
Vol.:(0123456789)

Journal of Applied Genetics 
https://doi.org/10.1007/s13353-024-00876-x

HUMAN GENETICS • ORIGINAL PAPER

The analysis of transcriptomic signature of TNBC—searching 
for the potential RNA‑based predictive biomarkers to determine 
the chemotherapy sensitivity

Supplitt Stanislaw1,2 · Karpinski Pawel2 · Sasiadek Maria2 · Laczmanski Lukasz3 · Kujawa Dorota3 · 
Matkowski Rafal1,4 · Kasprzak Piotr1 · Abrahamowska Mariola1,4 · Maciejczyk Adam1,4 · Iwaneczko Ewelina1 · 
Laczmanska Izabela1,2 

Received: 28 December 2023 / Revised: 28 April 2024 / Accepted: 29 April 2024 
© The Author(s) 2024

Abstract
Neoadjuvant chemotherapy is the foundation treatment for triple-negative breast cancer (TNBC) and frequently results in 
pathological complete response (pCR). However, there are large differences in clinical response and survival after neoad-
juvant chemotherapy of TNBC patients. The aim was to identify genes whose expression significantly associates with the 
efficacy of neoadjuvant chemotherapy in patients with TNBC. Transcriptomes of 46 formalin-fixed paraffin-embedded (FFPE) 
tumor samples from TNBC patients were analyzed by RNA-seq by comparing 26 TNBCs with pCR versus 20 TNBCs with 
pathological partial remission (pPR). Subsequently, we narrowed down the list of genes to those that strongly correlated 
with drug sensitivity of 63 breast cancer cell lines based on Dependency Map Consortium data re-analysis. Furthermore, 
the list of genes was limited to those presenting specific expression in breast tumor cells as revealed in three large published 
single-cell RNA-seq breast cancer datasets. Finally, we analyzed which of the selected genes were significantly associated 
with overall survival (OS) in TNBC TCGA dataset. A total of 105 genes were significantly differentially expressed in com-
parison between pPR versus pCR. As revealed by PLSR analysis in breast cancer cell lines, out of 105 deregulated genes, 42 
were associated with sensitivity to docetaxel, doxorubicin, paclitaxel, and/or cyclophosphamide. We found that 24 out of 42 
sensitivity-associated genes displayed intermediate or strong expression in breast malignant cells using single-cell RNAseq 
re-analysis. Finally, 10 out of 24 genes were significantly associated with overall survival in TNBC TCGA dataset. Our 
RNA-seq-based findings suggest that there might be transcriptomic signature consisted of 24 genes specifically expressed in 
tumor malignant cells for predicting neoadjuvant response in FFPE samples from TNBC patients prior to treatment initiation. 
Additionally, nine out of 24 genes were potential survival predictors in TNBC. This group of 24 genes should be further 
investigated for its potential to be translated into a predictive test(s).
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Background

Breast cancer (BC) is known up to date as a highly heteroge-
neous disease presenting not only a wide spectrum of patho-
logical features or clinical symptoms, but also a large variety 
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of alterations on genetic, epigenetic, and transcriptomic levels 
(Lüönd et al. Jul. 2021). Traditional classification of breast 
cancer includes biological characteristics such as tumor size, 
lymph node involvement, histological grade, patient’s age, 
expression of estrogen receptors (ER), progesterone recep-
tors (PR), and human epidermal growth factor receptor 2 
(HER2) (Yersal and Barutca Aug. 2014). The BC’s subtype 
of particular note is triple-negative breast cancer (TNBC) 
which is characterized by the lack of expression of three main 
therapeutic targets (ER, PR, HER2). It accounts for 15–20% 
of all BC cases and is more aggressive, with faster growth 
rate, higher risk of metastasis, and recurrence risk and thus 
worse prognosis than BCs with positive hormone receptors 
status (Cserni, et al. 2021). Due to its special molecular phe-
notype (lost expression of receptors), TNBC is sensitive to 
neither endocrine therapy nor molecular targeted therapy. In 
such cases, chemotherapy is the main systemic treatment, but 
the efficacy of conventional postoperative adjuvant chemo-
radiotherapy for TNBC is poor (Yin et al. Jun. 2020; Zhang 
et al. Mar. 2022; Cortazar et al. Jul. 2014).

