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Abstract
Matrix assisted inlet ionization (MAII) is a method in which a matrix:analyte mixture produces
mass spectra nearly identical to electrospray ionization without the application of a voltage or the
use of a laser as is required in laserspray ionization (LSI), a subset of MAII. In MAII, the sample
is introduced by, for example, tapping particles of dried matrix:analyte into the inlet of the mass
spectrometer and, therefore, permits the study of conditions pertinent to the formation of multiply
charged ions without the need of absorption at a laser wavelength. Crucial for the production of
highly charged ions are desolvation conditions to remove matrix molecules from charged matrix:
analyte clusters. Important factors affecting desolvation include heat, vacuum, collisions with
gases and surfaces, and even radio frequency fields. Other parameters affecting multiply
charged ion production is sample preparation, including pH and solvent composition. Here,
findings from over 100 compounds found to produce multiply charged analyte ions using MAII
with the inlet tube set at 450 °C are presented. Of the compounds tested, many have –OH or –NH2

functionality, but several have neither (e.g., anthracene), nor aromaticity or conjugation. Binary
matrices are shown to be applicable for LSI and solvent-free sample preparation can be applied to
solubility restricted compounds, and matrix compounds too volatile to allow drying from common
solvents. Our findings suggest that the physical properties of the matrix such as its morphology after
evaporation of the solvent, its propensity to evaporate/sublime, and its acidity are more important
than its structure and functional groups.

Key words: Matrix assisted inlet ionization (MAII), Laserspray ionization inlet LSII), Solvent
assisted inlet ionization (SAII), Laserspray ionization vacuum (LSIV), Multiply charged ions, Linear
and nonaromatic matrices, Solvent-free, Dissolved MAII, Electron transfer dissociation (ETD)

Introduction

Matrix-assisted laser desorption/ionization (MALDI)
mass spectrometry (MS) [1, 2], along with electro-

spray ionization (ESI) [3], has had an enormous impact on
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science. In spite of the importance and world-wide use, the
ionization mechanisms of MALDI [4–8] and, to a lesser
degree, ESI [9–13] are still in dispute. For MALDI, the two
most prominent models are the cluster model [14, 15] and
the photochemical ionization model [16, 17]. Mechanisms in
MALDI have been predicated on production of singly
charged ions, although Karas et al. [14] proposed a model
involving multiply charged matrix:analyte clusters in which
charge reduction of multiply charged ions produced from
laser-induced clusters led to the observed singly charged
‘lucky survivors’. This model was subsequently modified in
favor of direct production of singly charged ions from laser
produced clusters [15]. More recently, this model was
modified to a unified mechanism [18]. For ESI, the two
prominent mechanisms are ion evaporation and charge
residue [19, 20].

Laserspray ionization inlet (LSII) [21–25] provides an
alternative approach to atmospheric pressure (AP) MALDI
[26] in which production of high charge state ions, similar to
ESI, using laser ablation of a matrix:analyte mixture reduces
instrument-related mass range limitations and enhances
structurally significantly mass selected fragmentation [23,
27]. This newly introduced inlet ionization method also
offers the possibility of significantly better sensitivity than
AP-MALDI because ionization occurs inside the heated inlet
capillary between AP and vacuum [23, 28] eliminating so-
called rim ion loss issues [29]. Besides producing ESI-like
multiply charged ions, LSII was shown to involve a different
ionization mechanism from MALDI [23, 28, 30]. Essentially
identical results were obtained from the same bovine serum
albumin (BSA) ~66 kDa sample producing up to 67 charges
by introducing the matrix:analyte mixture field free into a
heated inlet tube linking AP with the first vacuum region of
the mass analyzer using laser ablation (LSII) or by tapping
(matrix assisted inlet ionization or MAII) [31]. Thus, in LSII
the laser is a high spatial resolution means of transferring the
matrix:analyte to the inlet of the mass spectrometer which is
important for imaging applications [27, 32–34]. Inlet
ionization has recently been extended to solvents as
matrices, so called solvent assisted inlet ionization (SAII),
and hyphenated to liquid chromatography [35–37].

A great deal of study has gone into developing and
understanding matrix compounds in MALDI including pure
solids [38–57], binary solids [58–61], and liquids [62–64],
but at the start of this study 2,5-dihydroxybenzoic acid (2,5-
DHB) [22, 23], 2,5-dihydroxyacetophenone (2,5-DHAP)
[24, 30], 2-aminobenzyl alcohol (ABA), anthranilic acid
(2-aminobenzoic acid), and 2-hydroxyacetophone (HAP)
[65], were the only known MAII and LSII matrices. In
LSII, matrix:analyte droplets caused by laser ablation were
reported [28, 66]. 2,5-DHAP was found to require signifi-
cantly lower inlet temperature than 2,5-DHB, which was
attributed to lower temperature requirement for evaporation/
sublimation necessary for desolvation of charged droplets
(clusters) and releasing of bare analyte ions [30, 33, 66, 67].
Extending the concept of the importance of desolvation of

charged droplets in producing multiply charged ions led to
the production of multiply charged ions, similar to ESI and
LSII, using the matrix 2,5-DHAP with an intermediate
pressure (IP) MALDI ion source; 2,5-DHB produces only
low abundance multiply charged ions at IP [68]. We
hypothesized that desolvation could be achieved even under
vacuum conditions using more volatile matrix compounds,
or alternatively, by increasing the thermal energy supplied
for desolvation. By expanding the use of laserspray ioniza-
tion at IP and low pressure (LP) conditions (e.g., MALDI-
TOF instruments), better sensitivity might be achieved
relative to AP ionization [69]. Initially, it was expected that
the type and positions of functionalities in matrix com-
pounds are important in MAII and LSI, as expected in
MALDI [38–64]. In analogy to MALDI [53, 70–93], sample
preparation was assumed to also be important.

Our original goal was to understand the structural elements
of a matrix that are necessary for formation of multiply charged
ions in LSI and MAII at AP, IP, and LP and discover more
volatile matrices, which could be used under vacuum con-
ditions. Based on assumptions of necessary structural elements
for ‘good’ matrices, we looked at ion abundances and charge
states produced for peptides, small proteins, and lipids using a
variety of potential matrix compounds, with and without the
anticipated ‘good’ structural elements. Here, we report on 9100
small molecules having a wide range of structures that were
tested as matrix compounds for MAII or LSII at high and low
inlet temperature and for use in vacuum ionization in the
absence of an inlet. Although, based on our hypothesis, it was
expected that higher temperature would improve ionization
through matrix desolvation, we were nevertheless astonished
that at 450 °C, a large majority of the compounds tested
produced multiply charged ions by MAII and, subsequently,
many of these by LSII. Many of the compounds with
anticipated ‘poor’ structural elements functioned as MAII or
LSI matrices. Of the well performing matrices, three matrices,
and binary matrix compositions thereof, produced multiply
charged ions of peptides, proteins, and synthetic polymers at IP
on a commercial IP-MALDI source without the need for an
heated inlet. One of these compounds produced stable multiply
charged ions on a commercialMALDI-TOFmass spectrometer
at LP conditions [94]. Further, initial results related to
analytical utility [31] and the mechanistic insights obtained
from this study are addressed separately [95].

Experimental
Materials

Matrices were purchased from Sigma Aldrich (St. Louis,
MO, USA), Fisher Scientific (Pittsburgh, PA, USA), Matrix
Scientific (Columbia, SC, USA), Supelco (Bellefonte, PA,
USA), and Alfa Aesar (Ward Hill, MA, USA). Acetonitrile
(ACN), methanol (MeOH), trifluoroacetic acid (TFA), acetic
acid (AA), formic acid (FA), and hydrochloric acid (HCl)
were purchased from Fisher Scientific (Pittsburgh, PA,
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USA), and angiotensin I (from human) from American
Peptide (Sunnyvale, CA, USA). Insulin (from bovine
pancreas), ubiquitin (from bovine erythrocytes), lysozyme
(from chicken eggwhite), myoglobin, carbonic anhydrase,
and ganglioside GD1a were obtained from Sigma Aldrich.
Purified water was obtained from EMDChemicals (Gibbstown,
NJ, USA). Microscopy glass slides (76.2 mm×25.4 mm×
1 mm) were purchased from Gold Seal Products (Portsmouth,
NH, USA).

