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Abstract
Globally, breast cancer (BC) is the leading cause of female death and morbidity. Homologous recombination repair 
(HRR) is critical in BC. However, the prognostic role and immunotherapy response of HRR in BC remains to be 
clarified. Firstly, we identified HRR types in BC samples from the Cancer Genome Atlas (TCGA) and Gene Expres-
sion Omnibus (GEO) dataset (GSE42568) based on 65 HRR genes (HRRGs). A differentially expressed gene (DEG) 
list for different HRR types was generated. Then, the influences of gene sets composed of these DEGs on biological 
pathways and BC prognosis were explored. Next, we identified gene clusters based on gene sets composed of DEGs. 
Genes associated with prognosis for DEGs were identified using univariate Cox regression. Finally, the HRR score was 
constructed based on genes associated with prognosis. We analyzed how HRR score correlates with tumor mutation 
burden (TMB), immune cell infiltration (ICI), and immunotherapy response. Three HRR clusters were discovered. 
HRR subtype A demonstrated decreased infiltration and a high number of immunosuppressive cells with a poor 
prognosis. DEGs among various HRR types were predominantly enriched in cell cycle and genomic stability-related 
pathways. The prognostic model based on sixteen DEGs accurately predicted BC prognosis. The HRRGs were dif-
ferentially expressed in three DEG clusters. TMB, ICI, and immunotherapy responses differed significantly between 
the high and low HRR groups (HSG, LSG). The HSG was distinguished by a high degree of ICI and low TMB. LSG 
had a better response to anti-PD-1 or anti-PD-1 and anti-CTLA4 combination therapy. This work revealed that HRR 
patterns would contribute to predicting prognosis and immunotherapy response in BC, which may benefit patients.
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Introduction

Breast cancer (BC) is the leading cause of incidence and 
mortality among women worldwide (Ahmad 2019). The 
number of new cases of female BC reported worldwide 
in 2018 reached approximately 2.1 million, with the inci-
dence and mortality being 24.2% and 15%, respectively 
(Bray et al. 2018). Although there has been much pro-
gress in immunotherapy and targeted therapy for BC, 
the low overall response continues to be a hurdle, and 

the prognosis remains poor for patients with recurrent or 
metastatic BC (Ahmad 2019; Gerber et al. 2010; Varadé 
et al. 2021). Additionally, BC is a heterogeneous dis-
ease, so the prognosis for the same tumor node metastasis 
(TNM) stage and immunohistochemical subtype can be 
quite different (Yersal and Barutca 2014). Thus, explor-
ing the cellular and molecular biological mechanisms of 
BC is essential for its treatment.

Previous studies have identified different BC subtypes 
according to immune cell infiltration status, DNA methyla-
tion, molecular apocrine, and basal-like-enrichment (Shen 
et al. 2020a; Jézéquel et al. 2019; Zhang et al. 2018), which 
confirmed the role of immunity and DNA mutations in BC. 
The tumor microenvironment (TME) was previously impli-
cated in cancer progression and immunotherapy responses 
(Mittal et al. 2018; Schlam et al. 2021). The accumulation 
of mutations is a crucial part of cancer development, and 
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repairing DNA damage is crucial to maintaining genomic 
integrity (Reilly et al. 2019). Breaks of DNA double-strand 
(DSB) in cells can hinder chromosomal replication, causing 
a chromosomal deletion. Cell death and tumor transforma-
tion will occur if it is not repaired promptly. Homologous 
recombination repair (HRR) is the most accurate and high-
fidelity DNA damage repair approach responsible for DSB 
repair, involving many genes, including BRCA1 and BRCA2 
(Neiger et al. 2021). ADP-ribose polymerase (PARP) is cru-
cial for DNA single-strand break repair, mainly through base 
excision. Both BRCA1 and BRCA2 dysfunction may cause 
chromosome instability, cell-cycle arrest, and apoptosis. 
Dysfunction of either BRCA1 or BRCA2 seems to origi-
nate from PARP inhibition and can cause persistent DNA 
damage, which is usually repaired by HRR. PARP inhibitors 
(PARPi) selectively kill HRR deficiency tumor cells using 
the principle of synthetic lethality (Prados-Carvajal et al. 
2021).

