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Abstract
Knowledge of the magnitude of gene effects and their interactions, their nature, and contribution to determining quantitative 
traits is very important in conducting an effective breeding program. In traditional breeding, information on the parameter 
related to additive gene effect and additive-additive interaction (epistasis) and higher-order additive interactions would be 
useful. Although commonly overlooked in studies, higher-order interactions have a significant impact on phenotypic traits. 
Failure to account for the effect of triplet interactions in quantitative genetics can significantly underestimate additive QTL 
effects. Understanding the genetic architecture of quantitative traits is a major challenge in the post-genomic era, especially for 
quantitative trait locus (QTL) effects, QTL–QTL interactions, and QTL–QTL–QTL interactions. This paper proposes using 
weighted multiple linear regression to estimate the effects of triple interaction (additive–additive–additive) quantitative trait 
loci (QTL–QTL–QTL). The material for the study consisted of 126 doubled haploid lines of winter wheat (Mandub × Begra 
cross). The lines were analyzed for 18 traits, including percentage of necrosis leaf area, percentage of leaf area covered by 
pycnidia, heading data, and height. The number of genes (the number of effective factors) was lower than the number of QTLs 
for nine traits, higher for four traits and equal for five traits. The number of triples for unweighted regression ranged from 0 
to 9, while for weighted regression, it ranged from 0 to 13. The total aaagu effect ranged from − 14.74 to 15.61, while aaagw 
ranged from − 23.39 to 21.65. The number of detected threes using weighted regression was higher for two traits and lower for 
four traits. Forty-nine statistically significant threes of the additive-by-additive-by-additive interaction effects were observed. 
The QTL most frequently occurring in threes was 4407404 (9 times). The use of weighted regression improved (in absolute 
value) the assessment of QTL–QTL–QTL interaction effects compared to the assessment based on unweighted regression. 
The coefficients of determination for the weighted regression model were higher, ranging from 0.8 to 15.5%, than for the 
unweighted regression. Based on the results, it can be concluded that the QTL–QTL–QTL triple interaction had a significant 
effect on the expression of quantitative traits. The use of weighted multiple linear regression proved to be a useful statistical 
tool for estimating additive-additive-additive (aaa) interaction effects. The weighted regression also provided results closer 
to phenotypic evaluations than estimator values obtained using unweighted regression, which is closer to the true values.

Keywords Three-way epistasis · Weighted regression · Doubled haploid lines · Resistance · Triticum aestivum

Introduction

Wheat (Triticum aestivum L.) is a crucial staple crop with sig-
nificant economic importance. It contributes substantially to 
the daily calorie intake of Europeans and people worldwide 
(Erenstein et al. 2022). Wheat production worldwide has 
seen significant growth over the years, driven by improved 
technology, adoption of high-yielding and disease-resistant 
varieties, better management practices, and supportive poli-
cies and institutions (Tadesse et al. 2019). One of the major 
factors limiting the achievement of consistent and stable 
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growth in wheat yield increase is disease, including Septoria 
tritici blotch (STB) caused by the fungus Zymoseptoria tritici 
(teleomorph Mycosphaerella graminicola) (Figueroa et al. 
2018; Tabib Ghaffary et al. 2018). The disease occurs in most 
wheat-growing areas around the world and is characterized 
by high diversity and complex population structure in local 
Z. tritici populations. This is primarily due to high gene flow 
within and between populations and frequent sexual repro-
duction (Figueroa et al. 2018; Orton et al. 2011).