Sample Preparation

For MAII and LSII studies, stock solutions of angiotensin I,
ubiquitin, lysozyme, myoglobin, and carbonic anhydrase
were prepared in pure water, ganglioside GD1a in pure
methanol, and bovine insulin in 50:50 MeOH:H2O with 1 %
AA to allow the sample to be completely dissolved. Matrix
solutions were prepared individually by dissolving 5 mg of
each matrix in 100 μL 50:50 ACN:H2O except for the
following: α-cyano-4-hydroxycinnamic acid (CHCA, (E)-2-
cyano-3-(4-hydroxyphenyl)prop-2-enoate) in 500 μL, 2,5-
DHB in 50 μL, 4,4′-azobis(4-cyanovaleric acid) in 60 μL,
and 2,5-DHAP in 150 μL (warmed), anthracene-9-carboxylic
acid (Fisher Scientific) in 1 mL and 3,4-DHAP in 100 μL
(water). For the high mass pH study, angiotensin I, ubiquitin,
lysozyme, myoglobin, carbonic anhydrase and bovine insulin
were diluted to 5 pmol μL–1 with pure water. 2-Amino-3-
nitrophenol matrix solution was pre-acidified by dissolving
10 mg in 300 μL 50:50 ACN:H2O with 1 % AA. Other
acidified matrix solutions were prepared as follows: 2,2′-azobis
(2-methylpropionitrile) with 1 % AA, dimethyl fumarate ([E]-
2-butenedioic acid dimethyl ester), 2,4,6-trimethoxybenzoic
acid, and 3,4,5-trimethoxybenzoic acid with 0.1 % FA. For the
anthracene pH study, 5 pmol μL–1 ubiquitin in water was
acidified with 0.1 % FA, 0.1 % TFA, 1 % AA, and 1 % HCl,
and anthracene solution in 50:50 ACN:water acidified with 1%
HCl. For matrices that were acidified to lower the pH, 0.1 % to
3 % FA was added into the matrix solution. For the solvent
study, 2,5-DHAP was dissolved in 100 % ACN, 50:50 ACN:
water, and acidified with 0.1 % FA, 1 % AA, 2 % AA, and 1 %
HCl. For dissolved MAII and SAII studies, the stock solution
of ubiquitin was diluted to 2.5 pmol μL–1 with 50:50 ACN:
H2O, and then 0.2 μLmatrix solution was added into 200 μL of
2.5 pmol μL–1 ubiquitin solution.

Solvent-Based Sample Preparation

The layer method was used as previously described [25]. In
brief, 1 μL of 5 pmol μL–1 analyte solution was spotted on a
glass slide and 2 μL of matrix solution was added on top (1
μL mixed and the other 1 μL without mixing), and air-dried.
For azobis matrix, 1 μL of 5 pmol μL–1 analyte solution was
added on top of 2 μL of matrix solution spotted on a glass
slide and air-dried. For binary matrices, 10 mg mL–1 CHCA
and 25 mg mL–1 sinapinic acid (SA, 3-(4-hydroxy-3,5-
dimethoxyphenyl)prop-2-enoic acid) in 50:50 ACN:H2O

were mixed with 2-nitrophloroglucinol (2-NPG, 2-nitro-
benzene-1,3,5-triol) (5 mg in 100 μL) solution by 5:95 (2-
NPG:CHCA, 2-NPG:SA) volume ratio for AP, 10:90 and
50:50 (2-NPG:SA) volume ratio for IP and LP measure-
ments, respectively. Sensitivity comparison studies were
obtained by spotting 1 μL of 10 and 50 fmol μL–1 bovine
insulin solution acidified with 1 % AA on a glass slide
separately and followed by 1 μL of 2-NPG and 1 μL of 2,5-
DHAP matrix solution, respectively. The dried-droplet
method was used for the binary matrix study using LSI
vacuum (LSIV) where 5 pmol μL–1 analyte solution was
premixed with the matrix solution in 1:1 volume ratio and 1
μL of the matrix:analyte mixture was spotted on a glass slide
and air dried [68, 94].

Solvent-Free Sample Preparation

Ten microliters of 1 mg mL–1 (772 pmol μL–1) solution of
angiotensin I in water, 10 μL of 1 mg mL–1 (545 pmol μL–1)
GD1a in methanol, and 10 μL of 100 pmol μL–1 ubiquitin in
water were dried in separate 200 μL PCR tubes in the
Biodryer (BioSpec Products, Bartlesville, OK, USA), and
homogenized with a TissueLyser II (Qiagen, Valencia, CA,
USA), after addition of a spatula tip amount of matrices
powder, similar to the published procedure [66]. The
homogenization was set at 25 Hz frequency for 10 min
grinding time where the ground matrix:analyte sample was
simultaneously transferred to a glass slide.

Evaporation Experiment

2-NPG, 2,5-DHAP, 2,5-DHB, CHCA, and SA matrices were
used in this experiment. One μL of each matrix solution was
spotted on a MALDI plate and air dried. The plate was
loaded into the SYNAPT G2 MALDI source operating at IP
and a picture capture of each spot was taken initially and
then at 30-min intervals for 4 h and again after 14 h total. At
AP, the MALDI plate with a 1 μL spot of each of the matrix
solutions was placed on top of a hot plate. Observations were
made over a 5-min period.

Laser Impact Angle Experiment

2,5-DHAP, 2-NPG, and methyl succinic acid matrices were
used to perform transmission geometry (TG) and reflection
geometry (RG) experiments. Matrix:analyte mixture was
prepared by 1:1 layer method on a glass slide and ablated
using a nitrogen laser (337 nm). An optical microscope
(Nikon Eclipse LV100) was used to capture photographs of
the ablated area at 5× magnification similar to previous
studies [28, 66].

Inlet Ionization Mass Spectrometry

An LTQ-Velos mass spectrometer (Thermo Fisher Scientific,
Bremen, Germany) with a commercially available heated inlet
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ion transfer tube was used for MAII, LSII, SAII, and dissolved
MAII studies according to the published procedures [27, 31–37,
96]. In brief, the API source housing was removed. For MAII,
the sample was transferred to the inlet by tapping the dried
matrix:analyte mixture applied to a glass slide against the mass
spectrometer inlet [31, 96], and in LSII, the focused nitrogen
laser (Spectra Physics VSL-337ND-S; Mountain View, CA,
USA) ablated the solid matrix:analyte sample into the inlet [27,
31–33]. In SAII, the analyte dissolved in a solvent, and in
dissolved MAII the analyte dissolved in a solvent along with
dissolved matrix [34], are introduced into the mass spectrometer
inlet in the liquid state using 150 μm i.d. fused silica tubing
(Polymicro Technologies, Phoenix, AZ, USA) directly [35–37],
or simply pipetting the solution into the mass spectrometer inlet
[37]. The temperature applied on the mass spectrometer inlet
tube was 450 °C unless specified differently. Matrices that
performed well at high inlet temperatures were examined as low
as 50 °C.MAII and LSII mass spectra are obtained by setting the
maximum injection time to 50 ms and microscans to two.
Electron transfer dissociation (ETD) fragmentation was
obtained on the LTQ-ETD Velos for charge state +11 of
ubiquitin using dissolved MAII similar to LSII-ETD previ-
ously described [23, 27]. A Waters SYNAPT G2 mass
spectrometer with IMS capability was also used for LSII
employing the nanoESI source as described in detail in [24,
25]. Different designs of the homebuilt skimmer cone were
used including straight copper and glass tubes and a 90° bent
stainless steel tube. The source temperature was set at 150 °C.
Acquisition conditions were resolution mode with 40 V sample
cone and 4 V extraction cone settings. The scan time of 1 scan
per s and with up to 1 min acquisition times were used.
MassLynx 4.1 software was used to extract the mass spectrum.

