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Abstract
In this article, we present a computation- and memory-efficient method to calculate the
probabilities of occurrence and exact center-masses of the aggregated isotopic distribution of a
molecule. The method uses fundamental mathematical properties of polynomials given by the
Newton-Girard theorem and Viete’s formulae. The calculation is based on the atomic composition
of the molecule and the natural abundances of the elemental isotopes in normal terrestrial matter.
To evaluate the performance of the proposedmethod, which we named BRAIN, we compare it with
the results obtained from five existing software packages (IsoPro, Mercury, Emass, NeutronCluster,
and IsoDalton) for 10 biomolecules. Additionally, we compare the computed mass centers with the
results obtained by calculating, and subsequently aggregating, the fine isotopic distribution for two
of the exemplary biomolecules. The algorithm will be made available as a Bioconductor package
in R, and is also available upon request.
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Introduction

The isotopic distribution is an important, but often
forgotten, concept in the field of mass spectrometry

(MS). Yet, it is particularly useful for the interpretation of the
complex patterns observed in mass spectral data. For example,
a peptide molecule visualized by MS should exhibit a

characteristic signal in the form of series of regularly spaced
peaks of a specific profile. The profile is related to the isotopic
distribution of the peptide. Prior knowledge about the
distribution can thus be used to develop strategies for
searching for the profile in the spectra and, hence, for
efficient processing of the spectral information [2–6].
Another application can be found in the field of metabolomics.
For example, a comparison of the observed pattern of
peaks in a mass spectrum with a set of hypothesized isotopic
distributions from moieties with a similar mass as the observed
molecule can be used to construct a confidence score for the
identification.

The isotopic distribution reflects the number and probabil-
ities of occurrence of different isotopic variants of a molecule.
The occurrence probabilities are reflected in the mass spectrum
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by the relative heights of the series of peaks related to the
molecule; whilst the different variants result from the fact that
there are different isotopes of chemical elements.

Every isotopic variant of a molecule has, in principle, a
different mass1. However, if we ignore the small deviations
of the masses from integer values, we can define aggregated
isotopic variants of a molecule, with masses differing
approximately by 1 Da. The aggregated isotopic distribution
provides the number and occurrence probabilities for the
aggregated isotopic variants. In fact, given the finite
resolution of mass spectrometers, the profile of peak heights
observed in a spectrum for a molecule is directly related to
the aggregated isotopic distribution.

The calculation of the (aggregated) isotopic distribution for a
molecule of a known atomic composition is thus a relevant and
important problem. Several methods have already been proposed
to this aim. In the early sixties of the 20th century, Biemann
suggested a step-wise procedure [7]. In the late seventies,
Yamamoto and McCloskey [8], and Brownawell and Fillippo
[9] argued that for large molecules, the isotopic distribution could
be easily obtained by symbolically expanding a polynomial
function. Later in the eighties, Yergey and colleagues [10, 11]
generalized the concept of polynomial expansion to a multino-
mial expansion. In the nineties, Rockwood and co-workers
propagated the use of the convolution [12]. An overview of the
different procedures to calculate isotopic distributions has been
recently provided by Valkenborg et al. [13].

A vital element in the calculation of aggregated isotopic
distributions is the assignment of the center-masses to the
aggregated isotope variants. To this aim, the center-mass is
calculated as a probability-weighted sum of the masses of the
isotopic variants that contribute to an aggregated variant, as
defined by Roussis and Proulx [14]. The accuracy of this mass
calculation depends on the number of isotopic variants
accounted for. Rockwood et al. [15] solved this problem by a
linear transformation based on the average mass and standard
deviation of the isotopic distribution to acquire semi-accurate
masses. In a later paper, Rockwood and colleagues focused on
the accurate mass calculation of a pre-selected aggregated
isotope variant [16, 17]. Another solution to aforementioned
problem was proposed by Olson and Yergey [18], who
developed the idea of using equatransneutronic isotopes. The
method, however, induces some error in the mass assignments
of the aggregated isotope variants. To overcome this inaccu-
racy, Olson and Yergey proposed to estimate the error and to
account for it in the calculation of the center-masses.

In this manuscript, we present an alternate, computation-
and memory-efficient method to calculate the probabilities of
occurrence and exact center-masses of the aggregated isotopic
distribution of a molecule. The calculation is based on the
atomic composition of the molecule and the natural abundan-
ces of stable elemental isotopes in normal terrestrial matter

[19]. Note that this excludes unstable radio-isotopes, and that
our use of the term “exact center-masses” is conditional on this
assumption. Our method, which we name BRAIN (Baffling
Recursive Algorithm for Isotopic distributioN calculations),
allows computing the exact center-masses because it accumu-
lates the mass information along a recursive calculation of the
aggregated isotopic distribution. The algorithm will be made
available as a Bioconductor package [1], and is also available
upon request.

To evaluate the performance of the proposed method, we
compare it to the results obtained from five existing
packages (IsoPro [20], Mercury [15], Emass [16],
NeutronCluster [18], and IsoDalton [21]) for 10 biomolecules.
Additionally, we compare the computed exact mass-centers
with the results obtained by the calculation of the fine isotopic
distribution and subsequent aggregation of this distribution by
the method of Roussis and Proulx [14] for two of the 10
exemplary biomolecules.

For the purposes of the current manuscript, we restrict the
calculation of the isotopic distribution to molecules containing
only carbon (C), nitrogen (N), hydrogen (H), oxygen (O), and
sulphur (S), unless specified otherwise. The most-abundant
(and lightest) isotopes for the latter elements are 12C, 1H, 14N,
16O, and 32S. A molecule composed out of only these elemental
isotopes is called the monoisotopic variant. In addition, we
only consider stable isotopes, that is, the isotopes just
mentioned, together with 13C, 2H, 15N, 17O, 18O, 33S, 34S,
and 36S. Extending the presented algorithm to molecules
containing other poly-isotopic elements is straightforward.