Resistance to Z. tritici in wheat can exhibit both qualita-
tive and quantitative nature, as described by Brown et al. 
(2015). Qualitative resistance is usually isolate-specific and 
nearly complete. It is regulated by major genes that follow 
the gene–for–gene concept, as shown in studies such as 
Brading et al. (2002), and includes at least 22 major genes 
associated with Z. tritici resistance in wheat (Tabib Ghaf-
fary et al. 2018; Brown et al. 2015; Yang et al. 2018). On 
the other hand, resistance to STB can also be quantitative, 
usually lacking isolate specificity and involving polygenic 
inheritance. In addition to the major resistance loci, nearly 
100 regions of the genome carrying quantitative trait loci 
(QTLs) and meta–QTLs with small effects have been iden-
tified (Brown et al. 2015; Piaskowska et al. 2021; Lang-
lands-Perry et al. 2022). Significant loci associated with 
STB resistance have also been identified by genome-wide 
association studies (GWAS) (Kollers et al. 2013; Miedaner 
et al. 2013; Gurung et al. 2014; Odilbekov et al. 2019; 
Louriki et al. 2021; Yang et al. 2022). This method uses 
a diverse panel of genotypes consisting of varieties with a 
broad spectrum of resistance responses and diverse genetic 
backgrounds, thus bypassing the time-consuming process of 
crossing and crossing and breeding mapping progeny.

The idea of genetic interactions has been known for more 
than a century, since the work of Bateson and Mendel (1902). 
Since multiple genetic loci often influence complex traits, 
several statistical methods have been developed to identify 
epistatic effects (Yi et al. 2007). Most studies focus on ana-
lyzing the association between individual genes and pheno-
typic traits (Bocianowski and Krajewski 2009; Tura et al. 
2020; Khan et al. 2021; Ma et al. 2022; Devi et al. 2019; 
Yang et al. 2021). Although pairwise interactions are widely 
used, higher-order interactions are often overlooked. The 
requirement for complete and precise data, which has been a 
challenge to obtain until recently, has been a limiting factor 
for progress in this type of study. However, the knowledge 
about higher-order interactions may be missing in under-
standing the mechanics of heritability and the relationship 
between genotype and phenotype. While there is still much 
to learn, recognizing and studying these complex interactions 
can provide a complete understanding of genetic inheritance 
(Cyplik et al. 2023; Cyplik and Bocianowski 2023).

Genetic interactions refer to the way genes and their prod-
ucts determine a phenotype. These interactions can range 

from simple additive effects to more complex epistatic or 
pleiotropic products. Epistasis occurs when the expres-
sion of one gene depends on the presence or absence of 
another gene, while pleiotropy refers to a single gene affect-
ing multiple traits (Li et al. 2011; Krajewski et al. 2012; 
Ku et al. 2012; Beheshtizadeh et al. 2018; Dhariwal et al. 
2018; Smeda et al. 2018; Ali et al. 2022; Pundir et al. 2022; 
Yusuf et al. 2022). Therefore, understanding genetic interac-
tions is crucial for advancing our knowledge of genetics and 
developing effective selection methods (Wang et al. 2012; 
Ali et al. 2020; Cullis et al. 2020; Labroo et al. 2021; Raffo 
et al. 2022).

QTL by QTL by QTL interactions refer to a complex 
interaction between multiple genetic loci that affect a quan-
titative trait (Mackay 2014). In these interactions, the effect 
of one QTL on a trait depends on the presence or absence 
of other QTLs, resulting in a complex genetic network that 
determines the phenotype (Jarvis and Cheverud 2011; Li 
et al. 2016; 2019). QTL by QTL by QTL interactions are 
crucial for understanding complex relationships in which 
multiple genetic and environmental factors determine phe-
notype (Cyplik et al. 2023). Analysis of these interactions 
requires advanced statistical and computational methods that 
can handle the complexity of the genetic network involved 
(Yi et al. 2007). Traditional methods of measuring genetic 
interactions, such as pairwise analysis, are insufficient to 
capture the complexity of these interactions (Hartman et al. 
2001; Brem and Kruglyak 2005). Newer techniques, such as 
machine learning and network analysis, are being developed 
to address this problem.