Our study integrated HRR-related genes (HRRGs) and 
identified HRR-related subtypes in BC based on public data-
bases. After obtaining differentially expressed genes (DEGs) 
across HRR subtypes, a prognostic model was constructed 
based on them. Then, the biological functions of these DEGs 
were explored. We established the HRR score based on 
DEGs associated with BC prognosis and investigated the 
association between the HRR score and tumor mutation bur-
den (TMB), immune cell infiltration (ICI), and therapeutic 
sensitivity. The research may provide an avenue for progno-
sis and immunotherapy response prediction in BC.

Materials and methods

Breast cancer data retrieval and homologous 
recombination repair‑related genes

One thousand two hundred twelve BC samples were ana-
lyzed from two high-throughput platforms: 1091 from the 
TCGA and 121 from the GEO dataset (GSE42568). GEO 
database inclusion criteria are as follows. (1) “Breast can-
cer,” “Gene expression,” and “Homo sapiens” were used 
as the search keywords. (2) Entry type was set as “Series.” 
(3) Experiment type was “Expression profiling by array to 
facilitate subsequent analysis with R software.” (4) Samples 
involved in the study contain the gene expression profiles 
of breast cancer and normal breast biopsies. (5) Prognos-
tic information of the patients was recorded. GEO database 
exclusion criteria are as follows. (1) The sample number is 
less than 50 cases. (2) RNA sequencing data and prognosis 
information of patients were incomplete. TCGA samples 
were downloaded with gene expression data, copy number 
variations (CNV), somatic mutation characteristics, clinical 
information, and survival data. GEO dataset samples were 

downloaded with annotated platform data and expression 
matrices. Probe IDs were converted to gene symbols using 
Perl. Patients with incomplete RNA-seq data and with insuf-
ficient survival data were excluded. TCGA gene expression 
data expressed as Fragments Per Kilobase Million (FPKMs) 
was transformed to Transcripts Per Million (TPMs). The 
“ComBat” function was used in the “SVA” package (ver-
sion 3.50.0) to combine samples for further analysis (Leek 
et al. 2012). In total, 65 HRR-related genes (HRRGs) were 
acquired from the Molecular Signature (MsigDB, http:// 
softw are. broad insti tute. org/ gsea/ msigdb) (Liberzon et al. 
2015). Waterfall plots visualized somatic mutations with the 
“maftools” package (version 2.18.0) in R software inMaya-
konda et al. (2018), and HRRGs with CNV were visualized 
on 23 chromosomes with the “RCircos” package (version 
1.2.2) (Zhang et al. 2013).

Unsupervised clustering using homologous 
recombination repair genes

To identify various HRR-related patterns mediated by 
HRRGs, the expression of these 65 HRRGs was extracted 
from the integrated datasets. Finally, we obtained the 
expression data of 37 HRRGs, because genes from only one 
expression cohort were removed during the integration pro-
cess (Stockwell et al. 2017; Hassannia et al. 2019; Bersuker 
et al. 2019; Doll et al. 2019; Zhu et al. 2021). Hierarchical 
agglomerative clustering was performed by the “Consensus-
ClusterPlus” package (version 1.66.0) (Wilkerson and Hayes 
2010). An unsupervised analysis determined the number of 
clusters and subtypes. This process was repeated 1000 times 
to ensure a stable clustering.

Gene set variation analysis

We conducted a gene set variation analysis (GSVA) with 
“GSVA” package (version 1.50.0) to examine the biological 
mechanisms across HRR subtypes (Hänzelmann et al. 2013). 
From MSigDB, gene sets from Gene Ontology (GO) and 
Kyoto Encyclopedia of Genes and Genomes (KEGG) were 
retrieved for GSVA. The pathways significantly associated 
with HRR subtypes were shown in heatmaps.