Methods
Yamamoto et al. [8] and Brownawell et al. [9] argued
that for large molecules, the isotopic forms could be
easily obtained by symbolically expanding a polynomial
function. In the case of proteins or peptides with a
composition CvHwNxOySz, this polynomial takes the
following form:

12Cþ13C
� �v � 1Hþ2H

� �w � 14Nþ15N
� �x

� 16Oþ17Oþ18O
� �y � 32Sþ33Sþ34Sþ36S

� �z
:
ð1Þ

Symbolic expansion of Equation (1) results in many
product terms, which correspond to different isotopic
variants of a molecule. By substituting the probabilities of
occurrence for 12C,13C,…,36S from Table 1 in each term, the
prevalence of the variants of the peptide could be obtained.

Given that the deviations of the masses of the isotopes of
C, N, H, O, and S from integer values are different (see
Table 1), every isotopic variant of a molecule has, in
principle, a different mass. By ignoring the small deviations,
we obtain the aggregated isotopic variants, with masses
differing by approximately 1 Da. The aggregated variants
are represented in the expansion of Equation (1) by multiple

In this terminology, we ignore location isomers, e.g., 12C12C13C and
13C12C12C, which obviously do have the same mass.
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product terms. To identify these components more explicitly,
we introduce in Equation (1) an indicator variable I. The
introduction explicitly expresses the calculation of the
isotopic distribution in terms of the additional neutron
content, i.e., as an aggregated isotopic distribution. The
modified form of Equation (1) is given as follows:

Q I ; v;w; x; y; zð Þ ¼ PC12 I
0 þ PC13 I

1
� �v

� PH1 I
0 þ PH2 I

1
� �w � PN14 I

0 þ PN15 I
1

� �x
� PO16 I

0 þ PO17 I
1 þ PO18 I

2
� �y

� PS32 I
0 þ PS33 I

1 þ PS34 I
2 þ PS36 I

4
� �z

;

ð2Þ

where PC12 ;PC13 ; . . . ;PS36 represent the natural abundances
(probabilities of occurrence) of the isotopes of carbon,
hydrogen, nitrogen, oxygen, and sulphur in normal terrestrial
matter, as displayed in Table 1. Note that the power of the
symbolic indicator I represents the additional neutron
content (or discrete mass shift) with respect to the mono-
isotopic variant. This indicator serves a book keeping-device
to keep track of the different aggregated isotopic variants.

It should be stressed that Equation (2) makes abstraction
of the mass information, as the aggregated isotopic variants
are presented by their additional neutron count. Later in the
manuscript we discuss how the exact center-masses can be
calculated.

In what follows, we will also be referring to the
following, abbreviated form of Equation (2):

Q I ; v;w; x; y; zð Þ ¼ QCðIÞf gv � QH ðIÞf gw � QN ðIÞf gx

� QOðIÞf gy � QSðIÞf gz ; ð3Þ

with QCðIÞ ¼ PC12 I
0 þ PC13 I

1ð Þ, etc.
Generally, the expansion of the polynomial in Equation

(2) can be written as

Q I ; v;w; x; y; zð Þ �
Xn
j¼0

qjI
j ; ð4Þ

where n=v+w+x+2y+4z is a function of the atomic
composition of the molecule. The coefficient qj represents
the occurrence probability of the j-th aggregated isotopic
variant of the molecule. Hence, the problem of calculating
the aggregated isotopic distribution may be reformulated as
the problem of finding values of the coefficients q0, q1,…qn
of the expanded polynomial in Equation (4).

To clarify the role of the polynomial in Equation (2),
consider a very simple example of ozone (O3). For this
molecule, the polynomial takes the following form:

QðI ; 0; 0; 0; 3; 0Þ ¼ PO16 I
0 þ PO17 I

1 þ PO18 I
2

� �3 ¼ fQOðIÞg3 ¼
X6
j¼0

qjI
j ;

ð5Þ
where the coefficients q0,…q6 are the result of expanding
Equation (5):

q0 ¼ P3
O16

; q1 ¼ 3P2
O16

PO17 ; q2 ¼ 3P2
O16

PO18 þ 3PO16P
2
O17

;

q3 ¼ P3
O17

þ 6PO16PO17PO18 ; q4 ¼ 3P2
O17

PO18 þ 3PO16P
2
O18

;

q5 ¼ 3PO17P
2
O18

; q6 ¼ P3
O18

:

ð6Þ

Thus, the coefficients indeed provide the probabilities of
occurrence of aggregated isotopic variants with masses
differing from the monoisotopic one by a specified integer
number of mass units. In particular, q0 gives the occurrence
probability of the monoisotopic variant of O3.

Note that, even for this seemingly simple example, the
form of the coefficients is already quite complex. They are
obtained by summing the occurrence probabilities of all
isotope variants with exactly j additional neutrons, compared
with the monoisotopic variant. In a general case, however,
such a naive approach to the calculation of the values of the
coefficients is numerically not feasible.

Rockwood [12] proposed to approach the problem of the
calculation of the coefficients by using the Fast Fourier
Transform. The approach is numerically efficient and has been
widely used. In what follows, we outline an alternate method by
using the properties of the elementary symmetric polynomials
and power sums of the roots of the polynomial in Equation (2).

The New Method for Calculating the Aggregated
Isotopic Distribution

By applying the Newton-Girard theorem and Viete’s
formulae [22], we can express the coefficients qj in the
following recursive form:

qj ¼ � 1

j

Xj
l¼1

qj�ly l; ð7Þ

Table 1. List of Stable Isotopes for Carbon, Hydrogen, Nitrogen, Oxygen, and Sulphur. Source: IUPAC 1997 Standard [19]

Isotope Mass (ma/u) Abundance (%) Isotope Mass (ma/u) Abundance (%)

12C 12.0000000000 98.93 16O 15.9949146 99.757
13C 13.0033548378 1.07 17O 16.9991312 0.038
1H 1.0078250321 99.9885 18O 17.9991603 0.205
2H 2.0141017780 0.0115 32S 31.97207070 94.93
14N 14.0030740052 99.632 33S 32.97145843 0.76
15N 15.0001088984 0.368 34S 33.96786665 4.29