In addition, experimental design is critical for measuring 
QTL by QTL by QTL interactions, and careful consideration 
of sample size, statistical power, and environmental factors 
are required to ensure the accuracy of the results. Despite the 
challenges involved, understanding QTL by QTL by QTL 
interactions is critical to improving our understanding of the 
genetic basis of complex traits. Genetic interactions play a 
critical role in agriculture, where they are used to improve 
crop yields, enhance resistance to pests and disease, and 
increase crop nutrient content (Farokhzadeh et al. 2019; 
Barmukh et al. 2021; Arif et al. 2022; Bokore et al. 2022).

Understanding the complex interactions between genes 
that control these traits is essential for developing new crop 
varieties as part of plant breeding programs. For example, 
epistatic interactions between multiple genes can contribute 
to the expression of desirable traits, such as drought tol-
erance or increased yield. Identifying and exploiting these 
interactions can significantly improve crop productivity 
(Singhal et al. 2022).

In addition, genetic interactions can be used to develop 
crops with improved nutrient content, such as increased lev-
els of vitamins and minerals. Advances in molecular genet-
ics and genomics have provided new tools and approaches 
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for analyzing genetic interactions, enabling more precise and 
efficient plant breeding. As such, genetic interactions are a 
critical component of modern agriculture and will continue 
to play an important role in addressing global food security 
challenges in the future (Bonas and Van der Ackerveken 
1999; Graham et al. 2001; Taylor and Ehrenreich 2015).

The reason for the difficulty in measuring triple gene 
interactions is simple. Using phenotypic data, it is only pos-
sible to estimate the overall effect of all hypothetical triple 
gene interactions contributing to a particular trait. However, 
using marker data, which can be more precisely mapped in 
the genome, makes it possible to estimate individual effects 
of gene-by-gene-by-gene interactions, while limiting the 
number of QTL-by-QTL-by-QTL interactions for practi-
cal reasons. The sum of these individual effects is usually 
smaller than the phenotypic estimate, which can be further 
complicated by the lack of markers in the regions where the 
genes are located (Cyplik and Bocianowski 2023).

In addition to the previously discussed factors, other 
potential reasons for differences in estimated values should 
be considered. The previously mentioned values refer to 
QTL-by-QTL-by-QTL interaction effects, which were cal-
culated using a basic method: multiple linear regression on 
marker data. However, this paragraph suggests that modi-
fying the regression by incorporating empirical weights 
improves the agreement between phenotype- and genotype-
based estimates (Cyplik et al. 2023). The study described in 
the paper indicates that these modifications can help account 
for additional sources of variation in the data.

The purpose of this study was to use weighted multiple 
linear regression to estimate the additive by additive by addi-
tive (aaa) interaction effects. To compare the estimates of 
aaa obtained by unweighted and weighted methods, phyto-
pathological tests were used, resulting in 18 data sets that 
included the percentage of leaf area covered by necrosis and 
pycnidia, as well as the heading dates and height data from 
the polytunnel tests were used.

Materials and methods

Plant material

The data used in this study was produced and published previ-
ously by Piaskowska et al. (2021). The purpose of this study was 
to map STB resistance in the winter wheat cultivar Mandub. 
A set of 126 doubled-haploid (DH) lines derived from a cross 
between Mandub (the German cultivar revealed a high resist-
ance level at the seedling and adult plant stages) and the suscep-
tible cultivar Begra was used as the mapping population. Tests 
were conducted at the seedling (second leaves fully emerged) 
and adult (flag leaves fully emerged) plant growth stages. Plants 
were inoculated by spraying with an aqueous suspension of 

