The circles represent curated average
database f2 values with the database frequency in parenthe-
ses. A normalized experimental spectrum is superimposed.
The relative intensity of the majority of the observed
fragment ions is in agreement with the database entries,
contradicting a recent study [57]. Moreover, the spectrum
indicates remarkable similarity with previously presented
data from other species and sample types [46]. For this
particular example, the absolute normalized fragment ion
intensity standard deviation was as high as 50% to 70% for
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Figure 3. Intra- (tissue/experiment) and inter- (sequence) relative fragment ion intensity f2 distribution examples for one and
two* dimensional LC-DIA-MS experiments of different mouse and rat proteomes. The statistical distribution of ratio f2 values for
three fragment ions originating from three different peptides are shown as a box plot for each of the experiments deposited in
the database. The overall distribution of the ratio f2 values for each of the fragment ion is shown in the right-hand panel. Outlier
data are marked as black squares
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the lower abundant product ions with lower ion statistics,
whereas for the more abundant fragment ions, this value is
closer to 35%.

An additional benefit of spectral library-like searches is
demonstrated in Supplementary Figure 4 for various cancer
cell line samples of mammalian species similar to the
described organisms under study. The left hand side of
Supplementary Figure 4 illustrates the absolute increase in
number of identified proteins, corresponding to relative
increases of 18%, 28%, and 4% for PC-3, MDA-MB-231,
and Hep-G2, respectively. The right hand side shows the
identification distributions of the sample for both
approaches, i.e., database and repository centric. For the
latter, an ion match tolerance of ±10 ppm was used. In
addition, the retention and drift times, as discussed in the
Materials and Methods section, were normalized and
standardized as the experiments were conducted on different
instruments in different laboratories. The match tolerances
were ±1 min and ±1 drift time bin, respectively. As can be
noticed from the presented results, the sample common
number of identified proteins substantially increased, where-
as the number of sample unique proteins decreased, by using
a spectrum library-like search approach. More importantly,
this protein identification increment was primarily achieved
through ion detections from the lower concentration ranges
of the dynamic range of the studied cancer cell line
proteomes.

The median calculated value for p1 equaled 44.2% (n=150),
ranging from 23.7% (n=43) to 45.6% (n=50) for individual
experiments. The results from the two-dimension LC-MS
experiments were excluded from p1 value trend analysis since
different, first dimension-dependent, non-linear second dimen-
sion gradients were applied in order to optimally utilize the
available chromatographic space/increase system peak capacity.
Precursor intensities arising from multiple fractions are typically
summed in the instance of two-dimensional data-independent
LC-MS experiment and error measurement can, therefore, be
slightly higher than expected. This could be overcome by
extracting the precursor and product ion intensity from only one
second dimension gradient separation, preferably the more
dominating contributing one in terms of identification confi-
dence and ion statistics, in order to calculate fragment ion
relationships f1 and f2. This was, however, not considered at this
moment of time. As previously mentioned, no attempts were
made to remove outlier data, which could be part of the earlier
proposed automatic digital curation process with the upload of
new results. Alternatively, machine learning algorithms could be
implemented and employed [58]. Examples for p1 for three
highly replicating peptides are shown in Supplementary Figure 5.
In this instance, the two-dimensional LC-MS data are included
to illustrate that they exhibit somewhat more scatter. Peptides are
expected to have similar ionization efficiencies, regardless of the
sample and protein origin [12, 46]. This could go readily
unnoticed in a DDA experiment, especially in the case of
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chimeric or composite spectrum instances. Some of the
problems associated with chimeric events were emphasized
already in the Introduction section. Undoubtedly, amino acid
sequence-ionization efficiency relationships cannot be estab-
lished when fragment ion spectra are incorrectly annotated.
Moreover, DDA experiments are duty cycle limited, thereby
limiting the opportunity to detect and identify all peptides of
interest [10]. This would be especially the case for high in-
spectrum dynamic range occurrences in combination with
automatic gain control, as applied with trap based mass
analyzers, whereby low abundant peptides are unnoticed [59].
DIA acquisition methods are, therefore, arguably more suited to

quantify ionization efficiencies bymeans of electrospray LC-MS
as they are only detection limited. Superimposed chimeric DIA
fragmentation spectra are searched with dedicated search
engines since they, by default, arise from co-eluting, non-
isolated peptides [46]. Species- and tissue-independent peptide
ionization efficiency consistency is illustrated in Fig. 5, where
the average p1 value, the related coefficient of variation, and
replication rate are summarized for Aldolase A, B, and C for
both rat andmouse using the amino acid sequence of Aldolase A
from mouse as the alignment reference. The tryptic fragment
number annotation of the latter is shown in Supplementary
Figure 6. Despite sequence differences between the protein
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isoforms and species, similar precursor intensities can be
observed. Normalized peptide p1 intensity values can be used
for example for pathway analysis since peptides identified to
associated proteins are also expected to show relative ionization
distribution efficiency similarity [60].