LSI Vacuum (LSIV) Mass Spectrometry

Matrices that worked well at low inlet temperature inMAII and
LSII were tested for the utility to provide multiply charged ions
under vacuum conditions without the benefit of a heated inlet.
A variety of different binary matrix compositions were also
examined using the best MAII matrix, 2-NPG, dissolved with
MALDI matrices, (e.g., CHCA and SA) and air dried. A
SYNAPT G2 mass spectrometer with an IP-MALDI source
equipped with a Nd:YAG laser (355 nm, 200 Hz) was used, as
noted in previous work [68, 94]. The instrument was operated
in positive ion and sensitivity modes with 0 V on the sample
plate, a 10 V “extraction,” 10 V “hexapole bias,” and 5 V
“aperture 0” settings. The dried droplet method was used to
spot 1 μL of the analyte:matrix mixture onto the glass plate.
After the sample plate was loaded into the MALDI source, the
sample pressure was at 0.216 mbar and the drift cell pressure at
3.25 mbar. The laser fluence used was set to 170 and 225
(arbitrary units) respectively, at a 200 Hz firing rate. The total
acquisition time was 1 to 2 min with 1 scan per s. Autoflex
Speed mass spectrometer (Bruker, Bremen, Germany) was
employed for the LP-LSI study of pure and binary matrices
employing reported instrument conditions [94]. The mass

spectrometer was operated in reflectron positive ion mode. The
ion source voltage (ISV) 1, ISV 2, lens voltage, rf and rf2 were
set 19, 16.8, 8, 21, and 9.65 kV, respectively.

Results
Ion abundances in the inlet ionizationmethods LSII,MAII, and
SAII (Scheme 1, Scheme S1) have been shown to be a function
of the AP to vacuum inlet temperature [23, 28, 66]. This
temperature effect has been associated with matrix or solvent
droplet charging and desolvation (Scheme 1). An approach for
enhancing matrix dependent inlet ionization (Scheme 1a) is
through discovery of matrix compounds that efficiently
produce charged droplets/particles and desolvate under the
available experimental conditions. Finding compounds having
these features under vacuum conditions (Scheme 1b) was of
interest because of the possibility of further enhancing
sensitivity by eliminating losses associated with ion transfer
from AP to vacuum. In order to determine structural elements
useful for good matrix compounds without the necessity of
absorption at a particular laser wavelength, we screened 176
compounds using MAII with an inlet temperature of 450 °C
using the commercially heated inlet tube capabilities of the
LTQ Velos. Of the small molecules screened, surprisingly, 137
provided abundant multiply charged ions (Scheme 2, Figure 1
and S1: common MALDI matrices and respective isomers,
Scheme 3, Figure 2, and S2A: aromatic compounds, and
Scheme 4, Figure 3 and S2B: nonaromatic and linear
compounds). Matrices that provided the highest ion abun-
dance at an inlet temperature of 450 °C are summarized
for positive (Table S1) and negative ion mode measure-
ments (Table S2). These matrices were subsequently analyzed
at temperatures as low as 50 °C (Figure S3). Compounds that
do not provide significant ions at 450 °C or increase the charge
state in dissolved MAII relative to SAII are listed in Table S3.

Several matrices using solvent-free sample preparation
conditions were also tested (Figure 4 and S4). The influence
of the solvent composition (Figure S5), pH (Figure S6),
counter anions (Figure S7), the applicability for negative
mode (Figure 5 and S8), and high-mass measurements
(Figure S9) were further considered for a selected set of
matrix compounds. The applicability for LSI (Figure 2II.b,
Figure S10) was determined for aromatic and nonaromatic
compounds, and the influence of the laser alignment in TG
versus RG studied (Figure S11) similar to previous reports
using AP- and vacuum MALDI [30, 97, 98]. Matrices and
sample preparation conditions that produced exceptional
results at low inlet temperatures were further investigated on
instruments lacking a heated inlet tube such as the SYNAPT
G2 nano-ESI skimmer cone ion entrance, the SYNAPT G2
IP-MALDI source, and the Bruker LP-MALDI-TOF vacuum
source. Binary matrices were tested at AP, IP, and LP
(Figure S12). Collisions of multiply charged droplets/
particles with surfaces, as well as radio frequency (rf) fields
presumably aid desolvation (Figure S13). Lipids, peptides,
and proteins were analyzed.
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Matrices Tested using Matrix Assisted Inlet
Ionization

Structural commonalities of the successful MAII matrices
may reflect our selection of compounds to test based on
preconceived expectations from structural elements of
previously successful MALDI (Scheme 2) and LSII matrix
compounds. With this caveat, the better matrix compounds
were found to have two or more functional groups, one of
which is a –OH or –NH2 group (Schemes 3 and 4). One
of the other functional groups of the better matrices is
also an electron withdrawing group consisting of –CO2H,
–COCH3, –NO2, or –CF3, with compounds having an
NO2 or other good leaving groups (‘explosophores’ [99])
sometimes providing exceptional performance. However,
some well performing matrices were discovered that have
none of these structural elements, especially with suffi-
cient heat provided. The results relative to functional
groups are summarized according to carboxylic acids
(Table S1A), acetophenones (Table S1B), benzaldehydes
(Table S1C), benzamides (Table S1D), phenols/alcohols
(Table S1E), nitro (Table S1F), cyano (Table S1G), and
halogenated compounds (Table S1H), sulfonic acids and
sulfonates (Table S1I), amines (Table S1J), hydrazides
(Table S1K), pyridines (Table S1L), naphthalenes (Table
S1M), anthracenes (Table S1N), as well as cyclic non-
aromatic (Table S1O), linear conjugated (Table S1P),
linear nonconjugated (Table S1Q), and thermally labile
compounds (Table S1R).

Investigations of known DHB [38, 47, 53] and DHAP
[40, 41, 100] MALDI matrices, and their respective isomers
all produced highly charged ions (Figure S1.A, B), with
different abundances at 450 °C. Caffeic acid (3-[3,4-
dihydroxyphenyl]-2-propenoic acid) [101] produces charge
states for ubiquitin (MW 8560) up to +12 (Figure 1a:
ubiquitin). Other known MALDI matrices [38, 42, 46, 49,
102–106] such as 6-aza-2-thiothymine (Figure 1b: myoglo-
bin), anthranilic acid (2-aminobenzoic acid), 5-methylsali-
cylic acid, 2,4,6-trihydroxyacetophenone, 5-bromo-2-
hydroxybenzohydrazide, 4-nitroaniline, 3-hydroxypicolinic
acid, and nicotinic acid (pyridine-3-carboxylic acid) produce
multiply charged MAII ions, though the abundances vary
greatly (Figure S1C). The least abundant multiply charged
ion formation is observed with CHCA ([E]-2-cyano-3-[4-
hydroxyphenyl]prop-2-enoate) and SA (3-[4-hydroxy-3,5-
dimethoxyphenyl]prop-2-enoic acid) matrices (Figure S12).
In a temperature study from 450 to 50 °C using salicylamide
(2-hydroxybenzamide) and 3,4-DHAP, the ion abundance
strongly decreases with decreasing inlet temperature (Figure
S3) as previously observed [23].