pycnidiospore of one of three selected Z. tritici isolates. Evalua-
tion of disease development took place when the necrotic area of 
the second/flag leaves in the susceptible control variety (Begra) 
reached approximately 80%. To determine the percentage of 
leaf area covered by necrosis, leaves were mounted on a self-
adhesive foil and photographed. Next, on the same leaves, the 
area bearing pycnidia was marked with a red and photographed 
again. To accurately measure disease parameters, images were 
analyzed using WinCam software (Regent Instruments, Inc. 
2004). A total of six tests were conducted, one for each of the 
selected Z. tritici isolates at both growth stages, resulting in 18 
sets of phenotypic data that included necrotic area, pycnidia 
bearing area, and heading date and plant height for adult plant 
experiments (Table 1). Genotypic data were obtained using the 
DArTseq platform (Diversity Arrays Technology, Pty. Ltd., Aus-
tralia). The linkage map provided by DArT P/L consisted of 
5899 molecular markers. Markers were assigned to 25 linkage 
groups, resulting in a map with a total length of 2666 cM. Miss-
ing marker values were estimated based on missing flanking 
marker data (Martinez and Curnow 1994).

Statistical analysis

Assuming that n homozygous (doubled haploid, DH; recom-
binant inbred, RI) plant lines were observed in the experiment, 
the following was obtained: n-vector of phenotypic mean 
observations y =

[

y
1
y
2

⋯ yn
]

� and q n-vectors of marker 
genotype observations ml, l = 1, 2, …, q. The ith element (i = 1, 
2, …, n) of ml-vector is equal to − 1 or 1, depending on the 
parent's genotype exhibited by the ith line.

Estimation based on the phenotype

The total additive × additive × additive interaction of homozy-
gous loci (three-way epistasis) effect based on phenotypic 
( aaap ) observations y can be estimated by the formula (Cyplik 
and Bocianowski 2023):

where Lmin and Lmax are the lines with minimal and maximal 
mean value, respectively; L is the mean of all inbred lines. 
The test statistic to verify the hypothesis about aaaP different 
than zero is given by (Cyplik et al. 2022):

where MSaaap and MSe are mean squares for epistasis aaap 
and residual, respectively. The number of genes (number of 
effective factors) obtained based on phenotypic observations 
only was calculated using a formula presented by Kacz-
marek et al. (1988).

(1)âaap =
1

2

(

Lmax + Lmin
)

− L

(2)Faaap
=

MSaaap

MSe
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Estimation based on the genotype

The aaa was estimated under the presumption that the 
observed molecular markers accurately identified the genes 
accountable for the characteristic. The variability of the char-
acteristic and model observations for the lines can be estab-
lished by selecting from all observed markers p as:

where 1, the n-vector of ones; � , overall mean; X, (n × p)-
matrix of the form X =

[

ml
1
ml

2

⋯ mlp

]

 , l1, l2, …, lp ∈ {1, 

(3)y = 1� + X� + Z� +W� + e

2, …, q}; � , the p-vector of unknown parameters of the form 
�′ =

[

al
1
al

2

⋯ alp

]

 ; Z, matrix whose columns are prod-
ucts of some columns of matrix X; � , the vector of unknown 
parameters of the form �′ =

[

aal
1
l
2
aal

1
l
3

⋯ aalp−1lp

]

 ; W, 
matrix whose columns are three-way products of some col-
umns of matrix X; � , the vector of unknown parameters of the 
form �′ =

[

aaal
1
l
2
l
3
aaal

1
l
2
l
4

⋯ aaalp−2lp−1lp

]

 ; e, the n-vec-
tor of random variables such that E(ei) = 0, Cov(ei, ej) = 0 for 
i ≠ j, i, j = 1, 2, …, n. Parameters al

1
 , al

2
 , …, and alp are additive 

effects of genes controlling the trait, parameters aal
1
l
2
 , aal

1
l
3
 , 

Table 1  List of traits of resistance to Septoria tritici blotch analyzed 
for Mandub × Bagra doubled haploid lines of winter wheat as well as 
minimal and maximal values of average for lines, means for all lines, 

phenotypic estimates of the total additive-by-additive-by-additive 
effect (aaap) and the number of genes (the number of effective fac-
tors)

* p < 0.05; ** p < 0.01; *** p < 0.001

Trait number Trait Isolate Experimental 
condition

Min. effect Max. effect Lines mean aaap The number of genes 
(the number of effec-
tive factors)