The studies of recent years have shown that the utility of 
neoadjuvant chemotherapy in the treatment of TNBC results 
in a significantly higher pathological complete response 
(pCR) than in hormone receptor-positive BC cases (Holanek, 
et al. 2021). Achieving pCR is a predictor of better long-term 
treatment outcomes (Minckwitz et al. Oct. 2013). The current 
guidelines recommend using combination regimens based 
on taxane, anthracycline, cyclophosphamide, cisplatin, and 
fluorouracil. Standard neoadjuvant strategy includes regi-
mens with anthracycline (epirubicin/doxorubicin) + cyclo-
fosfamide (AC) followed by cycles with taxanes (docetaxel/
paclitaxel). This scheme presents significantly better pCR 
rates in patients with TNBC compared to non-TNBC (51.2% 
vs. 12%) (Lee 2023; Wang and ほか,  2009). Nevertheless, 
the controversy arises from the fact that TNBC is a highly 
heterogeneous disease, and different sensitivity to commonly 
used agents is observed (Bai et al. Jan. 2021).

According to current knowledge, every cancer diagnosis 
is unique. The traditional classification of BC, based on his-
tological appearance of tumors, presents limitations in terms 
of personalized treatment strategies—do not refer to complex 
genetic alterations underlying biological events in cancer pro-
gression (Yersal and Barutca Aug. 2014). Tumors with similar 
pathological presentations may have different behaviors, e.g., 
proliferative potential. In research and current practice, vari-
ous attempts are made to distinguish molecular subtypes of 
different cancer in order to find its clinical implications. In 
terms of TNBC and other breast cancer subtypes, Ki67 index 
is used as the proliferation biomarker of aggressive, metastatic 
disease with poor outcome (Arafah et al. 2021). However, Ki67 
assessment in immunohistochemistry presents some limita-
tions, including low intra- and inter-laboratory reproducibil-
ity, inconsistent selection of antibodies for testing, potential 

problems resulting from tumor heterogeneity, and variation 
in laboratory reports due to different methods of cell count-
ing (Dowsett et al. Nov. 2011). One of the first insights into 
TNBCs molecular heterogeneity was the observation of six 
distinct TNBC molecular subtypes by Lehhman et al. who 
distinguished including two basal-like (BL1 and BL2), an 
immunomodulatory (IM), a mesenchymal (M), a mesenchy-
mal stem–like (MSL), and a luminal androgen receptor (LAR) 
subtype (Lehmann et al. Jul. 2011). Subsequently, refined clas-
sifications provided confirmation for four to two stable TNBCs 
with the most prominent biological and clinical evidence for 
existence of LAR and non-LAR subtypes (Chen et al. 2012; 
Yu et al. 2022; Thompson et al. 2022a). Importantly, several 
studies clearly showed that LAR patients display a significantly 
poorer response rate to neoadjuvant chemotherapy (Thomp-
son, et al. 2022a). Thus, the success of major diagnostic and 
treatment challenges is dependent on defining specific TNBC 
subtypes and broad repertoire of biomarkers affecting person-
alized approach in TNBC patients (Balkenhol et al. Jun. 2020).

The molecular characterization of cancer tissues has 
become one of the key steps not only in cancer diagnostics, 
prognosis, and tailored therapy but also in searching for new 
molecular biomarkers and pathways (Pennock et al. 2019). 
A methodology which arose rapidly as a game-changer in 
transcriptomic analysis and the discovery of new biomarkers 
is whole tumor transcriptome analysis (whole RNA sequenc-
ing, RNA-seq). RNA-seq in contrast to genome sequencing 
allows analyzing not only nucleic acid sequence but also RNA 
expression level, new RNA molecules’ sequences (splice 
variants, chimeric genes, fusions), and non-coding RNAs. 
This makes RNA-seq an excellent and powerful technique 
for molecular analysis of cancer cells (Barrón-Gallardo et al. 
2022). Moreover, RNA-seq technology may be performed 
using formalin fixed paraffin embedded (FFPE)–derived 
RNA. It allows selecting and using FFPE cancer tissues pre-
viously stored in biorepositories from patients with known 
clinical history (Pennock et al. 2019).

The main goal of our study was to evaluate using RNA-
seq the transcriptomic patterns in FFPE cancer tissues derived 
from two groups of TNBC patients who were resistant and 
sensitive to AC neoadjuvant chemotherapy and, consequently, 
to identify the differentially expressed genes for their potential 
use as patient-tailored biomarkers.

Materials

Patient recruitment and selection criteria

Adult female patients with a diagnosis of TNBC, accepted to 
receive systemic neoadjuvant chemotherapy, were qualified 
for this study. Clinical exclusion criteria comprise disease with 
distant metastases (M1 and higher), hereditary breast cancer 
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(BRCA-related disease), and patients previously treated against 
another cancer. Moreover, cases of insufficient biopsy tissue 
for further pathological or RNA analysis were excluded.