Estimation of immune cell infiltration (ICI)

The ICI in each sample was assessed and quantified using sin-
gle-sample gene-set enrichment analysis (ssGSEA) provided by 
the “GSVA” package (Hänzelmann et al. 2013). Charoentong’s 
study which collected information about immune cell marker 
gene expression was used to generate an enrichment score. 
Then, the score was used to reflect each immune cell’s relative 
abundance of infiltration. The ICI variations among HRR sub-
types were subsequently examined.

http://software.broadinstitute.org/gsea/msigdb
http://software.broadinstitute.org/gsea/msigdb
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Fig. 1  The CNV frequency of HRRGs and expression differences 
of HRRGs in normal and tumor tissues in the TCGA-BRCA cohort. 
A The CNV frequency of HRRGs in the TCGA cohort. The points 
represent the CNV frequency of HRRGs in the TCGA cohort. The 
height of the column indicates the frequency of CNV change. The 
green dots indicate the frequency of deletions, and the red ones indi-
cate the amplification frequency. B Frequency of HRRG mutations in 

1090 patients from the TCGA-BRCA cohort. The columns represent 
patients, and the different colors at the bottom of the figure repre-
sent the proportion of different types of mutations. C The position of 
HRRGs with CNV on 23 chromosomes. D The expression differences 
of HRRGs in normal tissues and tumor tissues. CNV, copy number 
variation; HRRGs, homologous recombination repair genes; BRCA, 
breast cancer
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Identification of differentially expressed genes 
among homologous recombination repair subtypes 
in breast cancer

Unsupervised clustering results were used to separate BC 
samples into different subtypes based on HRR expres-
sion patterns. We screened differentially expressed 

genes (DEGs) across subtypes using “Limma” package 
(version 3.46.0) in R software (Ritchie et al. 2015). An 
adjusted false discovery rate (FDR) of 0.05 was used 
as a threshold, as well as the absolute value of LogFC 
was greater than 1. The common DEGs up-regulated or 
downregulated of distinct subtypes were found via draw-
ing Venn diagrams. The common DEGs from different 
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HRR subtypes were submitted for GO and KEGG analy-
sis to investigate their molecular biology using “clus-
terProfiler” package (version 4.10.0) (Yu et al. 2012). 
A P-value less than 0.05 was considered a statistically 
significant difference.

Construction and validation of prognostic model 
of breast cancer

We used the Cox regression model to investigate the influ-
ence of multiple factors on survival. The integrated dataset 

Fig. 3  Screening of DEGs among HRR clusters and functional 
enrichment analysis of DEGs. A Volcano map of group A and 
B DEGs. B Volcano map of group A–C DEGs. C Volcano map of 
group B and C DEGs; D Venn diagram of DEGs in three groups (A, 

B, and C). E GO enrichment analysis of DEGs. F KEGG enrichment 
analysis of DEGs. DEGs, differentially expressed genes; GO, Gene 
Ontology; KEGG, Kyoto Encyclopedia of Genes and Genomes
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was divided into training and validation sets at random. The 
model was built on the training set and then evaluated on 
the validation. To select genes associated with survival, we 
used P = 0.05 as a filter for univariate Cox. “glmnet” pack-
age (version 4.1–8) was used for LASSO regression analysis 
and determining the K value through minimal lambda to 
avoid significant variances (Engebretsen and Bohlin 2019). 

Subsequently, risk genes were identified using multivariate 
Cox regression, and a prognostic risk model was developed. 
Gene expression and Cox regression coefficients were used 
to calculate the risk score. Patients were grouped into high-
risk and low-risk groups based on their median risk scores 
in training, validation, and total sets. To determine whether 
high-risk and low-risk groups had similar survival rates, we 
used Kaplan–Meier (K-M) analysis, to draw survival curves 
(Wu et al. 2021). The time-dependent receiver operating 
curves (ROC) were drawn using the R package “Survival 
ROC” (version 1.0.3.1) to evaluate the model’s predictive 
ability and stability over 1-year, 3-year, and 5-year periods 

Fig. 4  Results of univariate Cox regression, LASSO regression, and 
multivariate Cox regression analysis. A Forest plot of univariate Cox 
regression analysis. B LASSO regression for univariate results. C 
Forest plot of multivariate Cox regression analysis
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Fig. 5  Kaplan–Meier survival curves, time-dependent ROC curves, and sur-
vival status maps of the total data set, training set, and validation set. A–C 
Kaplan–Meier survival curves and risk curves of the total data set, training 

set, and validation set. D–F Time-dependent ROC curves of the total data set, 
training set, and validation set. G–L Survival status maps of the total data set, 
training set, and validation set. ROC, receiver operating characteristic
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(Liu et al. 2021a). The area under the curve (AUC) > 0.5 
and closer to 1 indicates a better prognosis. Additionally, 
clinical information (age, sex, and stage) was unitized in this 
prognostic risk model for clinical application.