MAII results of hitherto unknown aromatic matrices for
use in MS are shown for 1,4-dihydroxy-4,6-dimethoxyben-
zene (DHDMB) (Figure 2I: non-acidified) and 2-amino-3-
nitrophenol (Figure 2II.a: acidified) for the analyses of
lysozyme (MW 14,300) producing up to +14 charge state
with +12 as the most abundant. Other well performing
matrices include 2,4-dihydroxybenzaldehyde and 2-naphthol
(2-hydroxynaphthalene) both producing up to +11 charge
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state of ubiquitin (Figure S2A). As observed previously [31,
94–96], the chemical background of well performing MAII
matrices is minute. A temperature study shows that abundant
multiply charged ions are observed for acidified bovine
insulin with DHDMB (Figure S3) as low as 50 °C.
Resorcinol (1,3-dihydroxybenzene), one of a few MAII
aromatic structures tested that diverges from 1,2-substitution
did not produce multiply charged ions for ubiquitin dissolved
in water, but with ubiquitin dissolved in 0.1 % FA and for
insulin dissolved in 50:50 MeOH:water with 1 % AA (Figure
S2, S7), abundant multiply charged ions are observed. Other
aromatic matrices diverging from the 1,2-substitution, which
also produce multiply charged ions of bovine insulin when
acidified, include 1,3-dicyanobenzene, 1,4-dicyanobenzene,
hydroquinone (1,4-dihydroxybenzene), 4-nitroaniline (p-ami-
nonitrobenzene) and 3,5-dihydroxybenzamide (Table S1D-G).
Unexpected, based on previous successful matrix compounds,
the 1,3-substitution of dihydroxybenzene produces higher

charge states than 1,4-dihydroxybenzene using acidified
bovine insulin (Figure S2).

Results were also obtained for linear conjugated matrix
compounds carrying two functional groups (Table S1P,
Figure S2B) including mesaconic acid ([2E]-2-methyl-2-
butenedioic acid) that produces up to +6 charges on acidified
bovine insulin (MW 5731). However, two functional groups
are not a requirement for producing highly charged ions as can
be seen in case of 2,4-hexadienoic acid (Figure 3I.a). With only
one carboxyl group, this matrix produces up to +12 charges on
ubiquitin. A temperature study using mono-methyl fumarate
([E]-2-butenedioic acid hydrogen 1-methyl ester) as matrix
shows that multiply charged ions of acidified bovine insulin
can be observed as low as 50 °C (Figure S3). Further, succinic
acid (butanedioic acid), a fully saturated matrix compound
(Figure 3I.b) with two carboxylic acid groups, produces
abundant, highly charged ions. Thus, neither aromaticity nor
conjugation is a requirement for ion formation.
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Matrix material based on thermal initiators (Scheme 4, Table
S1R) used in polymer chemistry to initiate polymerization by
decomposing into radicals and a good leaving group (e.g., N2 in
4,4′-azobis[4-cyanovaleric acid]), provide high abundance ions
with charge states up to +13 for ubiquitin (Figure 3II.a). This
thermal initiator carries -COOH and -CN functional groups.
The initiator 2,2′-azobis(2-methylpropionitrile) (AIBN) bears
no proton donating or electron withdrawing functional groups
and surprisingly produces highly charged ions from ubiquitin if
acid is added to either the matrix solution (e.g., with 1 % AA)
(Figure 3II.b) or the analyte (e.g., ubiquitin with 0.1 % FA or
1 % HCl) (Figure S7).

Other aromatic compounds tested (e.g., phenol and 4-
trifluoromethyl phenol) as well as cyclic non-aromatic
structures (e.g., 2-nitrocyclohexanol, 1,4-cyclohexane dime-
thanol, and 1,3-cyclohexanediol) have low melting points so
that matrix evaporation is too rapid for solvent evaporation
without matrix evaporation. However, solvent-free sample
preparation is applicable to these samples (Figure S4 and
Table S1E, H, O) because the solvent evaporation step in the
presence of the volatile matrix is omitted. As is the case with
the better matrices using solvent-based sample preparation,
solvent-free sample preparation (e.g., 4-trifluoromethyl

phenol) provides high ion abundance and little to no
chemical background. Astonishing ion abundance using 2-
NPG matrix is observed with charge state +4 of angiotensin
I using solvent-free sample preparation (Figure S4A);
solvent-based sample preparation produces +3 as the base
peak. Further, solvent-free sample preparation produces
multiply charged ions with matrices having sulfonic acid or
sulfonate functional groups (Table S1I) that fail to produce
results using the common solvent-based sample preparation
protocol developed for LSI. We attribute this to solubility
restrictions in 50:50 ACN:water. For a number of matrices,
using solvent-free sample preparation (Figure S4), singly
charged ions are also detected, in addition to the multiply
charged ions, and some basic MALDI matrices (e.g., 1,5-
diaminonaphthalene, 1,8-bis(dimethylamino)naphthalene,
and 9-aminoacridine) only form +1 ions (Figure S4A). This
observation is in accord with previous solvent-free studies
using 2,5-DHAP and 2,5-DHB [22, 66]. This study
demonstrates that compounds deemed not to work as
matrices may be related to how the sample was prepared
and not related to structural elements.

Matrices were employed that performed well applying the
solvent-free sample preparation method in analyzing small
proteins. Using matrix materials that have lower melting
points (e.g., cis,cis-1,3,5-cyclohexanetriol dihydrate and 4-
trifluoromethyl phenol), abundant multiply charged ubiqui-
tin ions are observed (Figure 4) similar to solvent-based
sample preparation. Interestingly, 2-NPG, a well performing
matrix in solvent-based sample preparation [31, 94, 95] and
as noted above for angiotensin I using the solvent-free
methods, only produces highly charged ions in low
abundance with ubiquitin using the solvent-free method
(Figure S4A). Contrary to the better performing matrices
using solvent-free analysis, the 2-NPG matrix has a
relatively high melting point of 189 to 193 °C. This suggests
that the matrices with lower melting points efficiently form a
matrix:analyte solution in the solid state prior to the
ionization and mass analyses which is in good agreement
with previous solvent-free work [53, 66, 84, 90, 107–110].
The matrix 4-trifluoromethyl phenol, having a melting point
of only 46 °C, was found to produce exceptional ion
abundance of ubiquitin at 50 °C using solvent-free prepara-
tion (Figure 4II.b).

Gallic acid (3,4,5-trihydroxybenzoic acid), 2,4,6-trihy-
droxybenzoic acid, and 2,3,4-trihydroxybenzoic acid pro-
duce high charge state ions of ubiquitin (Figure S2A).
However, the methoxylated derivatives, 3,4,5-trimethoxy-
benzoic acid and 2,4,6-trimethoxybenzoic acid, produce
notably higher abundance charge states when acidified
(Figure S7) but dithranol (1,8,9-trihydoxyanthracene) pro-
vides poor results when acidified. Anthracene-9-carboxylic
acid and 9,10-dinitroanthracene (Figure S2A) show abun-
dant multiply charged ions, whereas, anthracene produces
multiply charged ions (Figure S7) only when acidified,
demonstrating that the presence of carboxylic acid and nitro
groups enhance the ionization. Ferulic acid (3-(4-hydroxy-3-

800 1000 1200 1400 1600 1800 2000

1696.0
1541.9

1884.1

1413.4

1304.9
1211.6

759.34

100

R
el

at
iv

e 
A

bu
nd

an
ce

0

m/z

+10
+11

+12

+13
+14

+15
+16

+17
+18

+9

N

N

N

OH

SH

6-aza-2-thiothymine

(b) 3.57E3

800 1000 1200 1400 1600 1800

857.4

952.6

779.6

714.6

1071.5

1224.4

1428.1

100

R
el

at
iv

e 
A

bu
nd

an
ce

0

+10

+9

+8

+7

+6

+11

+12

caffeic acid

(a) 9.06E3
OH

OH

HO

O

Figure 1. MAII mass spectra of MALDI matrices (a) caffeic
acid matrix and ubiquitin (MW 8560) and (b) 6-aza-2-
thiothymine matrix and myoglobin (MW 16,952) using sol-
vent-based sample preparation and acquired on the LTQ
Velos mass spectrometer at 450 °C inlet capillary temperature