Ethic statement

All patients signed an informed consent form before the 
genetic test. Approval was granted by the Ethics Committee 
of Wroclaw Medical University (No. 611/2019). All patients 
were diagnosed and treated in Breast Unit, Lower Silesian 
Oncology, Pulmonology and Hematology Center in Wro-
claw, Poland. All breast cancer samples used in the study 
were taken only as a part of the patients’ diagnostic and 
therapeutic schemes. All procedures performed in this study 
were in accordance with the principles for medical research 
of the 1964 Declaration of Helsinki and its later amendments 
or comparable ethical standards.

Treatment plan and study design

Core needle biopsy and vacuum-assisted breast biopsy 
(CNB and VABB) breast samples, obtained from 46 
TNBC-diagnosed patients (2018–2021) qualified to 
receive neoadjuvant therapy, were taken in FFPE blocks 
for RNA extraction and analysis. At first, the biopsies 
were taken before the AC chemotherapy onset. Neoadju-
vant chemotherapy started with doxorubicin (at the dose 
of 60 mg/m2) with cyclophosphamide (600 mg/m2) cycled 
every 14–21 days for 4 cycles, followed every week by 
maximum 12 cycles of paclitaxel (80 mg/m2) or docetaxel 
(75 mg/m2). After chemotherapy, the breast samples were 
taken during surgery to assess the pathological response to 
treatment (Scheme 1). Patients with (pCR) were assigned 
to the sensitive group, while cases of pathologic partial 
response (pPR) and disease progression (PD) were set in 

the resistant group (reduced response group—RR). Patho-
logical complete response (pCR) was defined as disappear-
ance of all invasive cancer tissue in the resected breast 
specimen, as well as in all sampled regional lymph nodes 
after completion of neoadjuvant chemotherapy.

External data acquisition

We obtained Rsubread preprocessed breast cancer TCGA 
data from Rahman et al. that included 1112 primary breast 
tumor samples (Rahman et al. May 2015). Survival data for 
TCGA breast cancer cases was obtained from Liu et al. (Liu 
et al. Apr. 2018). One hundred twenty-three triple-negative 
breast cancer (TNBC) cases from TCGA were selected 
based on data published by Thompson et al. (Thompson, 
et al. 2022b). Gene expression data and drug sensitivity 
for 63 breast cancer cell lines were obtained from Depend-
ency Map (DepMap) Consortium (Ghandi et al. May 2019). 
We used TISH2 server to inspect selected gene expression 
compartment and gene expression values in breast cancer 
single-cell RNA-seq (sc-RNA-seq) experiments (Sun et al. 
Jan. 2021). We considered three datasets, and each included 
data for primary breast tumors in more than 10 patients 
(GSE176078, EMTAB8107, and GSE161529) (Wu et al. 
2021; Qian et al. 2020; Pal et al. 2021).

Methods

The pathologist’s role was the selection of the most repre-
sentative breast cancer tissue sections containing at least 
30% of cancer cells.

Total RNA was isolated from formalin-fixed, paraffin-
embedded (FFPE) breast cancer tissue sections using the 

Scheme 1   Treatment plan and 
related study design. Based 
on Smart Servier Medical Art 
(www.​smart.​servi​er.​com)

http://www.smart.servier.com


	 Journal of Applied Genetics

RNeasy® FFPE Kit (QIAGEN) according to the manu-
facturer’s protocol.

After extraction, the purity of RNA was determined on 
the NanoPhotometer N60 (Implen).

RNA‑seq

The quality check of the RNA has been performed with 
the use of High Sensitivity RNA ScreenTape on TapeSta-
tion (Perlan). Library construction was performed using 
KAPA HyperPrep Kit with RiboErase (HMR) according 
to manufacturer protocol with technical note for degraded 
inputs and 25 ng–1 µg of purified total RNA.

In brief, preparation of libraries consisted of depletion 
of a human rRNA, fragmentation using heat and magne-
sium, first-strand cDNA synthesis using random priming, 
combined second-strand synthesis, and A-tailing, adapter 
ligation, library amplification.

The library’s concentration was measured with the fluo-
rometric method (QuantiFluor dsDNA System, Promega), 
and the quality check of the libraries was performed using 
capillary electrophoresis (High Sensitivity D1000 Screen-
Tape System on Tape Station (Perlan).