Construction of homologous recombination repair 
score

The HRR score was developed to measure the features of 
HRR in BC. Genes with significant prognosis differences 
were found through the above methods. Unsupervised clus-
tering was used to group patients for an in-depth examina-
tion. Then, these DEGs’ primary components were extracted 
using principal component analysis (PCA), and the HRRG 
signatures were created. Signature scores were chosen from 
principal components 1 and 2 (Ringnér 2008). In order 
to calculate the HRR score of each patient, the following 
equation was used: HRR score = ∑PCA1i + ∑PCA2i (i is 
the expression of prognostic DEGs). With the “maxstat” 
package (version 0.7–25), we obtained the best cutoff value 
for separating High and Low HRR score groups (HSG and 
LSG) linked to prognosis (Ogłuszka et al. 2019).

Prediction of immunotherapy sensitivities

To compare HSG and LSG expression differences, we down-
loaded the immunophenoscore (IPS) data from the Cancer 
Immune Atlas (TCIA) database (http:// tcia. at/) (Guo et al. 
2022). Then, differences in anti-cytotoxic T-lymphocyte 
antigen 4 (CTLA-4) and anti-programmed cell death protein 
1 (PD-1) antibody responses were compared between differ-
ent HRR score groups to predict immunotherapy sensitivity.

Statistical analysis

Statistical analysis in this study was performed using R 
software (version 4.0.5). A comparison of numerical type 
variables between two or more groups was conducted using 
Wilcoxon and Kruskal–Wallis tests. Kaplan–Meier curves 
were used for drawing prognosis and survival curves, and the 
chi-square test was used for categorized variable compari-
sons between HSG and LSG groups. The correlation coeffi-
cient was calculated using Spearman’s test. A P-value < 0.05 
was considered a statistically significant difference.

Result

Genetic variations in homologous recombination 
repair genes in breast cancer

There were 65 HRRGs in this study. First, we estimated and 
displayed that HRRGs had frequent CNV changes in BC 

and that most HRRGs were concentrated on CNV amplifica-
tions, while some HRRGs had a higher frequency of CNV 
deletions (Fig. 1A). RECQL5, RAD51C, and RAD54B 
were the genes with the highest copy number amplifica-
tion frequency. RPA2, PPP4R2, and RAD51B were among 
the genes with the highest prevalence of deletions. HRRG 
mutations were found in 131 of 986 samples, suggesting a 
13.29% mutation frequency. Among 42 HRRGs carrying 
mutations, a 2% mutation frequency was found in BRCA2, 
followed by BRCA1 (Fig. 1B). The findings revealed that 
CNV was expected, and deletions or amplifications of differ-
ent HRRGs had distinct features. The location of the mutated 
genes on 23 pairs of chromosomes and the prevalence of 
CNVs on HRRGs are shown in Fig. 1C. HRRG expression 
levels differed between tumor and normal samples, as shown 
in Fig. 1D. Some HRRGs, such as HFM1 and PPP4R4, were 
higher expressed significantly in tumors, while some genes, 
such as EME2 and MUS81, were lower expressed in tumors, 
which reminded us that BC may be triggered and progressed 
by differences in HRRG expression.