Li et al.: Matrix Assisted Ionization 1631



(a) Carboxylic acids

2,4,6-trimethoxybenzoic acid
m.p. 158 °C

3,4,5-trimethoxybenzoic acid
m.p. 168-171 °C

3,4,5-trihydroxybenzoic acid
m.p. 158-160 °C

2,4,6-trihydroxybenzoic acid
m.p. 100 °C

2,3,4-trihydroxybenzoic acid
m.p. 210 °C

OCH3

OCH3

OCH3
HO

O

OH

OH

OH
HO

O

OCH3

H3CO OCH3

OH

OOH

HO OH

OH

O OH

OH

HO

HO

O

p-coumaric acid 
m.p. 214 °C

OH

HO

O

(b) Acetophenone

O

OH

2-hydroxy-5-methyl
acetophenone
m.p. 45-48 

(c) Benzaldehydes (d) Benzamides
OH2N

OH

CH3

O

OH2N

OH

ON

OH

OH

HO OH

OOH

HO

O

2,4-dihydroxybenzaldehyde
m.p. 135-137 °C

2,4,6-trihydroxybenzaldehyde
m.p. 195 °C

5-acetylsalicylamide 
m.p. 220-222 °C

2-hydroxy-5-methyl-
Benzamide m.p. 128-130 °C

2-hydroxy-N,N-
dimethylbenzamide

3,5-dihydroxybenzamide
m.p. 270 °C

OH2N

OHHO

NH2

O

HO

4-hydroxybenzamide
m.p. 161-162 °C

(e) Phenols/Alcohols

4-ethylcatechol
m.p. 34-35 °C

4-chlorocatechol
m.p. 90-94 °C

2-methoxyhydroquinone
m.p. 88-91 °C

OH

CH3

HO

OH

OH

OH

OH

Cl

OCH3

OH

HO
4-methylresorcinol

m.p. 104-108 °C

1,4-dihydroxy-
2,6-dimethoxybenzene

m.p. 158-162 °

phloroglucinol
m.p. 218-220 °C

ΟΗ

ΟΗΗΟ
5-methoxyresorcinol

m.p. 78-80 °

OCH3

OH

HO OCH3

OCH3

HO OH

OH

OHHO
OH

HO
HO

OH

pyrogallol
m.p. 131-135 °C

resorcinol
m.p. 109-112 °C

hydroquinone
m.p. 171-173 °C

OH

(f) Nitro compounds

4,6-dinitropyrogallol
m.p. 209-211 C

NO2

OH

OH

OH

O2N

3,5-dinitro-benzene-1,2-diol
m.p. 149 C

NO2

OH

OHO2N

NO2

O2N

OH

phenol
m.p. 40-43 °C

C
C

2,4-dinitrophenol
m.p. 108-112 °C

OH

O2N

OH

NO2

OH

O2N

OH

4-nitrocatechol
m.p. 173-177 C

4-nitro-5-[2-nitroethyl]-1,2-
benzenediol

2-nitroresorcinol 
m.p. 81-83 C

2-amino-3-nitrophenol
m.p. 212-213 C

NO2

NH2

OH

NO2

OHHO

OH

HO OH

NO2

OCH3

O2N

OH

O

OCH3

O2N

OH

4-nitroguaiacol
m.p. 99-104 °C

3-methoxy-5-nitrosalicyaldehyde
m.p. 142 °C

2-nitrophloroglucinol
m.p. 189-193 C

HO

NO2

4-nitrophenol
m.p. 113-114 °C

3'-nitroacetophenone
m.p. 76-78 C

p-nitrobenzyl alcohol
m.p. 92-95 C

C

C

C C

C

2-nitrobenzyl alcohol
m.p. 62-72 C

NO2 OH

2-nitrophenol
m.p. 43-47 C

NO2

OH

3-nitrophenethyl alcohol
m.p. 141-146 C

NO2

HO

NO2
OH OH

NO2

NO2

O
4-nitrophenethyl alcohol

m.p. 62-64 °C

(g) Cyano compounds

1,3-dicyanobenzene
m.p. 161-165 °

4-cyanophenol
m.p. 110-113 C

CN

OH

2-cyanophenol
m.p. 92-95 °

(h) Halogenated compounds
Cl

OH

HO
chlorohydroquinone

m.p. 263 °C

CN

NC NC

CN

HO

CN

1,4-dicyanobenzene
m.p. 223-226 °

4-trifluoromethyl phenol
m.p. 46-47 C

OH

F
F

F

OH F
F
F

2-hydroxybenzotrifluoride
m.p. 45-46 °

(i) Sulfonic acids and Sulfonates

hydroquinonesulfonic acid 
potassium salt 

m.p. 251 °C

3,4-dihydroxy-benzene-
sulfonic acid
m.p. 184 °C

OH

OH

Cl

Cl

OH

Cl

Cl

HO

OH

OH

Cl Cl

OH

OH

S
HO

O

O

S

OH

HO

O-

OO
K+

2,5-dichlorohydroquinone
m.p. 167-171 °C

4,6-dichlororesorcinol
m.p. 104-106 °C

3,5-dichlorocatechol
m.p. 86 °C

5-amino-2-hydroxy-
benzenesulfonic acid

m.p. 160 °C

OH

H2N

S
O O

OH

S

OHH2N

OO
OH

2-amino-6-hydorxy-
benzenesulfonic acid

m.p. 162 °C

S

OH

H2N
O

OH

O O
OH S

OO
O-

OH

S
O

O

-O

Ca2+

(j) Amines

NH2

NH2

OH

HO

NH2

NH2

OH
2,3-diaminophenol 

m.p. 161-165 °C
5-amino-2-hydroxy-3-

sulfobenzoic acid
m.p. 203 °C

calcium 3-hydroxy-2,7-
naphthalenedisulfonate

2,5-diaminohydroquinone-
(dihydrochloride)

m.p. >300 °C

p-phenylenediamine
m.p. 138-143 C

m-phenylenediamine
m.p. 64-66 C

(k) Hydrazides

5-bromo-2-
hydroxybenzohydrazide

HN O

OH

Br

NH2

NH2

H2N H2N

NH2

OHN

NH2

OH

2-(2-aminoethylamino)-5-
nitropyridine 

m.p. 126-128 °C

(l) Pyridine

1-naphthol 
m.p. 95-96 °C

(m) Naphthalenes

OH

3-hydroxy-2-naphthoic hydrazide
m.p. 205-208 °C

N NH

H2N

O2N

Br

OH

1-bromo-2-naphthol 
m.p. 78-81 C

NH2

NH2

1,5-diaminonaphthalene
m.p. 185-187 °C

(n) Anthracenes
NO2

NO2

9,10-dinitro-anthracene
m.p. 258 °C

OH

2-naphthol 
m.p. 120-122 °C

anthracene
m.p. 210-215 °C

HO O

9-anthracenecarboxylic 
acid m.p. 213-217 °C

Scheme 3. Novel aromatic MAII matrices

1632 Li et al.: Matrix Assisted Ionization



methoxyphenyl)-2-propenoic acid) only forms abundant
multiply charged ions of ubiquitin, up to +9, when acidified
(Figure S7), but the closely related caffeic acid (Figure 1a)
provides highly abundant multiply charged ions of up to +12
without acidifying. A detailed study addressing the influence
of pH is included below.

Negative mode measurements were made with a selected
set of matrices (Table S2). Basic matrices such as 2-amino-

4-methyl-3-nitropyridine (Figure 5a), 2-amino-3-nitropyri-
dine (Figure 5b), and 4-nitroaniline are applicable for
negative ionization of ubiquitin and gangliosides using an
inlet temperature of 450 °C with MAII (Figure S8A). One of
the better performing matrices for negative mode detection
of gangliosides, 4-nitroaniline, allow the use of an inlet
temperature of 150 °C (Figure S8B). At this time, too few
matrices have been used in the negative ion mode to suggest
structural similarities of successful matrix compounds.
However, matrices with functionalities that can be proto-
nated or deprotonated (e.g., 4-nitroaniline and 2-amino-4-
methyl-3-nitropyridine), operate in the positive (Figure S1C
and S10) and negative mode (Figure 5, Figure S8). Basic
MALDI matrices (e.g., 2-amino-3-nitropyridine and 2-
amino-4-methyl-3-nitropyridine) [39], provide the ability to
observe negative multiply charged MAII ions of peptides,
proteins, and lipids (Figure 5, Figure S8).