Libraries were diluted to 4 nM in accordance with Next-
Seq System Denature and Dilute Libraries Guide (Illu-
mina) and pooled. Paired-end sequencing was carried out 
using the NextSeq HighOutput Reagents (Illumina).

RNA‑seq data pre‑processing

Reverse and forward reads were merged, and subsequently, 
quality filtering and trimming was performed in Rfastp 
Bioconductor package. Next, filtered FASTQ files were 
aligned by Rsubread version 2.8.1 R package to GENE-
CODE Release 33 (GRCh38.p13) reference genome (Frank-
ish et al. Jan. 2021). Next, featureCounts() of Rsubread 
function was used to summarize the gene level expression 
values as integer number (raw counts). Depending on use, 
RNA-seq gene-level data were transformed in various ways. 
For differential expression calculations, we used raw counts. 
For integration with TCGA breast cancer dataset, we used 
ComBat-seq batch correction followed by log2-counts per 
million (log-CPM) transformation and quantile normaliza-
tion (Zhang et al. 2020). For all other analyses, raw counts 
were transformed in log2-transcripts per million (log-TPM).

Statistical methods

All analyses were performed in R/Bioconductor envi-
ronment. After the gene expression levels were derived, 

unexpressed or lowly expressed genes were removed using 
filterByExpr function in edgeR package (Chen et al. 2016). 
The number of genes retained for testing was 24,237. We 
used quasi-likelihood negative binomial generalized log-
linear model implemented in edgeR package to calculate 
differentially expressed (DE) genes between study sub-
groups. DE analysis was adjusted for batch variable. DE 
genes were defined as those genes with a FDR corrected p 
value less than 0.05 and logFC > 1.2.

To assess which DE genes derived above may be associ-
ated with selected drug resistance (docetaxel, doxorubicin, 
paclitaxel, and cyclophosphamide), we used partial least 
squares regression (PLSR) implemented in mixOmics 
package (Rohart et al. 2017). In brief, we collected data 
on gene expression and drug sensitivity (the area under 
the fitted dose response curve—AUC) for 63 breast cancer 
cell lines. After limiting gene expression data to DE genes 
revealed above, we defined gene expression matrix as pre-
dictor and AUC matrix as response. Results of PLSR were 
visualized by relevance associations network in mixOmics 
package (Rohart et al. 2017). We only considered absolute 
correlation values ≥ 0.4 obtained by network function in 
mixOmics.

Expression profiles of our samples were assigned to 
two TNBC subtypes recently proposed by Thompson et al. 
(Thompson et al. 2022b): luminal androgen receptor (LAR) 
and non-luminal androgen receptor (Non-LAR). In brief, we 
used TCGA data consisted of 123 TNBC cases with TNBC 
subtype assignment provided by Thompson et al. (Thomp-
son, et  al. 2022b) to select set of discriminating genes 
between LAR and non-LAR subtypes. We used nearest tem-
plate prediction (NTP) classifier as feature selection, classifi-
cation, and prediction tool. TCGA dataset was used as train 
NTP (Eide et al. 2017; Hoshida 2010). Prediction confidence 
was assessed based on the distance of the null-distribution, 
estimated from 1000 permutation tests. FDR < 0.05 was 
used to correct the set of prediction confidence p values for 
multiple hypothesis testing. Survminer package was used 
to calculate univariate Cox proportional hazards model for 
analysis of association of expression of selected genes with 
overall survival in TCGA breast cancer samples limited to 
triple-negative cases. Cut points for gene expression values 
to define high/low expression levels were estimated by use 
of maximally selected rank statistics. Survival curves were 
drawn in Survminer package.

Results

Basic patient characteristics are provided in Table 1. Using 
NTP classifier trained on TNBC TCGA data using signa-
ture composed of 390 genes, we identified 13 LAR and 31 
non-LAR tumors in our dataset. Two out of 46 samples 
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showed low prediction confidence (FDR ≥ 0.05) and were 
set to “NA” in the subsequent statistical analysis. No sig-
nificant differences were observed between systemic treat-
ment response groups. Although non-LAR samples were 
mostly prevalent in pCR subgroup (84% of samples) and 
LAR samples were enriched in RP subgroup (47% of sam-
ples), the differences in TNBC subtypes distribution across 
pCR and RR subgroups were not statistically significant (p 
value 0.054).