Identification of homologous recombination repair 
phenotypes based on gene expression patterns

The interaction relationships and prognostic effects of HRRGs 
were further explored with multivariate COX and correla-
tion analyses. Thirty-seven HRRGs had effects on the prog-
nosis of BC patients, with some HRRGs having a significant 
positive correlation with prognoses, such as SLX4, RAD54L, 
RECQL4, and RECQ, and some HRRGs, including RAD51B, 
RAD50, and PD55B, were negatively correlated with progno-
sis (Fig. 2A). Additionally, the favorable prognostic HRRGs 
were negatively correlated with the unfavorable HRRGs. For 
example, there was a negative association between SLX4 and 
RAD51B, RAD50, and PD55B. The complex interplay between 
the HRRGs may play a crucial role in patient prognosis and ICI 
characteristics. Subsequently, we performed a cluster analysis 
based on differential expression patterns of HRRGs using the R 
package “ConsensusClusterPlus” (version 1.66.0). Three HRR-
related phenotypes were identified and labeled as HRR clusters 
A, B, and C (Fig. 2B). The clustering effect was good in three 
groups (A, B, and C) according to T-SNE analysis (Fig. 2C). 
A cluster with a worse prognosis than clusters B and C was 
revealed by the KM curves (P = 0.025) (Fig. 2D). Heatmaps 
showed HRRG expression patterns, and we can conclude that 
HRRGs were expressed differently in each cluster (Fig. 2E).

Immune cell infiltration features and biological 
characteristics in different homologous 
recombination repair phenotypes

Activated dendritic cells, CD56 bright natural killer (NK) 
cells, neutrophils, and immature B cells did not differ 

http://tcia.at/


Journal of Applied Genetics 

significantly, as ICI analysis showed. Most of the immune 
cells in the subtype A cluster had lower infiltration. It 

was flooded with immune-suppressive cells, including 
eosinophils, myeloid-derived suppressor cells (MDSCs), 
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macrophages, mast cells, and Tregs, which may be related 
to different prognoses (Fig. 2F). Thus, we speculated that 
HRR might cause immunosuppression and accelerate tumor 
progression by suppressing immunity.

The biological behaviors among three HRR-related sub-
types were explored through GSVA analysis (Fig. 2G–I). 
In cluster A, valine, leucine, and soleucine degradations; 
primary immunodeficiency; and other related signals were 
significantly involved. Signals, including DNA replication, 
mismatch repair, and homologous recombination, were 
mainly enriched in cluster C. On the contrary, cluster B was 
primarily enriched in complement, coagulation cascades, 
and ECM receptor interactions.

Screening of homologous recombination repair 
phenotype‑related differentially expressed genes 
and functional enrichment analysis

DEGs among these three subtypes have been determined, and 
the results were visualized using volcano plots (Fig. 3A–C). 
There were 2230 DEGs between subtypes A and B, 5991 
DEGs between subtypes B and C, and 5816 DEGs between 
subtypes A and C. Five hundred twenty-six common DEGs 
were identified by intersecting the DEGs of the three groups 
(Fig. 3D). We used these DEGs for functional enrichment 
analysis. The critical GO biological processes were organelle 
fission, chromosomal region, and tubulin binding (Fig. 3E). 
Analysis of KEGG showed that the genes were primarily 
involved in the cell cycle, oocyte meiosis, and progesterone-
mediated maturation of oocytes (Fig. 3F).

Construction and validation of the prognostic risk 
model

The prognostic model was constructed using 1194 samples 
with complete gene expression and survival data. Samples 
were split into training and validation sets randomly. Forty-
eight DEGs were related to prognostic survival in the uni-
variate Cox regression (P < 0.05) (Fig. 4A). Lasso regres-
sion was performed to prevent overfitting, and 28 genes 
related to prognosis were obtained (Fig. 4B). A risk model 
was constructed using 16 DEGs through multivariate COX 