The utility of MAII matrices dissolved in, for example,
ACN:water (50:50), referred to as dissolved MAII, were also
tested in analogy to solid binary matrices described above
and used in MALDI analyses [58–61]. The presence of 2,2′-
azobis(2-methylpropane), a non-acidic matrix, shifts the
charge state distribution of ubiquitin by four charges with
the most abundant at +10 (Figure 6c) relative to no matrix or
acid added to the solution (SAII, Figure 6b) with the most
abundant charge state +6. Based on the chemical function-
ality, an increase in charge states, for example due to
increased acidity, is not expected for this compound. Some
supercharging reagents used in ESI [111–113] increase the
charge states using dissolved MAII (Figure S14) (e.g.,
sulfolane) and other showed nearly the same charge state
distribution (e.g., benzyl alcohol) relative to no matrix added
(SAII). In case of 3-nitrobenzyl alcohol significant analyte-
matrix adduction is observed indicating insufficient evapo-
ration of this matrix compound at 450 °C. The use of
dissolved matrices directly released from the pipette tip into
the mass spectrometer inlet (Scheme S1D) is one of the
easiest ways to achieve ionization without the additional
steps of sample deposition and dislodging by tapping (MAII)
or laser ablation (LSII/LSIV) and offers the advantages to
utilize high throughput liquid handling approaches in
continuous flow mode [34]. The formation of the higher
charge states and ion abundance (Figure 6c) permits the use
of ETD fragmentation (Figure S15).

Matrices Tested Using Laserspray Ionization

Though much can be learned from MAII studies of
fundamental processes for ion formation, the use of a laser
to ablate the matrix:analyte likely has broader analytical
utility because of the better spatial resolution that can be
achieved with laser ablation [27, 32, 33]. A number of novel
MAII matrices were examined for their utility as LSII
matrices. These include for example 2-amino-3-nitrophenol
(Figure 2II.b), DHDMB, 2-amino-3-nitropyridine, 3,5-dihy-
droxybenzamide, 5-bromo-2-hydroxybenzohydrazide, 3-
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Figure 2. Mass spectra of lysozyme (MW 14,300) and novel
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(a) MAII and (b) LSII applying solvent-based sample prepa-
ration and acquired on the LTQ Velos mass spectrometer at
450 °C inlet capillary temperature
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hydroxy-2-naphthoic hydrazide, 2-amino-4-methyl-3-nitro-
pyridine, succinic acid, and methyl trans-4-oxo-2-pentenoate
(Figure S6, S10). Nearly all of these compounds provide
very similar results without and with use of a laser judging
by the charge state distributions using the same inlet
temperature. Based on previous results this is expected
because the function of the laser in LSII is to ablate the
matrix so that some part of the ablated material enters the
inlet for subsequent ionization. Temperature studies also
follow the same trend as in MAII as described above and
previously observed for LSI [23, 28]. For example, the
common MALDI matrix, salicylamide, produces abundant
multiply charged ions of acidified bovine insulin at temper-
atures as low as 50 °C (Figure S10B). In some cases, signals
for matrix clusters are observed and decrease with increasing
inlet temperature both in MAII and LSII.

MAII matrices that work poorly, if at all, for LSII
applications include liquid and sticky compounds such as

pyrogallol (1,2,3-trihydroxybenzene), resorcinol, mono-
methyl fumarate, and fumaric acid (2-butenedioic acid). Some
of these matrices have a notable low melting point (e.g., 2-
hydroxy-5-methylacetophenone, 45 °C) so that the ablation
with a laser in TG (Scheme 1a) has been difficult because of the
morphology. Perhaps most surprising, LSII results for linear
unsaturated compounds, such as methyl trans-4-oxo-2-pente-
noate produces up to +5 charge state ions of bovine insulin and
saturated compounds, such as succinic acid produces up to +6
charge state ions (Figure S10).

The result of MAII matrices that work as LSII matrices
(Figure S10A) and do not bear any aromatic functionality or
even conjugation was unexpected. Therefore, an additional
set of experiments were performed using 2,5-DHAP, 2-
NPG, and methylsuccinic acid matrices, respectively, with
the laser aligned 180º (TG), as well as 0º and ~45º (RG)
relative to a collection surface at the position of the mass
spectrometer inlet. Microscopy of the collection surface was

Scheme 4. Novel nonaromatic and linear MAII matrices
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used to observe the results (Figure S11).Without attenuation of
the laser and a single laser beam impact, complete ablation is
observed where the laser beam strikes the sample 180º in TG
and at 0º in RG but less clean ablation is observed with the RG
45º angle applying the same sample preparation for all three
matrices in the presence of ubiquitin. The ablation diameter for
2,5-DHAP and 2-NPG is about 200 to 500 μm and for
methylsuccinic acid of about 50 to 100 μm. Thus, the
methylsuccinic acid results demonstrate that with sufficient
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laser energy, sample ablation can be induced without absorp-
tion at the laser wavelength.

The influence of acidic and basic conditions was studied
by adding various acids and bases to either the analyte or
matrix solutions using a variety of solvent compositions. It
appears that matrices that are sufficiently acidic do not
benefit from added acid (Figure S6). However, those
matrices that do not carry acidic protons greatly benefit
from acid addition (e.g., 2-amino-3-nitropyridine and anthra-
cene) (Figure S6 and Figure 6a). A similar trend was not
observed using more basic conditions by adding, for
example, ammonium or sodium hydroxide.

Counter ions have been suggested to have importance in
MALDI and ESI [14, 73, 114, 115] so their influence in
positive (Figure S7) and negative mode measurements was
also considered with LSII. The best acidifying results are
obtained with 1 % HCl≈0.1 % FA91 % AA and 0.1 %
TFA. Unexpectedly, for anthracene as matrix, the highest
abundance was achieved with 1 % HCl added to either the
analyte or the anthracene matrix solution. This indicates that
the charging of the analyte must occur in solution and the

matrix serves the purpose of transport into the mass
spectrometer inlet. We do not see how, for example,
anthracene could serve the function of counter anion. In
this case, the counter anion would be the Cl– introduced
when acidified. Separation of the highly charged analyte
from the counter anions would likely require a means for
neutralizing the anions forming gaseous compounds such as
highly volatile HCl. Notable differences are also observed
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spectrometer at 450 °C inlet capillary temperature
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with different solvent compositions used for dissolving the
matrix, 2,5-DHAP, as well as the analyte (Figure S5). Water
appears to be beneficial but not a requirement as good
results are observed when acidifying an organic solution
(e.g., ACN). More details regarding these mechanistic
aspects are discussed elsewhere [95].

The importance of pH relative to the molecular weight of the
analyte was studied, and using, for example, 2-amino-3-
nitrophenol matrix (pH ~4.5) relative to the same matrix
acidified with formic acid (pH ~2.5) shows that the pH has little
influence for the analyses of peptides and small proteins such
as angiotensin I, bovine insulin, ubiquitin, and lysozyme
(Figure S9A–D). However, for myoglobin and carbonic
anhydrase, notable enhancements are observed with the
addition of acid (Figure S9E, F), which permits the use of
lower inlet temperature (250 °C); without acidifying the matrix
solution prior to evaporation of the solvent, the results for the
larger proteins at temperatures as high as 450 °C are relatively
poor. Based on these results, addition of acid for the MAII and
LSII analysis of BSA, ~66 kDa, using 2-NPG as matrix,
produced results with the inlet temperature as low as 200 °C
[31]. We explored the use of 2,5-DHAP and 2-NPG,
respectively, using the same temperature of 450 °C in the
positive detection mode (Figure S16) to determine the relative
sensitivity with a small protein. Using 2-NPG, 10 fmol μL-1 of
bovine insulin acidified with 1% AA provides a better quality
mass spectrum than 50 fmol μL-1 using 2,5-DHAP indicating
an approximate fivefold increase in detection sensitivity. The
2-NPGmatrix also produces highly abundant multiply charged
ions at high vacuum and, therefore, we view this –NO2

containing compound as the best MAII matrix discovered in
this study [31, 94, 95].