Integration with TCGA breast cancer cohort

In order to further assess the quality of FFPE-extracted RNA 
and subsequent RNA-seq procedure, we decided to merge 
expression profiles of our samples with expression pro-
files of high quality fresh frozen (FF) samples from TCGA 
study. We used principal component analysis (PCA) of gene 
expression to assess differences and similarities between 
FFPE samples and TCGA FF samples (Fig. 1 A and B). 
Prior to batch correction, two different clusters correspond-
ing to FF and FFPE samples were observed; however, after 
batch correction, FF and FFPE samples formed one coher-
ent cluster. This suggests that the gene expression profiles 
obtained from FFPE samples were of quality comparable to 
FF samples.

Gene expression analysis

Differential expression analysis of RR versus CR was per-
formed with edgeR for the 24,237 genes. A total of 105 
genes were significantly differentially expressed in com-
parison between RR versus CR patients with a significant 
level of FDR ≤ 0.05 and absolute fold change ≧ 1.2 (Fig. 1C) 
including six significantly downregulated genes and 99 sig-
nificantly upregulated genes (see Supplementary Table 1). 
As revealed by PLSR analysis in breast cancer cell lines, out 
of 105 deregulated genes, 42 were associated with sensitiv-
ity to docetaxel, doxorubicin, paclitaxel, and/or cyclophos-
phamide (Fig. 2A, B and Supplementary Table 1). Next, 
we explored three primary breast cancer single-cell RNA-
seq datasets, to select only those genes which are expressed 
in tumor malignant cells. We found that 24 out of 42 

sensitivity-associated genes displayed intermediate or strong 
expression in breast malignant cells (Supplementary Table 1, 
Fig. 2A, B, C, D). Finally, we analyzed which of 24 genes 
were significantly associated with overall survival (OS) in 
TNBC TCGA dataset. We found that dichotomized expres-
sion (high/low) of nine out of 24 genes was significantly 
associated with OS in TNBC (Supplementary Table 1): 
MUCL1, ABCC11, SPDEF, APOD, ARHGEF38, PRR15L, 
ABCA3, KCNE4, and CYB5A. High expression of eight out 
of 10 genes was associated with shorter OS in TNBC except 
of APOD and ARHGEF38 for which high expression was 
associated with longer OS in TNBC.

Discussion

Neoadjuvant, systemic treatment of TNBC remains currently 
one of the standard therapeutic options preceding surgery. Its 
application brings the reduction of the primary tumor’s size 
and aims to eliminate lymph node and distant metastases 
(Asselain et al. 2018). At present, six therapeutic schemes 
are the preferred neoadjuvant regimens for TNBC:

•	 Taxel/docetaxel + adriamycin + cyclophosphamide (TAC)
•	 Docetaxel + cyclophosphamide (TC)
•	 Anthracycline + cyclophosphamide (AC)
•	 Cyclophosphamide + methotrexate + fluorouracil (CMF)
•	 Cyclophosphamide + adriamycin + fluorouracil (CAF)
•	 Cyclophosphamide + anthracycline + fluorouracil + pacli-

taxel/docetaxel (CEF-T)

Nevertheless, a number of TNBC cases display impres-
sive primary tumor response to neoadjuvant chemotherapy, 
the major disadvantage of this therapeutic approach is chem-
oresistance which implicates a suboptimal efficacy in large 
percentage of patients (Echeverria, et al. 2019; Carbognin 
et al. 2015).

Chemoresistance, the insensitivity of cancer cells to 
chemotherapy, is the common event in cancer treatment, 
especially in TNBC (Cao et  al. 2021). Some mecha-
nisms leading to chemoresistance are well characterized 
and described, but still—because of its heterogeneity—
there is an urgent need of further investigation and better 

Table 1   Summary descriptive 
table by groups of “Treatment.
response”

All patients
N = 46

Complete response
N = 26

Reduced response
N = 20

p. overall

Age 53.5 [39.0;62.8] 51.0 [38.2;60.0] 60.0 [42.0;65.8] 0.1908
Ki67 status [%] 60.0 [40.0;70.0] 60.0 [46.2;70.0] 60.0 [37.5;70.0] 0.2444
Specimen purity [%] 55.0 [50.0;68.8] 50.0 [50.0;60.0] 60.0 [47.5;76.2] 0.2752
TNBC subtype
   LAR
   NON-LAR

 
13 (29.5%)
31 (70.5%)

 
4 (16.0%)
21 (84.0%)

 
9 (47.4%)
10 (52.6%)
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understanding. Among these mechanisms are multidrug 
resistances connected with expression of ATP binding 
cassette (ABC) transporters, the activation of signaling 
pathways important for survival and cancer cell invasion, 
non-coding RNAs (ncRNAs) and their role in signaling and 
regulation of biochemical pathways, and cancer stem cells 
that overexpress various transporters and surface biomark-
ers that allow escaping from classical treatment (Cao et al. 
2021). Considering the heterogeneous nature of triple-neg-
ative tumors, justifying the difficulties in TNBC treatment, 
new approaches suggest the personalization of the diagnostic 
and therapeutic strategies. Much research focuses on finding 
novel prognostic biomarkers for TNBC and the interactions 
between them to identify subtypes for further, potential tar-
geted therapy. In terms of chemoresistance, gene expression 
profiling may help determine different TNBC subtypes with 
distinct sensitivity.