analysis, and a risk score was calculated to assess the prog-
nosis (Fig. 4C). The 16 genes included were KRTAP3-3, 
ERICH3, GLRB, EGOT, SUSD3, IZUMO4, NHLRC4, 
LINC00472, SH3BGR, SMAGP, NR4A2, STEAP2, 
STMN1, FBXL16, MARCKSL1, and SEMA3B. Calcu-
lations of risk scores were performed as follows: Risk 
score = (0.108 × K RTA P3- 3 ) + (− 0. 06 × ERIC H3) + (0 
.117 ×  GLRB) +  (0.05  × EGOT) +  (− 0.22 9 × SUS D) + (0.1 
3 × IZUM O4) + (0. 126 × N H LRC 4)  +  (0.07 ×  LINC00472 
) + (0.215  × SH3BG R) + (− 0.143 × SMAGP) + (− 0.16 
× NR4A2) + (− 0.145 × STEAP2) + (− 0.693 × STMN1) 
+ (− 0.137 × FBXL16) + (− 0.169 × MARCKSL1) + (0.0
96 × SEMA3B). The median risk scores of BC patients in 
total, training, and validation sets were used to categorize 
them into high- and low-risk groups. There was a worse 
survival rate among all three sets of patients who had 
high-risk scores (P < 0.001) (Fig. 5A–C). In the total set, 
AUC at 1 year was 0.616; at 3 years, 0.673; and at 5 years, 
0.706 (Fig. 5D). The AUC for the training set was 0.560 
after 1 year, 0.576 after 3 years, and 0.612 after 5 years 
(Fig. 5E). Additionally, the AUC was 0.587 after 1 year, 
0.624 after 3 years, and 0.660 after 5 years in the valida-
tion set (Fig. 5F). This model predicted BC prognosis well, 
with good sensitivity and specificity. The visualized risk 
scores showed increased mortality and decreased survival 
time, along with the increase in risk scores in the total set, 
training set, and validation set, respectively (Fig. 5G–L).

Identification of prognostic‑related subtypes 
based on secondary clustering using differentially 
expressed genes

To determine the biological characteristics of HRR sub-
types, we conducted an unsupervised cluster analysis of 
526 overlapping DEGs. We identified three DEG clusters 
(gene clusters A–C) associated with the HRR phenotype 
(Fig. 6A). There were significant differences in the expres-
sions of HRRG gene clusters (Fig. 6B). The heatmap illus-
trated HRRG expression patterns and showed differential 
expression of HRRGs in three gene clusters (Fig. 6C). There 
was a lower risk score of cluster A than that of clusters B and 
C (Fig. 6D). The Sankey diagram visualized each patient’s 
HRR clusters, gene clusters, risk group, and survival status 
(Fig. 6E). High-risk patients were most likely to have poor 
prognoses in gene cluster A. In gene cluster B, the majority 
of patients having poor prognoses were at high risk.

Correlation between homologous recombination 
repair score and tumor mutation burden

A series of somatic mutation analyses were made on some 
genome stability pathways involved in the GSVA analysis. 
The impact of TMB on prognosis was explored. As shown 

Fig. 7  The impact of TMB on prognosis and its association with 
HRR score. A Kaplan–Meier curves of the overall survival differ-
ence between high- and low-TMB groups (P = 0.011). The statistical 
differences were compared by the Wilcoxon test. B The TMB lev-
els between the HSG and LSG groups. C Correlation between HRR 
score and TMB (Spearman coefficient). D Kaplan–Meier curves for 
the differences in overall survival stratified by TMB and HRR score 
(P < 0.001). E, F Waterfall plots for top 20 driver genes with the 
highest mutation frequency in HSG (E) and LSG (F). TMB, tumor 
mutation burden; HRR, homologous recombination repair; HSG, 
high HRR score group; LSG, low HRR score group
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in Fig. 7A, the higher TMB group had a worse prognosis. As 
shown in Fig. 7B, compared to LSG, HSG had a lower TMB 
level (P < 0.001). TMB and HRR scores correlated nega-
tively (Spearman coefficient: r = 0.49, P < 0.001, Fig. 7C). 
We performed a stratified prognostic analysis based on the 
synergism of the TMB and HRR scores. High HRR and 
low TMB scores were associated with a significant survival 
advantage for patients (Fig. 7D), which revealed that the 
HRR score could indicate prognosis effectively. After this, 
we analyzed the differences between HSG and LSG in terms 
of the distribution of somatic mutations. The frequency of 
mutations of the top 20 genes with the most mutations was 
generally lower in HSG than in LSG (Fig. 7E, F).

Correlation between HRR score and immune cell 
infiltration

Based on DEG expression patterns, we developed an algo-
rithm using PCA and defined the result as an HRR score. 
We determined the optimal cutoff value using the “maxstat” 
package. Due to the differences in ICI characteristics among 
HRR subtypes, we also examined the association between 
HRR score and ICI (Fig. 8A). A positive correlation was 
demonstrated between HRR scores and most infiltrating 
immune cells, following the results of HRR subtypes.