Initial success in producing multiply charged ions by inlet
ionization on a mass spectrometer commercially operated
with a skimmer cone ion entrance was reported using heated
inlet devices and expanded to laser ablation in vacuum using
matrices with low heat requirements for desolvation [24, 25,
36, 66, 94–96]. Expanding inlet ionization to mass spec-
trometers without a heated inlet tube is desirable. Previous
studies using 2,5-DHAP [68] also demonstrated the ability
to produce abundant multiply charged ions at vacuum using
the SYNAPT G2 mass spectrometer’s IP-MALDI source
(Scheme S1E). New matrix materials found to have
analytical utility for producing multiply charged ions under
vacuum conditions [94] or aid in our fundamental under-
standing of ion formation [95] have been published. In order
to determine if the volatility of a matrix and, thus, its ability
to desolvate under AP and vacuum conditions, relates to the
success at low inlet temperature in inlet ionization and in
producing multiply charged ions in vacuum, matrix sub-
limation experiments were performed at IP conditions. Using
methodology described in the Experimental section, the
order of fastest to slowest evaporation/sublimation at AP and
IP is 2-NPG92,5-DHAP92,5-DHB9CHCA and SA (Figure
S17). Of these compounds, only 2-NPG and 2,5-DHAP
produce abundant multiply charged ions by laser ablation at

IP and 2,5-DHB requires higher inlet temperatures at AP.
This finding is in support of our working hypothesis that
matrix evaporation/sublimation is important for obtaining
the naked multiply charged analyte ions.

Despite exceptional performance that some of the com-
pounds tested show as MAII and LSII matrices, the majority of
these matrices did not produce ions in vacuum. Perhaps the best
example is DHDMB that is substituted at the identical positions
as 2-NPG and produces multiply charged ions of acidified
bovine insulin even at low mass spectrometer inlet temperature
of 50 °C (Figure S3) identical to 2-NPG [95]. However, the
functionalities are different between these two easily desolvated
MAII matrices (DHDMB: two OHs and two OMe, and 2-NPG:
one NO2 and three OHs), and so are the results at vacuum.
However, visual ablation was not observed for DHDMB in
vacuumwhen lower laser power was employed, but at high laser
power ablation occurred without observation of singly or
multiply charged ions. Thus, ablation without strong absorption
of the laser energy was insufficient for ion formation with
DHDMB under vacuum conditions demonstrating insufficient
matrix evaporation under vacuum conditions (Scheme 1b),
despite the low temperature requirements using inlet technology
(Scheme 1a) for this matrix (Figure S3).These results indicate
that other parameters must have critical roles at vacuum
ionization as discussed in the accompanying paper relative to
the driving forces superheating and bubble formation [95],
especially in the absence of an efficient heating source.

Some of the matrices evaporated/sublimed too rapidly in
vacuum, a common observation in vacuum MALDI [116,
117]. For this and related reasons, the utility of binary
matrices were explored. CHCA and SA matrices produce, at
inlet temperatures of 450 °C, barely any ions using MAII or
LSII (Figure S12A). However, with 5 % 2-NPG and 95 %
CHCA abundant highly charged ions are observed. The
charge state distribution is lower relative to pure 2-NPG
matrix; pure 2-NPG produces lysozyme ions up to +19
(Figure S12A) and the binary matrix for SA and CHCA with
5 % 2-NPG up to +15 and +18 charges, respectively.
Temperature studies of binary matrices at AP show that the
inlet temperature requirements are notably lowered for SA
and CHCA when 5 % 2-NPG is added. Consequently,
binary matrices with 2-NPG are also useful at IP (Figure
S12B) and LP (Figure S12C) producing multiply charged
analyte ions similar to those obtained with 100 % 2-NPG
[94]. Binary matrices extend the time before the volatile
matrix component evaporates under vacuum condition, an
important consideration for analyses for which longer
acquisition times must be anticipated (e.g., tissue imaging
[118, 119]).

Discussion
Observed Trends

Known MALDI matrices, and hitherto unknown small
molecules, comprising aromatic, nonaromatic, cyclic, or
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linear without conjugation, and conjugated structures with
no other functionality, produce multiply charged ions using
MAII with an inlet temperature of 450 °C. Initially, a trend
to higher charge states and abundance with more acidic
matrices was observed [67]. The new aromatic MAII
matrices partially follow this trend (e.g., 2-NPG) [31], but
this is not the case with, for example, DHDMB. Both
structures have at least two OHs, one in ortho (DHDMB)
and the other in para-substitution (2-NPG), and at least one
electron withdrawing group. 2,4,6-Trihydroxyacetophenone
also has the same substitution positions, but the results are
not as good (Figure S1C). Similarly, phloroglucinol (1,3,5-
trihydroxybenzene) and 5-methoxyresorcinol (5-methoxy-
1,3-benzenediol) (Table S1E) do not produce multiply
charged ions, and structures with identical substitution posi-
tions, 3,5-DHB (Figure S1A) and 3,5-DHAP (Figure S1B)
produce poor results relative to other DHB and DHAP isomers.
However, pyrogallol (1,2,3-trihydroxybenzene) with the same
1,3,5-substitution pattern but without the carboxylic acid or
acetophenone functionality produces good results (Figure
S2A). Structurally similar compounds such as 2-nitroresorcinol
(2-nitro-1,3-dihydroxybenzene) (Figure S2A), 2-amino-3-
nitrophenol (Figure 2II, Figure S9), other DHB isomers and
DHAP isomers (Figure S1A, B) produce average to good
results. However, adding an additional hydroxyl group para to
the nitro group of, for example 2-nitroresorcinol, produces
excellent results (2-NPG, Figure S2A) [31, 94].

Based on the ion abundance of multiply charged peptide
and protein ions in the positive detection mode [94] the best
performing matrix discovered in this study is 2-NPG,
however, not all nitro containing compounds work well. It
has been noted that the nitro functional group has properties
similar to a carboxylic acid group [120, 121]. Using the
structure of 2-NPG as a starting point and examining data
from other useful MAII matrices one may find fuzzy
commonalities between some of the better MAII matrices.
For example, groups in the para position in addition to at
least one further functional group, frequently electron with-
drawing (e.g., 2,5-DHB, 2,5-DHAP, DHDMB, 2-NPG, and
3,5-dinitro-benzene-1,2-diol) (Figure 2, Figure S1, S2A,
Table S1A, B, E, F) seem important. Perhaps a clearer trend
is that the more OH groups produce higher analyte ion
abundance, which is best seen with the comparison of nitro
compounds with increasing numbers of -OH groups (Figure
S2A); however, more heat needs to be provided for similar
analyte ion abundances (Table S1F). Possibly a good leaving
group is important [99].

There are exceptions to any structural commonalities
observed at this point. For example, anthranilic acid
performs well (Figure S1C), as does 1,3-dicyanobenzene
which has no –OH groups, but produces abundant multiply
charged ions in the positive mode when the analyte solution
is acidified with 0.1 % FA (Figure S7). There are no acidic
hydrogen atoms with this latter matrix, and so it might be
assumed that analyte and residual solvent contribute the
protons required for analyte ionization. Loss of volatile

components by thermal decomposition of the matrix (e.g.,
nitro and azo compounds) has the potential to increase
ionization through rapid bubble formation [95]. This is
supported by the finding that polymer initiators such as 4,4′-
azobis(4-cyanovaleric acid) (HOOCCNCH3CH-N=N-
CHCNCH3COOH) produces multiply charged analyte ions
in MAII (Figure 3II.a, Table S1R); however, 2,2′-azobis(2-
methylpropionitrile) (NC(CH3)2C-N=N-C(CH3)2CN) does
not, unless the matrix:analyte mixture is prepared from an
acidic solution (Figure 3II.b). This may indicate that the loss
of nitrogen gas from decomposition of the thermally labile
matrix is important, but seems more clearly to indicate the
importance of pre-charging the analyte.