Some previous studies on transcriptomics analysis 
of breast cancer FFPE tissues revealed many differen-
tially expressed genes. In patients with TNBC, a group 
of genes involved in mammary gland morphogenesis 
(FSIP1, ADCY5, FSD1, HMSD, CMTM5, AFF3, CYP2A7, 
ATP1A2, and C11orf86) was associated with prognosis. 
Three of them: ADCY5, CYP2A7, ATP1A2 act in hormone-
related pathways (Chen et al. 2020). Another study on 
non-metastatic BC treated with neoadjuvants revealed that 
lower expression of CIQTNF3, CTF1, OLFML3, PLA2RI, 
PODN, KRTI5, and HLA-A and overexpression of TUBB 
and TCPI was characteristic for patients with chemoresist-
ance and with poor prognosis. These genes were encoded 
proteins from extracellular region and plasma membrane, 
the area of signal transduction (Barrón-Gallardo et al. 
2022). Also, changes in gene expression for patients 
with estrogen-receptor–positive BC treated gradually 
with neoadjuvant and next adjuvant endocrine therapy 

Fig. 1   PCA of gene expression 
data and differential expression 
analysis. PCA was performed 
using gene expression data 
from FF (TCGA) or FFPE 
(This study). A Prior to batch 
correction, two different clusters 
were identified by PCA. B After 
batch correction, FF and FFPE 
samples formed one cluster. 
The variance in percentages 
accounted for by each principal 
component is shown on each 
axis. C Volcano plot result-
ing from differential expres-
sion analysis in RR versus CR 
patients. Significantly deregu-
lated genes (abs. logFC ≥ 1.2, 
FDR ≤ 0.05) are depicted as 
blue dots (downregulated) and 
red dots (upregulated)
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were detected. Higher expression for ER, HER2, GATA3, 
AKT, RAS, and p63, genes that promote cell proliferation 
in resistant in comparison to sensitive tumors, was the 
expected result and consistent with endocrine-resistant 
mechanism (Xia et al. 2022).

In our study, after performing RNA-seq analysis, we 
identified nine genes involved in various cellular pathways, 
overexpressed in chemoresistant patients: KCNE4, ABCC11, 
ABCA3, APOD, ARHGEF38, PRR15, CYB5A, SPDEF, and 
MUCL1. There is a variation of functions among selected 
genes: ABC transporters, cytochromes, and transcripts con-
trolling cell polarization. Different studies confirm that the 
abovementioned genes are strictly involved in cellular pro-
cesses related to carcinogenesis.

KCNE4 encoding potassium voltage-gated channel reg-
ulator was identified as differentially expressed between 
sensitive and resistant groups. KCNE4 overexpression was 
reported as poor prognosis factor in various malignancies 
(Mano et al. 2022; Wu et al. 2022; Li et al. 2021). In the 
recent years, it was shown that different families of potas-
sium channels are overexpressed in primary breast cancers. 
Being localized in the plasma membrane, ion channels could 
represent novel cancer biomarkers, and their detection might 
be easily performed by immunohistochemical and molecular 
techniques. Moreover, for the same reason, they represent 
a good potential target for therapy with specific drugs and 
antibodies (Ko et al. Sep. 2013). Different voltage-gated 
potassium channels are aberrantly expressed in TNBC (Las-
traioli 2020). Previous studies show correlation between 
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increased potassium channel expression and the develop-
ment of metastases, nuclear grade, proliferation, and poor 
prognosis in breast cancer (Khaitan et al. Jul. 2009; Brevet 
et al. 2009; Jang et al. 2009). Interestingly, other potassium 
channels, such as Kv11.1 encoded by KCNH2, significantly 
reduce the metastatic spread of breast tumors in vivo while 
activated (Breuer, et al. 2019). Some studies indicate that 
some potassium channels are expressed in a variety of breast 
cancer cells but not in healthy tissue (Lansu and Gentile Jun. 
2013; Iorio et al. Jul. 2018). Despite the pivotal role of potas-
sium channels in the development of cancer, it is currently 
difficult to assign a specific mechanism for each ion channel 
in the proliferation, invasion, and metastasis of tumor cells 
(Li and Xiong 2011).