36S 35.96708062 0.02
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where Ψl is a linear combination of the (−l)-th power of the
roots of QC(I), QH(I), QN(I), QO(I), and QS(I), defined in
Equation (3). More specifically, for C, H, and N, the roots
become equal to

rC ¼ � PC12

PC13

; rH ¼ � PH1

PH2

; and rN ¼ � PN14

PN15

: ð8Þ

The roots of QO(I) are conjugate complex numbers rO
and �rO, defined as follows:

rO ¼
�PO17 þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
P2
O17

� 4PO16PO18

q
2PO18

; �rO ¼
�PO17 �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
P2
O17

� 4PO16PO18

q
2PO18

:

ð9Þ

The roots of QS(I), a fourth-order polynomial, are less
trivial, but can be expressed in a closed form. The
expression is not very transparent, though; it can also be
calculated using numerical root finding methods. There are
two pairs of complex and conjugate roots of QS(I), which we
will denote by rS;1;�rS;1

� �
and rS;2;�rS;2

� �
.

Using the roots defined above, the coefficients Ψl can be
expressed in general as follows:

y l ¼ v rCð Þ�l þ w rHð Þ�l þ x rNð Þ�l þ y rOð Þ�l

þ y �rOð Þ�l þ z rS;1
� ��l þ z �rS;1

� ��l þ z rS;2
� ��l

þ z �rS;2
� ��l

: ð10Þ

Note that the sum of powers for conjugate complex
numbers r and �r can be written as

r�l þ �r�l ¼ jrj�lcos �l8 ðrÞf g; ð11Þ
where jrj and φ(r) indicate the modulus and argument of r
and �r, respectively. From Equation (11) it follows that the
sum on the right-hand side of Equation (10) can be
simplified by replacing the sum of the powers of the
conjugate roots of oxygen and sulphur by their reduced
forms.

As it was already noted, Equation (7) is recursive. To
start the recursion, we need to compute the value of the
coefficient q0. In this case, the computation is trivial, as q0
corresponds to the probability of occurrence of the mono-
isotopic variant. As pointed out by Beynon [23], the
probability that no heavy isotopes would occur in a peptide
of composition CvHwNxOySz is

q0 ¼ Pv
C12

� Pw
H1

� Px
N14

� Py
O16

� Pz
S32
: ð12Þ

After having computed q0, we can use Equation (7) to
compute q1, q2, etc.

Let us consider an example. For propane C3H8, the
polynomial in Equation (2) assumes the following form:

Q I ; 3; 8; 0; 0; 0ð Þ ¼ PC12 I
0 þ PC13 I

1
� �3 � PH1 I

0 þ PH2 I
1

� �8
¼ QCðIÞf g3 QH ðIÞf g8 ¼

X11
j¼0

qjI
j:

Following Equation (12), the probability of occurrence of
the monoisotopic variant (see Table 1) is given by

q0 ¼ P3
C12

� P8
H1

¼ 0:98933 � 0:9998858 ¼ 0:967352:

From Equation (7), the probability of occurrence of the
first aggregated isotopic variant is obtained as q1=–q0×=1,
where, according to Equation (10),

y1 ¼ 3� r�1
C þ 8� r�1

H ¼ 3� � 0:9893

0:0107

� ��1

þ8� � 0:999885

0:000115

� ��1

¼ �0:033367:

Hence, q1 ¼ �q0 � y1 ¼ �0:967352� �0:033367ð Þ ¼
0:032278. Thus, the probability of occurrence of an isotopic
variant heavier by approximately 1 mass unit than the
monoisotopic one is equal to 0.032278.

Next, we have q2 ¼ � q0 � y2 þ q1 � y1ð Þ=2, where

y2 ¼ 3� r�2
C þ 8� r�2

H ¼ 3� � 0:9893

0:0107

� ��2

þ8� � 0:999885

0:000115

� ��2

¼ 0:000351:

It follows that q2 ¼ � 0:967352� 0:000351þð 0:032278�
�0:033367ð ÞÞ=2 ¼ 0:000369. This procedure is repeated up
to q11. The resulting aggregated isotopic distribution of
propane is as follows:

q0 ¼ 0:967352; q1 ¼ 0:032278; q2 ¼ 0:000369; q3 ¼ 1:55� 10�6;

q4 ¼ 1:25� 10�9; q5 ¼ 4:83� 10�13; q6 ¼ 1:09� 10�16;

q7 ¼ 1:54� 10�20; q8 ¼ 1:40� 10�24; q9 ¼ 8:01� 10�29;

q10 ¼ 2:62� 10�33; q11 ¼ 2:26� 10�38

A few comments are worth giving here.

� It can be observed that the complexity of calculations
depends primarily on the number of different chemical
elements present in the molecule (for peptides: C, H, N,
O, S). It does not depend on the numbers of atoms for
each element present in the molecule, but on the number
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of the aggregated isotopic variants, for which computa-
tions are required. In practice, one would stop the
computations when the value of qj falls below a particular
(very small) threshold or when a preset percentage of the
isotopic distribution is covered. Alternately, the compu-
tation of a fixed number of the qj coefficients might be of
interest.

� The method is very memory-efficient. In particular, it
requires the storage of the mono-isotopic variant and only
two variables, namely, qj and = l, for each desired
aggregated isotopic variant. Hence, calculating the first,
e.g., 100 aggregated isotopic variants, require only 201
numbers to be stored.

� It is possible to reduce the number of computations
by computing in advance the roots and their powers
(by using the logarithmic transformation for improved
numerical stability) needed to compute the coeffi-
cients = l and storing them for consecutive calculation
steps.

� For chemical elements with more than four isotopic
variants, a closed form solution of the roots is in general
infeasible (the Abel-Ruffini theorem). The roots can be
calculated by using numerical root-finding methods, such
as the Newton-Raphson or Dandelin-Graeffe method.
Again, the computed roots and their powers can be stored
for further calculations.

� The value of = l may be easily calculated by using
vectorization and recursive formulae. For instance,
because b�l ¼ b�1b� l�1ð Þ, if we have already calculat-
ed =1,=2,…,= (l−1), we can use the values to calculate
= l.