Proteotypic information and estimated relative within-
sample molar amounts P1 were retrieved from the repository
for 62,760 proteins, representing 2971 non-redundant,
replicating identifications from non-fractionated mammalian
samples. The actual total number of protein uploads equaled
69,907. In other words, proteotypic, quantifiable information
was obtained for 89.8% of the identified proteins. Moreover,
the repository currently holds 2266 replicating, species-
independent genes, whereas to date 16,106 non-redundant
and reviewed (curated) primary gene names can be retrieved
from the utilized protein sequence databases, equaling a
14.1% depth of genome coverage. This very high volume of
genomic and proteotypic content stems from the use of high-
quality, curated databases and, equally important, a data-
independent scanning approach and search algorithm that
can extract the required type of information from complex
samples. As an example, Fig. 6 illustrates normalized molar
amounts of mitochondrial elongation factor Tu and cyto-
plasmic actin identified in both rat and mouse in various
tissues and indicates that the protein abundance level of both
proteins is similar across the investigated samples. The
relative abundance between the two proteins of interest is
approximately 30-fold and is relatively consistent across all
tissue types and species. Mitochondrial elongation factor Tu
was consistently low in abundance and not quantified in one
of the samples. Cytoplasmic actin is more abundant in one
of the investigated tissue samples, which may be biologi-

cally relevant for the sample and/or perturbation under study
or sample preparation procedure related. The relational
database captures, however, meta data during upload, which
could be used to investigate discrepancies in more detail or
filter the results. Relative molar amount comparison between
tissues would benefit from geometric normalization as
would be more typically applied in microarray analysis
[61]. It has been recently demonstrated that this normaliza-
tion technique can also be applied to the data obtained from
label-free, data-independent experiments [62]. This informa-
tion can be utilized for both inter- and intra-sample
stoichiometry analysis [62–64], as shown in Supplementary
Figure 7, where the within-tissue consistency for a well-
described multi-enzyme complex is shown. The E1α
(PDHA1), E1β (PDHB), and E2 (DLAT) subunits of the
pyruvate dehydrogenase complex were normalized to E3
(DLD), which is associated with other protein complexes. A
good within-tissue agreement was observed vs. the expected
1:1:1 subunit ratio for the majority of the samples in which
the proteins of interest were identified and quantified. The
E1α subunit did not follow the commonly observed trend for
the cerebral cortex samples and was identified at an
approximate 1:1.5 ratio vs. the two other subunits.

Concept and Outlook

Recent instrument developments and LC-MS based proteo-
mics techniques have considerably improved the speed of
analysis, depth of protein coverage, and information content
that can be obtained from complex biological sample
mixtures. Despite these impressive developments, identifi-
cation and quantification variation is still a concern and,
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thus, alternative and complementary methods are even
required to date. The value and use of a data-independent
fragment ion repository has therefore been explored. The
required sensitivity and selectivity for the purpose of protein
identification and quantification has been demonstrated in
previous paragraphs. More conceptually, the following schema
can be considered for validation and or conformation, hypothesis
driven studies or selected reaction monitoring (SRM)/multiple
reaction monitoring (MRM) method development [65, 66].

1. A minimum of three peptides with three product ions are
selected from any given protein. The fragment selection is
based upon highest replication rate and smallest signature
product ion variation across both experiments and samples.

2. In addition, similar precursor and product ions, three
times three for the complete ‘protein set’, are selected
from second and third protein that are consistently present
with the protein of interest. Together, these proteins
outline a fragment ion signature (i.e., ion map).

3. Unknown samples can be subsequently mapped against
the fragmentation database signature to validate the
presence of the target protein, with the additional ions
and their associated intensity ratios acting as an internal
validation mechanism.

Various statistical and computational tools and methods
are currently considered and implemented for the analysis of
the content of the fragment ion repository in order to
facilitate the above and more mathematical accounting of the
information that resides in the relational database [67]. These
developments, query tools, and the public section of the
repository will become open source and can be followed at:
http://sites.duke.edu/ionmap/. The fragment ion database can
currently only be populated with qualitative results obtained
through DIA experiments, also known as LC-MSE [68].
DDA experiments generally do not afford precursor and
product ion intensity measurements across the complete
chromatographic peak or MS and MS/MS intensity recording
for the same amount of time with the same gain applied. Hence,
calculating normalized fragment and precursor ion intensities
such as f1 and p1 could be more challenging. However, it has
been demonstrated previously that DDA and DIA product ion
spectra share great similarity [9], arguing that normalized f2
values and aggregate MS/MS spectra originating and derived
from DDA spectra could be used to complement the content of
the repository, which may hold great value in the instance of
the more targeted analysis of fractionated or enriched samples.
The presented concepts can be easily transferred to other
application areas, including lipodomics [69] or metabolomics
[70], facilitating the characterization and quantification of other
molecule types. As spectral libraries and fragment ion
repositories find more widespread use in proteomics, some of
the remaining objection will be solved. In addition to the
identification of fragment ions, peptides, and proteins, data-
independent fragment ion repositories have great potential with
regard to the quantification of protein abundances,

stoichiometry, and the reliable quantification of post-transla-
tional modifications. In conclusion, repositories are a valuable
addition to the requirements of systems biology, not only
allowing quantitative analysis of low-abundant proteins, but
also delivering reliably quantitative data when proteins are
analyzed across multiple samples in multiple laboratories.
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