Our study revealed overexpression of two genes encoding 
family of ATP binding cassette (ABC) transporters proteins: 
ABCA3 and ABCC11. A number of ABC transporters are 
strongly implicated in chemoresistance of numerous solid 
tumors, including breast cancer (Muriithi et al. May 2020). 
ABCA3 is not well-characterized in terms of breast cancer 
comparing to ABCC11. It has been shown that increased 
ABCA3 expression in breast cancer seems to be associ-
ated with poor prognosis. In the study of Schimanski et al., 
diminished ABCA3 expression proved to be a significant, 
independent, and adverse risk factor for breast cancer recur-
rence (Schimanski et al. 2010). In other studies, overexpres-
sion of ABCA3 increased chemoresistance (Overbeck et al. 
Jun. 2013) and conferred shorter relapse-free survival in dif-
ferent malignancies (Bartholomae et al. Feb. 2016). Several 
studies indicate that ABCC11 gene, encoding multidrug-
resistant protein-8, is expressed significantly more in breast 
cancer (including TNBC) (Yamada et al. Feb. 2013; Xu et al. 
2017) and is associated with poor prognosis (Tsyganov et al. 
2022; Nedeljković and Damjanović 2019). It has been shown 
that ABCC11 confers resistance to anthracyclines, taxanes, 
mitoxantrone, and methotrexate (Sissung et al. Feb. 2010).

We observed increased expression of APOD in patients 
with partial response or disease progression. Apolipopro-
tein D (APOD) is a well-known, multifunctional glycopro-
tein that is expressed at 1000-fold higher levels in the cyst 
fluid of women with gross cystic disease of the breast, than 
in the plasma of the healthy women (Jankovic-Karasoulos 
et al. Jun. 2020). ApoD has been reported to be a marker of 
invasive BC, with promising, prognostic importance. Many 
studies show that ApoD expression is associated with poor 
BC survival outcome (Søiland et al. Feb. 2009; Díez-Itza, 
et al. 1994). It has been shown that ApoD expression may 
be downregulated via estrogen receptor signaling (Simard 
et al. 1990) and upregulated in the presence of tamoxifen 
(Harding et al. 2000). Patients with high ApoD expression 
in ER-positive breast cancers have a significantly poorer sur-
vival outcome than patients with ERα-positive breast can-
cers and low ApoD expression (Jankovic-Karasoulos et al. 

Jun. 2020). Studies show that patients with ApoD-negative 
tumors receiving tamoxifen therapy had a significantly better 
survival outcome than patients with ApoD-positive tumors 
(Søiland et al. 2009). The abovementioned studies, partially 
confirm our results that ApoD overexpression may be related 
to worse therapeutic outcomes in BC patients.

In our study, the overexpression of PRR15 was observed 
in patients with reduced response to chemotherapy. Among 
a few reports regarding PRR15 activity, there is an assump-
tion that the abovementioned gene is involved in embryonic 
development, neurological disorders, and cancer (Lüönd 
et al. Jul. 2021; Yersal and Barutca Aug. 2014; Cserni, et al. 
2021; Yin et al. Jun. 2020). The study of Wang et al. con-
firmed the role of PRR15 in promotion of thyroid cancer 
and induction of changes in its microenvironment. It was 
observed that overexpression of PRR15 correlates with 
increased infiltration of eosinophils and NK cells (Zhang 
et al. Mar. 2022). Some studies indicate that dysregulation 
of PRR15 expression is a negative prognostic factor in breast 
cancer, esophageal cancer, and some gastrointestinal malig-
nancies (Cortazar et al. Jul. 2014; Holanek, et al. 2021). The 
role of PRR15 in breast cancer remains controversial. In the 
study of Guo et al., it was found that TNBC’s proliferation 
increases with the reduction of PRR15 expression. How-
ever, further studies are needed to assess the role of PRR15 
expression changes in TNBC development (Minckwitz et al. 
Oct. 2013).