Correlation between HRR score and immunotherapy 
response

A comparison of the IPS difference between HSG and LSG 
in four types (CTLA4_negative + PD-1_negative, CTLA4_
positive + PD-1_negative, CTLA4_negative + PD-1_posi-
tive, CTLA4_positive + PD-1_positive) was conducted in 
order to determine if HRR score would predict the clinical 
immunotherapy effects of BC, visualized by an immunophe-
notype map (Fig. 8 B–E). The result indicated that for PD-1_
NEG + CTLA4_neg types, no significant difference existed 
between the IPS of the HSG and the LSG (Fig. 8B). How-
ever, for PD-1_NEg + CTLA4_pos, CTLA4_pos + PD-1_
POS, and PD-1_POS + CTLA4_neg types, IPS increased in 
the LSG (Fig. 8C–E). Results showed that patients in the 
LSG responded better to anti-PD-1 therapy or anti-PD-1 and 
anti-CTLA4 therapy.

Discussion

In this study, we identified three HRR clusters based on 
HRRGs. The three HRR clusters showed different ICI char-
acteristics and HRRG expression patterns. DEGs identi-
fied in HRR clusters were primarily involved in pathways 
related to cell cycle and genome stability. The prognostic 
model based on 16 DEGs accurately predicted BC progno-
sis. We also identified three gene clusters based on DEGs, 
which could identify prognostic subtypes more stably. High 
ICI, low TMB, and worse immunotherapy response were 
observed in HSG. The results may help predict prognosis 
and potential therapeutic benefits.

We mapped three clusters of HRR-related DEGs and built 
a prognostic nomogram for BC. The ROC curves showed 
that this model was good at predicting BC prognosis. The 
nomogram contained 16 DEGs. The majority of these genes 
play a role in the development of BC and other types of can-
cers. Researchers have found that ERICH1-AS1 expression 
can predict non-small cell lung cancer prognosis (Tang et al. 
2015). BC cells can be triggered to proliferate and migrate 
by SUSD3 (Moy et al. 2015). EGOT has also been used to 
construct a risk prediction model related to BC (Lv et al. 
2021). By inactivating the Hedgehog signaling pathway 
in BC, overexpression of EGOT reduces the viability and 
migration of the cells (Qiu et al. 2020). Cells can become 
more sensitive to paclitaxel toxicity by increasing the lev-
els of EGOT, and regulating EGOT may be a new way to 
boost paclitaxel toxicity (Xu et al. 2019). Up-regulation of 
LINC00472 inhibited the viability, invasion, migration, and 
EMT of lung cancer cells but increased the apoptosis rate of 
lung cancer cells (Mao et al. 2019). Cell growth in vitro and 
xenograft tumor growth in vivo in BC tumors were inhib-
ited where SH3BGRL2 was downregulated (Li et al. 2020). 
SMAGP knock-down can inactivate the PI3K/Akt pathway, 
thereby inhibiting the malignant phenotypes of glioblastoma 
cells (Ni et al. 2020). Overall survival and recurrence-free 
survival were positively associated with NR4A1-NR4A3 
expression. Additionally, NR4A family genes regulate oxi-
dative phosphorylation in BC (Yousefi et al. 2022). Down-
regulation of STEAP2 expression is associated with a poor 
prognosis for BC. STEAP2 acts as an anti-oncogene during 
BC development. Through PI3K/AKT/mTOR signaling, 
STEAP2 downregulation can promote tumor cell prolifera-
tion and metastasis (Yang et al. 2020). MiR-770 inhibits BC 
metastasis by targeting STMN1 directly (Li et al. 2018). The 
high level of STMN1 protein in BC tissues was related to 
poor prognosis (Tang et al. 2020). Angiogenesis and epi-
thelial-mesenchymal transition in BC can be blocked by 
FBXL16. BC with FBXL16 downregulation has a higher 
node and high-grade tumors and poor survival (Kim et al. 
2021). In lung adenocarcinoma cells, MARCKSL1 promotes 