The necessity for decomposition of the matrix to perform
well as ionization medium must be ruled out based on the
outcome of the anthracene experiments that shows excellent
analyte ion abundance when acidified solutions, even with
HCl, were used at inlet temperatures of 450 °C (Scheme 1a).
As long as a proton source from a variety of acids is
provided to the solution prior to crystallization of the matrix
and analyte, good analyte ion abundances are obtained if
sufficient heat is supplied. Obstruction, gases, and rf
voltages can also be of a constructive means of matrix
evaporation from clusters (Figure S13) and may be efficient
means for mass spectrometers absent of a heated inlet.

Some of the trends noted above may be related to our initial
compound selection. In attempts to expand the matrices
available to LSII, several matrices initially used in MALDI, as
well as DHB and DHAP isomers, were tested. Based on this
predetermined set of compounds, 3,5-DHB, 3,5-DHAP, SA,
CHCA , and dithranol produced poor results even at 450 °C
whereas the other isomers of DHB andDHAP as well as caffeic
acid worked reasonably well in producing multiply charged
ions at this temperature. As with MALDI, the 2,5-isomers of
DHB and DHAP worked the best in producing multiply
charged ions in MAII/LSII [22]. Based on prior work, we
speculated that hydroxyl groups on a benzene ring that are in the
ortho- or para- positions relative to an electron withdrawing
group would be a good matrix while substitution in the 3,5-
position is detrimental. Interestingly, most of the compoundswe
expected might be good matrices produced reasonably abun-
dantmultiply charged ions at an inlet temperature of 450 °C, but
so also did the compounds we thought would not be good LSII
matrices.

In order to eliminate selection based on absorbance of the
matrix at the laser wavelength, MAII, which does not require
a laser, was used to test matrices. Upon expanding the tested
compounds to those with poor absorbance at the 337 nm of a
nitrogen laser, but having at least one hydroxyl group along
with an electron withdrawing group, we discovered that
most of these compounds provided multiply charged ions
even absent an aromatic ring. Further testing demonstrated
that linear or cyclic structures, even without unsaturation in
the carbon structure, provided multiply charged ions of
peptides and small proteins. These surprising results led to
testing compounds that have no acidic protons, such as 1,4-
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dicyanobenzene, 1,3-dicyanobenzene, dimethyl fumarate,
anthracene, and 2,2′-azobis(2-methylpropionitrile). These
matrices produce multiply charged ions if the solution from
which they are dried was first made acidic.

Discussion Related to Observed Trends

No structural element(s) for a MAII matrix seem essential
except the need for at least one acidic proton, which, as
noted above, can be circumvented by adding acid to the
solution from which the matrix and analyte was dried. Based
on minimum ion abundance, 137 out of 176 matrix
compounds analyzed on the LTQ Velos with the inlet
temperature set to 450 °C are considered MAII matrices.
High abundance analyte ions are produced by 56 of these
compounds. Out of these 56 better, 35 produced significant
ion abundances also at 300 °C, 26 at 200 °C, and six at
50 °C. A number of compounds tested with LSII employing
a nitrogen laser produced multiply charged ions even though
some had weak absorption at the laser wavelength, suggest-
ing that ablation in some cases may be a result of acoustic
desorption from the glass microscope slide. Thus, known
MALDI matrices and hitherto unknown small molecules,
comprising aromatic, nonaromatic, cyclic, or linear carbon
chains with various functional groups, with and without
conjugation, and even those that are conjugated, but with no
other functionality, produce multiply charged analyte ions
using MAII.

The best matrices discovered so far, however, have
electron withdrawing groups, but the wide range of small
molecule structures that act as matrices in MAII or LSII
suggest that the structure of the molecule plays a secondary
role relative to physical properties such as morphology of
the matrix on the target plate, its propensity to evaporate,
sublime, or even thermally decompose [99], as well as its
ability to solvate counter anions. A matrix that forms a layer
that does not ablate well in LSII or does not produce
particles when tapped against the mass spectrometer inlet in
MAII, will not produce ionized analyte. Similar observations
have been made in MALDI where visualization of the matrix
layer is often sufficient to determine if the analysis will be
successful. A ‘good’ matrix also strongly depends on the
experimental conditions of the measurement and even the
mass spectrometer used. The more limited number of
compounds found suitable as matrices in MALDI may be
as much a function of the restrictions imposed by the
experimental conditions as any single factor studied to date.

Matrices that evaporate or sublime at lower temperature
also need lower inlet temperature to produce multiply
charged analyte ions suggesting that the inlet temperature
may be more important for desolvation of the charged matrix
droplets than for charging the matrix droplets. Matrices that
are too volatile cannot be directly employed under vacuum
conditions, but those that have good volatility and strong
absorbance at the laser wavelength, such as 2-NPG and 2,5-
DHAP might be useful as LSI matrices in IP-MALDI, and

possibly LP-MALDI-TOF mass spectrometers. Binary
matrix mixtures having a volatile LSI matrix combined with
a strongly absorbing MALDI matrix such as CHCA or SA
also produce abundant multiply charged analyte ions some-
what reducing the problem of too rapid sublimation/
evaporation of volatile matrices in vacuum.

Many matrix compounds that showed difficulty in proper
crystallization, had poor solubility in the solvents used, and
even those too volatile to remove solvent (e.g., water) were
found to work well with peptides and proteins using solvent-
free sample preparation. Thus, 52 matrices, including
phenol, 2-nitrophenol, 4-trifluorophenol, and 3,4-dihydrox-
ybenzenesulfonic acid produced high abundant multiply
charged ions under solvent-free conditions. Matrices that
are liquids can be easiest employed using dissolved MAII.

Considering that 137 compounds out of 176 studies serve
as MAII matrices along with the observation that matrix:
analyte droplets are formed during laser ablation [28, 66],
we conclude that matrix compounds serve a similar purpose
as solvents in SAII and ESI. Solvents such as water and
methanol produce similar multiply charged ions of peptides
and proteins in inlet ionization. It is, therefore, reasonable
that solid matrix materials that can fulfill certain critical
properties of solvents, possibly even in the molten state, will
be good matrix materials provided the morphology of the
dried matrix allows particles to enter the heated inlet and
evaporative processes of the matrix:analyte droplets (clus-
ters) are sufficiently fast to release the multiply charged ions.
Mechanistic considerations for matrix assisted ionization,
LSI, and MALDI, are provided in an accompanying paper
[95].

Conclusion
This work demonstrates that a wide variety of compounds
are useful for matrix enhancement of ionization when
suitable pH and sufficient heat or other means for desolva-
tion of the matrix from the matrix:analyte droplets are
supplied. These results when combined with similar mass
spectra obtained using solvents such as water and methanol
suggests that a solid matrix may serve the same purpose as a
solvent in ionization. Compounds that do not have acidic
protons can become useful matrices after acidifying either
the analyte or matrix solution. Those matrices that have
higher volatility are more likely to produce abundant highly
charged ions at low inlet temperatures and some are also
applicable under IP and LP conditions [31, 94, 95]. Solvent-
free MAII/LSII may likely be of general value for analytes
and matrices where solvent-based sample preparation is
challenging, as, for example, hydrophobic and solubility
restricted compounds such as lipids, hydrophobic peptides,
and membrane proteins as well as matrices suffering from
low solubility. Many more applications may develop
through the use of binary matrices. Negative mode measure-
ments have required prohibitive amounts of sample [65,
122], so that the initial success of a number of new matrices
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providing multiply charged negative ions directly from
surfaces is expected to provide opportunities for materials
analyses that critically depend on negative ion formation
[33, 39]. As has been reported before [94], different matrices
show different propensities for different analytes (e.g.,
synthetic polymers) and will need to be explored in more
detail in future studies. The application of use of dissolved
MAII matrices may provide unknown opportunities for
unadulterated tissue analyses and imaging at continuous
flow [34], especially in conjunction with high performance
fragmentation technologies such as ETD. Continued studies
in the relationship of matrix, vacuum, thermal and laser
assisted ionization for use in MS is of fundamental and
practical importance [95, 123].
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