In patients with disease progression, we observed the 
overexpression of ARHGEF38 (rho guanine nucleotide 
exchange factor 38). It is involved in regulation of catalytic 
activity, tumor cell polarization, and metastasis pathway. 
This gene, so far not well examined, was identified for the 
first time in 2021 as a possible biomarker of lung adeno-
carcinoma and lung squamous cell carcinoma (Chen and 
Dhahbi 2021). Recent studies indicate ARHGEF38 as a 
novel predictive biomarker of aggressive prostate cancer as 
well (Liu et al. Jun. 2019; Sun 2021). Liu et al. observed that 
ARHGEF38 protein in lymph node metastasis patients was 
significantly higher than that in the non-metastatic patients, 
which may suggest that the high expression of ARHGEF38 
is more prone to distant metastasis (Liu et al. Jun. 2019). Our 
study reveals for the first time that ARHGEF38 may be used 
as potential indicator of poor prognosis in TNBC patients.

Cytochrome b5 (encoded by CYB5A) detoxifies aro-
matic and heterocyclic amine mammary carcinogens found 
in cigarette smoke (Blanke et al. Oct. 2014)—one of the 
leading BC risk factors (Jones et al. 2017). We observed 
increased expression of CYB5A in TNBC patients present-
ing complete response. Up to date, function and regulat-
ing mechanisms of cytochrome b5 in breast cancer remain 
unknown. Recent studies confirmed that CYB5A reduces 
the oxidative stress levels, alters the apoptosis cascade, 
regulates ERK1/2 and Akt signaling pathways, and thus 
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plays an important role in maintaining the balance of the 
redox system in cancer cells (Tong et al. 2022; Guo, et al. 
2022). Nevertheless, the effects of overexpressed CYTB5 
are various in different breast cancer phenotypes, which 
is probably related to gene polymorphisms (Blanke et al. 
Oct. 2014). These observations provide useful informa-
tion for understanding the multiple roles of cytochrome 
b5 and provide clues for further studies on personalized 
BC patient management.

SPDEF (SAM pointed domain containing ETS tran-
scription factor) was first identified as an activator of 
prostate-specific antigen (PSA) (Oettgen et al. Jan. 2000), 
which can be detected in epithelial tissues including hor-
mone‐regulated epithelia such as the prostate, breast, and 
ovary (Buchwalter et al. Jun. 2013). In cancer research, the 
role of SPDEF in BC depends on different subtypes and 
remains controversial. Several studies have demonstrated 
that high SPDEF expression promotes Luminal BC differ-
entiation and correlates with poor OS in ER-positive breast 
cancer patients (Buchwalter et al. Jun. 2013; Sood et al. 
Nov. 2007; Sood et al. Jun. 2009). Our study showed that 
SPDEF expression levels were higher in TNBC patients 
with poor OS. The abovementioned observations exhibit 
SPDEF as a possible oncogenic factor. In contrast, the 
downregulation of SPDEF in invasive basal BC cell lines 
supports a tumor-suppressive role (Turner et  al. Feb. 
2007). Up-to-date studies proved that high expression 
of SPDEF may be utilized as prognostic factor for the 
poor OS in various BCs; nevertheless, further research 
on SPDEF expression patterns and molecular mechanisms 
underlying subtype-specific role of SPDEF are needed, 
to evaluate its role in the occurrence and development of 
multiple BC subtypes.

Small breast epithelial mucin (MUCL1) (also known as 
SBEM) gene is involved in invasion and metastasis of breast 
cancer via promoting epithelial‑to‑mesenchymal transition 
(Li et al. Aug. 2020). Based on its highly restricted mRNA 
expression in breast tissue and continued expression dur-
ing breast tumorigenesis, MUCL1 is an attractive tumor-
associated antigen and a potential therapeutic target (Con-
ley et al. 2016). Accordingly to these results, our research 
confirmed that SBEM-MUCL1 was overexpressed in TNBC 
patients. In the study of Liu et al., it was shown that SBEM 
has the potential for predicting response to neoadjuvant 
chemotherapy in breast cancer. After 3 cycles’ neoadju-
vant chemotherapy, SBEM expression levels were signifi-
cantly downregulated in up to 58% breast cancer patients 
(Liu et al. Apr. 2010). Furthermore, some studies indicate 
SBEM-MUCL1 as a marker for micrometastasis in breast 
cancer (Liu et al. Apr. 2010; Valladares-Ayerbes et al. Sep. 
2009). Taken together, these data suggest a potential utility 
for therapeutic targeting of this protein in breast cancer, 
including TNBC.

Conclusions

Our RNA-seq–based findings evidenced that 24 genes with 
tumor cell–specific expression in TNBC present different 
expression patterns in complete response/reduced response 
patients’ groups to neoadjuvant treatment in FFPE speci-
mens. In addition, 10 out of 24 genes displayed prognostic 
properties. Given the malignant cell-specific expression 
of these genes, it should be further investigated for its 
potential to be translated into a predictive test.
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