Fig. 8  The association between HRR score and ICI and differ-
ences of IPS between HSG and LSG. A Spearman analysis of the 
correlation between HRR score and ICI abundance in the TCGA 
cohort. B In PD-1_NEG + CTLA4_neg, there was no signifi-
cant difference between the IPS of the HSG and the LSG. C–E In 
PD-1_NEg + CTLA4_pos, CTLA4_pos + PD-1_POS, and PD-1_
POS + CTLA4_neg, IPS increased in the LSG. HRR, homologous 
recombination repair; ICI, immune cell infiltration; IPS, immunophe-
noscores; HSG, high HRR score group; LSG, low HRR score group
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proliferation, migration, and invasion (Liang et al. 2020). 
SEMA3B-AS1 could target the miR-3940/KLLN axis to 
inhibit BC progression (Hu et al. 2022). This proved that 
the 16 DEGs in nomograms were mostly able to play a role 
in the development and prognosis of BC and other types of 
cancers.

In HRR cluster A, most immune cells had lower infiltra-
tion, including immunosuppressive cells, such as eosino-
phils, MDSCs, macrophages, mast cells, and Tregs. It has 
been shown in previous studies that patients with a low 
eosinophil count have a higher recurrence rate and a worse 
prognosis (Ownby et al. 1983; Onesti et al. 2020). Innate 
and adaptive immunity are inhibited by MDSCs, which are 
heterogeneous groups of immature myeloid cells. MDSC 
expansion triggers the pre-cancerous immune microenviron-
ment, thus accelerating BC progression (Liu et al. 2021b). 
The mononuclear phagocytic system includes macrophages. 
They are usually broadly classified into M1 and M2. M1 
macrophages might help metastatic BC cell dormancy, while 
M2 macrophages might promote tumor outgrowth (Lin et al. 
2019). The increased mast cell density and distribution are a 
worse prognostic factor for BC (Carpenco et al. 2019). Treg 
cells are known to play a crucial role in peripheral toler-
ance and can suppress effector T cells to prevent unwanted 
immune responses. Treg cells have an invasive appearance 
and are associated with a reduced chance of relapse-free sur-
vival and overall survival in BC biopsies (Mittal et al. 2018; 
Togashi et al. 2019). A decrease in Tregs and naive CD4 + T 
cells in TME might suppress BC metastasis (Li et al. 2021). 
These results suggested that HRR subtypes were associated 
with ICI in TME. So, we analyzed how the HRR score cor-
related with ICI and found a positive correlation between 
HRR scores and most infiltrating immune cells.

A positive link between HRR score and immune cells 
infiltrating indicated the possible association between HRR 
and immunity. The HRRGs had frequent CNV amplifica-
tions and deletions, especially in LSG. HRR-related DEGs 
tended to be enriched in cell cycle and genome stability. 
HRR is the most accurate and high-fidelity way to repair 
DNA damage. Inherited mutations in HRRGs can increase 
the risk of BC development (Mersch et al. 2015). TMB ele-
vation is caused by mutations in the DNA damage response 
genes, predicting a poor prognosis (Klempner et al. 2020). 
We found that TMB was negatively related to survival and 
HRR scores. Combining TMB and HRR scores can further 
improve prognosis prediction. It has been reported that 
immunotherapy might benefit patients with poor progno-
ses because their TMB is higher and their genes are more 
mutated (Barroso-Sousa et al. 2020; Liu et al. 2020). In 
line with previous research, anti-PD-1 therapy or anti-PD-1 
and anti-CTLA4 therapy worked better for patients in the 
LSG. Significant breakthroughs have been made in some 
advanced therapies, including PARP-targeted therapy. There 

are several PARPi approved to treat BC, including taraparib 
and olaparib (Lyons 2019; Shen et al. 2020b). PARPi can 
further hinder DNA repair in tumor cells in patients with 
HRR deficiency, accelerating their death and achieving pre-
cise targeting (Chopra et al. 2020).

In this study, we identified three HRR subtypes and 
comprehensively explored the association between HRR 
and ICI. Our gene signature model predicts BC prognosis 
with high accuracy based on HRR-related DEGs, which may 
help develop new treatment options. The HRR score could 
predict TMB and immunotherapy responses, which may pro-
vide references for clinical treatment.
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