In the next section we show how the method can be used
to compute the center-masses of the aggregated isotopic
variants.

The NewMethod for Calculating the Center-Masses
of the Aggregated Isotopic Variants

As discussed by Roussis and Proulx [14], the center-mass �mj

of the j-th aggregated variant is calculated as a probability-
weighted sum of masses of the contributing isotopic variants:

�mj ¼
P

k mjkpjkP
k pjk

; ð13Þ

where pjk and mjk denote, respectively, the probability of
occurrence and the mass of the k-th isotopic variant
contributing to the j-th aggregated variant. Note that the
sum in the denominator of the fraction at the right-hand side
of Equation (13) is the occurrence probability of the j-th
aggregated isotopic variant. Thus, Σkpjk is equal to qj and can
be computed by the methods outlined in the Introduction
section.

It is obvious that accurate computations of the center-
masses can only be achieved if all the isotopic variants

contributing to the particular aggregated one are considered.
Again, computations for all individual isotopic variants are
in general not feasible due to the combinatorial explosion of
the number of the variants for large molecules. However, we
can circumvent this exhaustive method of calculation by
resorting to the use of the Newton-Girard theorem and
Viete’s formulae.

To this aim, we first consider the following polynomial:

U I ; v;w; x; y; zð Þ ¼
X
j

X
k

mjkpjk

 !
I j �

X
j

q?j I
j: ð14Þ

Note that we are interested in the coefficients
q?j �

P
k mjkpjk , which correspond to the numerator of the

fraction at the right-hand side of Equation (13).
In order to obtain information about q?j , we define a new

polynomial by adding an additional indicator variable K to
the polynomial in Equation (2):

Q� I ;K; v;w; x; y; zð Þ ¼ PC12K
MC12 I0 þ PC13K

MC13 I1
� �v
� PH1K

MH1 I0 þ PH2K
MH2 I1

� �w
� PN14K

MN14 I0 þ PN15K
MN15 I1

� �x
� PO16K

MO16 I0 þ PO17K
MO17 I1 þ PO18K

MO18 I2
� �y

� ðPS32K
MS32 I0 þ PS33K

MS33 I1 þ PS34K
MS34 I2

þPS36K
MS36 I4Þz ;

ð15Þ
where MC12, MC13, .., MS36 represent the masses of the
isotopes of carbon, hydrogen, nitrogen, oxygen, and sulphur in
normal terrestrial matter, as displayed in Table 1. The indicator
variable K acts as a tracking device for the masses.

By using argumentation similar to the one used in a prior
section, we can express the polynomial in Equation (15) as
follows:

Q� I ;K; v;w; x; y; zð Þ �
X
j

X
k

pjkK
mjk

 !
I j: ð16Þ

We will use Q*(I, K; v, w, y, z) to obtain the polynomial
U(I; v, w, x, y, z) from Equation (14). To this aim, we
differentiate Q*(I, K; v, w, y, z) with respect to K:

@

@K
Q� I ;K; v;w; x; y; zð Þ ¼

X
j

X
k

mjkpjkK
mjk�1

 !
I j : ð17Þ

Then, by setting K=1 in Equation (17), we obtain:

UðI ; v;w; x; y; zÞ ¼ vQ I ; v� 1;w; x; y; zð Þ
PC12MC12 þ PC13MC13 I

1
� � ð18Þ

þwQ I ; v;w� 1; x; y; zð Þ PH1MH1 þ PH2MH2 I
1

� � ð19Þ
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þxQ I ; v;w; x� 1; y; zð Þ PN14MN14 þ PN15MN15 I
1

� � ð20Þ

þyQ I ; v;w; x; y� 1; zð Þ PO16MO16 þ PO17MO17 I
1 þ PO18MO18 I

2
� �

ð21Þ

þzQ I ; v;w; x; y; z� 1ð Þ� ð22Þ

PS32MS32 þ PS33MS33 I
1 þ PS34MS34 I

2 þ PS36MS36 I
4

� �
: ð23Þ

By using the method outlined in the section about The
New Method for Calculating the Aggregated Isotopic
Distribution, we can compute the coefficient qj (i.e., the
occurrence probability of the j-th aggregated isotopic
variant) separately for each of the Q(·) polynomials, present
in Equations (18–23). Consequently, we can compute the
coefficients of the five polynomials included in the sum on
the right-hand side of Equations (18–23). By adding the
coefficients corresponding to I j for the five polynomials, we
obtain q?j for Equation (14). Finally, the centered mass for the
j-th aggregated isotopic variant is obtained from Equation (13)
as q?j =qj.

Results and Discussion
We compared our method, named BRAIN, with five other
algorithms. All methods were used to compare the aggre-
gated isotopic distribution of 10 biomolecules shown in
Table 2. The 10 biomolecules are the same as those used in
the paper of Olson and Yergey [18]. The size of the
molecules ranges from considerably small to very large.

Compared Algorithms

The five packages considered in our comparison with
BRAIN are IsoPro, Mercury, Emass, NeutronCluster, and
IsoDalton.

IsoPro [20] is an implementation of the multinomial
expansion method proposed by Yergey [10]. Mercury
contains an implementation of the convolution method of
Rockwood and Van Orden [15]. Emass calculates the
masses and intensities of isotopic peaks by the linear
transformation of Rockwood and Haimi [16]. NeutronCluster
uses the equatransneutronic isotopes proposed by Olson and
Yergey [18]. IsoDalton [21] efficiently calculates the fine
isotopic distribution by means of dynamic programming.
Latter outcome can be used as an intermediate step to retrieve
the aggregated isotopic structure of a biomolecule.

For large molecules, the implementations of IsoPro and
IsoDalton become computationally inefficient in terms of
the memory usage and computation time. Because of this

limitation, we report for these two methods the masses for
the first seven and first five biomolecules, respectively.

All the algorithms were used with their default parameter
settings, except of IsoPro and NeutronCluster. For the
former the permutation threshold was set to 10−6, while for
the latter the required ion current coverage was changed to
0.999. As four out of the five algorithms use different values for
the atomic masses and abundances of the isotopes (see
Table S1 in the appendix), we have changed the abundances
and masses to the values used by IsoDalton, which correspond
to the IUPAC 1997 standard [19] as displayed in Table 1.

All the algorithms, except of NeutronCluster, have been
run on a Dell Latitude E6500 with an Intel dual core P8400
2.26 GHz and 4 GB RAM. NeutronCluster has been run on
an Apple MacBook with 4 GB RAM, due to technical
incompatibilities with the BigFloat and BigInt packages of
Perl on a Windows operating system (personal communica-
tion with Olson and Yergey).

Results of the Comparison

Table 3 presents the comparison of the mass of the first peak
returned by BRAIN and by the other selected algorithms with
the theoretical monoisotopic mass of the molecules pre-
sented in Table 2. The theoretical monoisotopic mass was
simply computed as follows:

Monoisotopic mass ¼ vMC12 þ wMH1 þ xMN14

þ yMO16 þ zMS32 ; ð24Þ

assuming that the atomic composition of the molecule is of
the form CvHwNxOySz. In the remainder of this manuscript,
we use the term "peak" to indicate the aggregated isotopic
variant and not a variant of the isotopic fine structure as
calculated via IsoDalton.

Negative values in Table 3 indicate that the mass of
the first returned peak is higher than the monoisotopic
mass. As BRAIN’s algorithm uses the same formula for
the calculation of the monoisotopic mass as Equation (24),
there is no difference between the reported and theoretical
monoisotopic mass for BRAIN. For NeutronCluster,
awkwardly, there is a considerably large difference for
molecule no. 4. The returned monoisotopic mass of the
molecule is identical to the mass reported in the paper of
Olson and Yergey [18]. All other monoisotopic masses
returned by NeutronCluster are identical to the ones
calculated by Equation (24).

For the first four molecules, the mass of the returned first
peak is the same or close to the monoisotopic-variant mass
in the case of Emass and IsoPro. Starting from molecule no.
5, the difference between the monoisotopic and the returned
mass increases. To put these results in perspective, it is
worth noting that for large molecules, e.g., (5)–(10) in
Table 2, the probability of occurrence of the monoisotopic
variants is very small, G10−10. In practice, such small
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values fall below the detection limits of a mass
spectrometer and will go unnoticed. Therefore, one can
argue that returning isotopic variants with such low
probabilities is not meaningful. It can happen that some
of the non-reported peaks were actually calculated inside
the compared programs, but were not reported due to a
reporting threshold built into the method. In our method,
we have chosen to return all aggregated isotope variants
regardless of their probability of occurrence.

For Mercury, the first returned peaks have masses that are
lower than the monoisotopic mass in the case of small
biomolecules. A possible explanation for this behavior could
be the numerical imprecisions of the (discrete) Fast Fourier
Transform, e.g., distortion of the signal due to aliasing. This
could be fixed by a slight modification of the computer code
to widen the calculation window. Generally, peaks with
lower masses than the monoisotopic one should just be
ignored.

For larger molecules, the masses returned for the first
peaks by Emass and IsoPro are higher than the theoretical
monoisotopic mass. This is probably the result of pruning
techniques applied by these methods. Note that this is also
the case for Mercury.

Although IsoDalton calculates the fine structure of
the isotopic distribution, there are slight differences
between the returned and theoretical monoisotopic mass.
These differences can possibly be explained by the fact
that in the calculations presented in Table 3, the
“exact_probability” module has been used, as was
advised by Snider (personal communication), instead of
the “exact_mass” module. The latter results in more
accurate estimates for the masses, but is less accurate for
the average aggregated mass and its corresponding
expected peak abundance.

To check the overall accuracy of the computation of an
aggregated isotopic distribution, we considered the theoret-
ical average mass of the molecules presented in Table 2. The
average mass is computed according to the following
definition:

Average mass ¼ vMC12 � PC12 þ vMC13 � PC13 þ wMH1 � PH1

þ wMH2 � PH2 þ xMN14 � PN14 þ xMN15 � PN15

þ yMO16 � PO16 þ yMO17 � PO17 þ yMO18 � PO18

þ zMS32 � PS32 þ zMS33 � PS33 þ zMS34 � PS34

þzMS36 � PS36 :

ð25Þ

Table 2. List of Selected Biomolecules

Mass (Da)

No. Common Name Molecular formula Monoisotopic Average

(1) Angiotensin II C50H71N13O12 1045.534515 1046.181107
(2) Bovine insulin C254H377N65O75S6 5729.600867 5733.510759
(3) Human insulin C520H817N139O147S8 11616.849350 11624.448751
(4) Human myoglobin C744H1224N210O222S5 16812.954775 16823.321352
(5) Human intrinsic factor C2023H3208N524O619S20 45387.007033 45415.679370
(6) Bovine serum albumin C2934H4615N781O897S39 66389.862474 66432.455561
(7) Human Na/K ATPase C5047H8014N1338O1495S8 112823.879546 112895.125932

Renal isoform, subunit
(8) Human ATP C8574H13378N2092O2392S77 186386.799265 186506.052594

binding cassette protein
(9) Human intrinsic factor C17600H26474N4752O5486S197 398470.366994 398722.972484

-hydroxocobalamin
receptor

(10) Human dynein C23832H37816N6528O7031S170 533403.475090 533735.214651
heavy chain

Table 3. Differences Between the Monoisotopic Mass According to [8] (see Table 2) and the Mass of the First Returned Peak by the Algorithm. Negative
Values Correspond to Higher Reported Masses

Molecule BRAIN Emass Mercury NeutronCluster IsoPro IsoDalton

(1) 0 0 7.019535 0 –0.000005 0
(2) 0 0 12.019012 0 –0.000023 -0.000001
(3) 0 0 8.013385 0 0.000030 -0.000003
(4) 0 0 22.053225 -360 –0.000055 -0.000005
(5) 0 –2.005731 2.996274 0 –8.024597 -0.000014
(6) 0 –8.022072 22.028846 0 -19.055126
(7) 0 –24.065517 –7.029971 0 -51.133714
(8) 0 –55.149869 –55.161957 0
(9) 0 -155.399787 -124.322610 0
(10) 0 -220.583942 -203.597009 0
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Table 4 presents the results of the comparison of the
theoretical average mass, as computed in Equation (25), and
the weighted average based upon the predicted masses and
occurrence probabilities for all peaks returned by a particular
algorithm. There is virtually no difference between the two
average values for BRAIN and for Emass. Somewhat larger,
but small deviations are obtained for IsoDalton. The differ-
ences are larger for Mercury and NeutronCluster, and they
increase as the molecules become larger. IsoPro is unex-
pectedly the least accurate method in our comparison; the
large differences are most likely a side effect of the pruning
step, which removes low probability variants during the
calculation. Pruning is a necessity to calculate the

isotope fine structure for large molecules in order to
maintain the computational complexity and memory usage
within limits.

It is worth mentioning that when the results in Table 4 are
viewed in relative terms, all of the reported numbers are
quite satisfactory. The reported differences between Emass,
Mercury, NeutronCluster, and IsoDalton are in fact not
measurable with the accuracy available in the current
generation of mass spectrometers.

The differences observed in Table 4 are mainly due to the
fact that every algorithm returns a different number of peaks
(i.e., aggregated isotopic variants), with a different first and
last reported peak. Figure 1 illustrates how the methods

Table 4. Difference Between the Theoretical (see Table 2) and Calculated (Using all returned peaks) Average Mass. Negative Values Correspond to Higher
Calculated Masses. The Values in Parentheses are the Relative Differences in ppb

Molecule BRAIN Emass Mercury NeutronCluster IsoPro IsoDalton

(1) 0 (0) -0.000001 (0.956) 0.000090 (86.027) 0.000238 (227.494) 0.001297 (1.240e+3) -0.000001 (0.956)
(2) 0 (0) 0 (0) 0.000323 (56.336) 0.002474 (431.498) 0.011478 (2.002e+3) -0.000001 (0.174)
(3) 0 (0) 0 (0) 0.000225 (19.356) 0.006620 (569.489) 0.093513 (8.045e+3) 0.000245 (21.076)
(4) 0 (0) 0 (0) 0.002916 (173.331) –360.315145 (–2.142e+7) 0.155448 (9.240e+3) -0.000005 (0.297)
(5) 0 (0) 0 (0) -0.003078 (67.774) –0.008751 (–192.687) 0.947604 (20.865e+3) -0.000013 (0.286)
(6) 0 (0) 0 (0) -0.004153 (62.515) –0.003685 (–55.470) 2.094637 (31.530e+3)
(7) 0 (0) 0 (0) 0.003699 (32.765) –0.021463 (–190.114) 1.944364 (17.223e+3)
(8) 0 (0) 0 (0) -0.005138 (27.549) –0.078241 (–419.509)
(9) 0 (0) 0 (0) 0.017207 (43.155) –0.057899 (–145.211)
(10) 0 (0) 0 (0) -0.047547 (89.084) 0.092907 (174.069)

Figure 1. The calculated aggregated isotopic distribution of human intrinsic factor. (The height of the lines have no meaning,
they are only chosen to facilitate the interpretation of the graph.)
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perform in the tail of the distribution for molecule no. 5 from
Table 2. The figure shows three vertical lines for each
method, indicating the mass of the first reported peak, the
average mass, and the last reported peak. In other words, the
representation in Figure 1 can be seen as the coverage of the
isotopic distribution by a particular method. Note that the
lines indicating the mass of the first reported peak for
BRAIN, NeutronCluster, and IsoDalton overlap with the line
corresponding to the theoretical monoisotopic mass, in
agreement with the results presented in Table 3. Similarly,
the lines indicating the average mass practically overlap with
the line corresponding to the theoretical average mass for
BRAIN, Emass, IsoDalton, Mercury, and NeutronCluster, in
agreement with the results presented in Table 4. A clear
difference can be observed in the mass of the last reported
peak. IsoPro and NeutronCluster report a peak with the
smallest mass, followed by Mercury, Emass, IsoDalton, and
BRAIN. Depending on the shape of the true aggregated
isotopic distribution, the different number and location of the
reported peaks may lead to a difference between the value of
the average mass computed for a particular algorithm and
the theoretical value, obtained from Equation (25). For the

case presented in Figure 1, the difference is small, though
visible for IsoPro.

As mentioned in the Methods section, for BRAIN, the
calculations can be stopped when the computed occurrence
probabilities become too small or when the required number
of aggregated isotopic variants has been reached. The latter
number can be heuristically obtained. For this purpose, we
propose the following rule of thumb: compute the difference
between the theoretical monoisotopic mass and the theoret-
ical average mass, multiply this number by two, and
subsequently round it to the nearest integer greater than or
equal to the multiplied difference. For instance, for the
molecule no. 10 in Table 2, the heavy chain of the human
dynein protein, this method gives 664 as the number of the
aggregated isotopic variants to be included in the calcu-
lations. Note, however, that the method may return a too
small number for smaller molecules. For instance, in the
case of the molecule no. 1 in Table 2, angiotensin II, the
obtained number is equal to 2. For such small molecules, the
minimal number of peaks should be four or five. As already
mentioned before, schemes based on the percentage coverage
of the isotopic distribution can also be used.

The number of isotopic variants used in the computation
of the average masses in Table 4 and the corresponding
computation time for our method are listed in Table 5.
Increasing the number of the requested variants influences
the computation time, but the effect is minor. Comparison of
the computation time of BRAIN with the other algorithms is
difficult, as the methods are implemented using different
softwares on different platforms. In general terms, Emass
and Mercury are faster than our method, but the differences
are negligible small. It is worth noting, however, that BRAIN
is now operated by an interpreted language. We believe that
a compiled version of BRAIN will be as fast as Emass and
Mercury.

The results presented in Table 4 already indicate the
proper functioning of BRAIN. If the calculation of the

Table 5. Requested Number of Aggregated Isotopic Variants and the
Associated Computation time for BRAIN. The Calculations were Performed
in Matlab

Molecule Requested no. of variants Time (s)

(1) 50 0.037523
(2) 50 0.037040
(3) 50 0.037627
(4) 100 0.037019
(5) 322 0.072257
(6) 400 0.075427
(7) 643 0.155975
(8) 807 0.216821
(9) 1163 0.355737
(10) 1325 0.408562

Table 6. The First 50 Aggregated Isotopic Variants for Angiotensin II

Mass Abundance Mass Abundance Mass Abundance

1045.534515 0.536241 1062.576779 0 1079.617682 0
1046.537411 0.322570 1063.579164 0 1080.620130 0
1047.540111 0.108627 1064.581550 0 1081.622584 0
1048.542719 0.026442 1065.583936 0 1082.625044 0
1049.545270 0.005141 1066.586324 0 1083.627509 0
1050.547780 0.000842 1067.588713 0 1084.629979 0
1051.550262 0.000120 1068.591105 0 1085.632454 0
1052.552722 0.000015 1069.593499 0 1086.634932 0
1053.555164 0.000002 1070.595897 0 1087.637413 0
1054.557593 0 1071.598298 0 1088.639897 0
1055.560011 0 1072.600703 0 1089.642381 0
1056.562421 0 1073.603113 0 1090.644866 0
1057.564824 0 1074.605527 0 1091.647350 0
1058.567221 0 1075.607947 0 1092.649831 0
1059.569614 0 1076.610372 0 1093.652310 0
1060.572004 0 1077.612803 0 1094.654784 0
1061.574392 0 1078.615239 0
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occurrence probabilities and/or center-masses were wrong,
then the average masses of the molecules would deviate
from their theoretical values. In order to further investigate
the accuracy of the calculations for our method in more
detail, we computed the isotopic distribution for the
molecules no. 1 (angiotensin II) and 2 (bovine insulin) from
Table 2 by considering all possible isotopic variants, while
using an implementation of the multinomial expansion [10].
From the obtained result we derived the aggregated isotopic
distribution. Tables 6 and 7 present the center-masses and
occurrence probabilities for the first 50 aggregated isotopic
variants for angiotensin II and bovine insulin, respectively.
We can confirm that BRAIN provides exactly the same
masses and occurrence probabilities for these aggregated
isotopic variants.

As mentioned previously, for large molecules, the
occurrence probabilities for the monoisotopic and (several)
consecutive aggregated isotopic variants can be very small.
In that case, given that the recursive relationship Equation (7)
implies starting the calculations from the monoisotopic
variant, the computations of these initial probabilities can
be affected by the level of the available numerical precision.
As seen from the results presented in Table 4, these
numerical precision issues do not influence the calculations
for the meaningful region of the aggregated isotopic
distribution, i.e., for the aggregated isotopic variants with
non-negligible occurrence probabilities. However, for ex-
tremely large molecules this does not hold. These molecules
have abundances for the mono-isotopic and consecutive
peaks that are extremely small (i.e., ≪10−100). As these
molecules are exceptional and difficult to measure with the
accuracy available in the current generation of mass
spectrometers, we can ignore this numerical issue.

The method we propose is predominantly conceived for
calculating the aggregated isotopic distribution. From a
practical point of view, ignoring the isotopic fine structure
is not a serious limitation. This is because for large

molecules such as (e.g., intact proteins) the resolution in
MS does not allow for observing the fine structure of
aggregated isotopic variants. For large molecules, the
calculation of exact center-masses of aggregated variants
becomes fundamental, and the calculation is taken care of by
our method. When information about the isotopic fine
structure is required, other methods proposed in (e.g., [24],
[25], [26], or [21]) can be used. If the molecule is not too
large, the multinomial expansion [10] can be applied to infer
the isotopic fine structure.

Conclusions
The proposed BRAIN method allows a fast computation of
the aggregated isotopic distribution. It provides the correct
values of the occurrence probabilities of various aggregated
isotopic variants and the center-masses. In terms of speed
and accuracy, BRAIN yields results comparable to those
obtained by existing algorithms like Emass, but is more
memory-efficient and simpler to implement. The BRAIN
method will be made available within the Bioconductor
package in R.

Acknowledgment
J.C. gratefully acknowledges financial support from Bijzonder
Onderzoeksfonds Universiteit Hasselt (grant BOF09NI006).
P.D. and T.B. acknowledge support by the Polish National
Science Center grant 2011/01/B/NZ2/00864. P.D. gratefully
acknowledges the LLP Erasmus Placement Programme for
supporting his visit at Hasselt University. The authors are
grateful to Ross Snider, Alan Rockwood, Matthew Olson, and
Alfred Yergey for providing the software, and to Peter Boyen
for the help with implementing NeutronCluster. The authors
are grateful to the editor and the reviewers for their insightful

Table 7. The First 50 Aggregated Isotopic Variants for Bovine Insulin

Mass Abundance Mass Abundance Mass Abundance

5729.6008666 0.0298940 5746.6269490 0.0000057 5763.6514943 0
5730.6037205 0.0928879 5747.6282361 0.0000017 5764.6531171 0
5731.6060166 0.1565624 5748.6295395 0.0000005 5765.6547575 0
5732.6079855 0.1874710 5749.6308606 0.0000001 5766.6564152 0
5733.6097364 0.1774096 5750.6322007 0 5767.6580896 0
5734.6113345 0.1404106 5751.6335606 0 5768.6597801 0
5735.6128224 0.0962370 5752.6349409 0 5769.6614863 0
5736.6142300 0.0584802 5753.6363420 0 5770.6632076 0
5737.6155792 0.0320421 5754.6377643 0 5771.6649435 0
5738.6168866 0.0160312 5755.6392077 0 5772.6666936 0
5739.6181650 0.0073961 5756.6406722 0 5773.6684573 0
5740.6194246 0.0031713 5757.6421577 0 5774.6702342 0
5741.6206735 0.0012719 5758.6436640 0 5775.6720238 0
5742.6219182 0.0004797 5759.6451908 0 5776.6738256 0
5743.6231641 0.0001709 5760.6467376 0 5777.6756394 0
5744.6244157 0.0000577 5761.6483041 0 5778.6774645 0
5745.6256763 0.0000185 5762.6498899 0

762 J. Claesen et al.: An Isotopic Distribution Calculator



comments. All of these comments were most helpful and have
resulted in an improved text.

References
1. Gentleman, R.C., Carey, V.J., Bates, D.M., Bolstad, B., Dettling, M.,

Dudoit, S., Ellis, B., Gautier, L., Ge, Y., Gentry, J., Hornik, K.,
Hothorn, T., Huber, W., Iacus, S., Irizarry, R., Leisch, F., Li, C.,
Maechler, M., Rossini, A.J., Sawitzki, G., Smith, C., Smyth, G.,
Tierney, L., Yang, J.Y.H., Zhang, J.: Bioconductor: Open software
development for computational biology and bioinformatics. Genome
Biol. 5, R80 (2004)

2. Breen, E.J., Hopwood, F.G., Williams, K.L., Wilkins, M.R.: Automatic
Poisson peak harvesting for high throughput protein identification.
Electrophoresis 21, 2243–2251 (2000)

3. Gay, S., Binz, P., Hochstrasser, D., Appel, R.: Modeling peptide mass
fingerprinting data using the atomic composition of peptides. Electro-
phoresis 20, 3527–3534 (1999)

4. Senko, M.W., Beu, S.C., McLafferty, F.W.: Determination of monoisotopic
masses and ion populations for large biomolecules from resolved isotopic
distribution. J. Am. Soc. Mass Spectrom. 6, 229–233 (1995)

5. Valkenborg, D., Assam, P., Thomas, G., Krols, L., Kas, K., Burzykowski,
T.: Using a Poisson approximation to predict the isotopic distribution of
sulphur-containing peptides in a peptide-centric proteomic approach. Rapid
Commun. Mass Spectrom. 21, 3387–3391 (2007)

6. Valkenborg, D., Jansen, I., Burzykowski, T.: A model-based method for
the prediction of the isotopic distribution of peptides. J. Am. Soc. Mass
Spectrom. 19(5), 703–712 (2008)

7. Biemann, K.: Mass Spectrometry, Organic Chemical Applications.
McGraw-Hill, New York (1962)

8. Yamamoto, H., McCloskey, J.A.: Calculations of isotopic distribution
in molecules extensively labeled with heavy isotopes. Anal. Chem. 49,
281–283 (1977)

9. Brownawell, M., Fillippo, J.S.: A program for the synthesis of mass
spectral isotopic abundances. J. Chem. Educ. 59(8), 663–665 (1982)

10. Yergey, J.A.: A general approach to calculating isotopic distributions
for mass spectrometry. Int. J. Mass Spectrom. Ion Phys. 52, 337–349
(1983)

11. Yergey, J.A., Heller, D., Hansen, G., Cotter, R.J., Fenselau, C.: Isotopic
distributions in mass spectra of large molecules. Anal. Chem. 55, 353–
356 (1983)

12. Rockwood, A.L.: Relationship of Fourier transforms to isotope
distribution calculations. Rapid Commun. Mass Spectrom. 9, 103–105
(1995)

13. Valkenborg, D., Mertens, I., Lemière, F., Witters, E., Burzykowsk, T.:
The isotopic distribution conundrum. Mass Spectrom. Rev. 31(1), 96–
106 (2012)

14. Roussis, S.G., Proulx, R.: Reduction of chemical formulas from the
isotopic peak distributions of high-resolution mass spectra. Anal. Chem.
75(6), 1470–1482 (2003)

15. Rockwood, A.L., Van Orden, S.L.: Ultrahigh-speed calculation of
isotope distributions. Anal. Chem. 68, 2027–2030 (1996)

16. Rockwood, A.L., Haimi, P.: Efficient calculation of accurate masses of
isotopic peaks. J. Am. Soc. Mass Spectrom. 17, 415–419 (2006)

17. Rockwood, A.L., Van Orman, J.R., Dearden, D.V.: Isotopic compositions
and accurate masses of single isotopic peaks. J. Am. Soc. Mass Spectrom.
15, 12–21 (2004)

18. Olson, M., Yergey, A.: Calculation of the isotope cluster for
polypeptides by probability grouping. J. Am. Soc. Mass Spectrom. 20,
295–302 (2009)

19. Rosman, K.J.R., Taylor, P.D.P.: Isotopic compositions of the elements
1997. Pure Appl. Chem. 70(1), 217–235 (1998)

20. Senko, M.W.: IsoPro computer program 3.0.
21. Snider, R.K.: Efficient calculation of exact mass isotopic distributions.

J. Am. Soc. Mass Spectrom. 18, 1511–1515 (2007)
22. Macdonald, I.G.: Symmetric Functions and Hall Polynomials. Clarendon

Press; Oxford University Press, Oxford: New York (1979)
23. Beynon, J.H.: Mass Spectrometry and its Applications to Organic

Chemistry. Elsevier, New York (1960)
24. Li, L., Karabacak, M., Cobb, J., Wang, Q., Hong, P., Agar, J.: Memory-

efficient calculation of the isotopic mass states of a molecule. Rapid
Commun. Mass Spectrom. 24, 2689–2696 (2010)

25. Li, L., Kresh, J., Karabacak, M., Cobb, J., Agar, J., Hong, P.: A
hierarchical algorithm for calculating the isotopic fine structures of
molecules. J. Am. Soc. Mass Spectrom. 19, 1867–1874 (2008)

26. Rockwood, A.L., Van Orden, S.L., Smith, R.D.: Ultrahigh resolution
isotope distribution calculations. Rapid Commun. Mass Spectrom. 10,
54–59 (1996)

J. Claesen et al.: An Isotopic Distribution Calculator 763


	An Efficient Method to Calculate the Aggregated Isotopic Distribution and Exact Center-Masses
	Abstract
	Introduction
	Methods
	The New Method for Calculating the Aggregated Isotopic Distribution
	The New Method for Calculating the Center-Masses of the Aggregated Isotopic Variants

	Results and Discussion
	Compared Algorithms
	Results of the Comparison

	Conclusions
	Acknowledgment
	References