1 Percentage of 
necrosis leaf area

IPO86036 Polytunnel 6.67 96.82 51.26 0.48 4

2 Percentage of leaf 
area covered by 
pycnidia

0.26 58.57 27.36 2.06* 3

3 Percentage of 
necrosis leaf area

Plant growth 
chamber

2.65 98.26 45.48 4.97** 2

4 Percentage of leaf 
area covered by 
pycnidia

0.11 63.47 18.54 13.25*** 3

5 Percentage of 
necrosis leaf area

IPO92006 Polytunnel 1.71 94.58 51.57 –3.42* 3

6 Percentage of leaf 
area covered by 
pycnidia

0 47.31 13.28 10.37*** 3

7 Percentage of 
necrosis leaf area

Plant growth 
chamber

7.33 72.55 35.76 4.18** 3

8 Percentage of leaf 
area covered by 
pycnidia

0.39 36.46 13.20 5.23*** 4

9 Percentage of 
necrosis leaf area

IPO88004 Polytunnel 7.12 99.8 80.30 –26.84*** 3

10 Percentage of leaf 
area covered by 
pycnidia

0.01 59.65 13.87 15.96*** 3

11 Percentage of 
necrosis leaf area

Plant growth 
chamber

5.73 99.09 59.98 –7.57** 2

12 Percentage of leaf 
area covered by 
pycnidia

1.13 88.57 39.78 5.07** 2

13 Heading data IPO86036 Polytunnel 52.5 95 73.27 0.48 5
14 IPO92006 52.5 100 79.15 –2.90 5
15 IPO88004 50 105 82.84 –5.34* 4
16 Height IPO86036 Polytunnel 150 159 153.07 1.43 5
17 IPO92006 150 159 153.01 1.49 4
18 IPO88004 146 160.5 152.35 0.90 5
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…, and aalp−1lp are additive × additive interaction effects, and 
parameters aaal

1
l
2
l
3
 , aaal

1
l
2
l
4
 , …, and aaalp−2lp−1lp are addi-

tive × additive × additive interaction effects. Epistatic and 
three-way interaction effects were assumed to be shown only 
by loci with significant additive effects of genes. This assump-
tion significantly reduces the number of potentially significant 
effects and increases the usefulness of the regression model.

Unweighted regression

Denoting by �′ =
[

� �′ �′ �′
]

 and G =
[

1 X Z W
]

 , 
we obtain the model:

If G is of full rank, the estimate of �u from traditional 
(unweighted) multiple linear regression model is given by 
(Searle 1982):

The total three-way epistasis aaagu effect of genes 
influencing the trait from traditional (unweighted) multi-
ple linear regression model can be found as (Cyplik and 
Bocianowski 2022):

To select markers for model (3), we used the stepwise 
feature selection method using Akaike information cri-
teria (AIC) (Akaike 1998). This process involved two 
steps: we initially divided the markers into groups based 
on the linkage groups they belonged to and applied step-
wise feature selection based on AIC. We then combined 
the remaining markers into one group and repeated 
the same selection process. The final set of markers 
remained after combining all the remaining markers into 
the last group and performing the final feature selec-
tion on the model with an additive × additive × additive 
interaction effect. In the first and second steps, we used 
a critical significance level of 0.001 resulting from a 
Bonferroni correction (Province 2001).

Weighted regression

A modified version of the trait regression on marker data 
in this paper is considered by adopting a weighted multiple 
linear regression, that is, a regression with a diagonal matrix 
W of unknown observation variances, which, however, can 
be empirically found by estimation. In this model the esti-
mate of �w is:

(4)y = G� + e

(5)�̂u =
(

G�G
)−1

G�y

(6)
âaagu =

∑p−2

k=1

∑p−1

k� = 2

k� ≠ k

∑p

k�� = 3

k�� ≠ k�

âaalklk� lk��

where W =
(

wii

)

 with wii being the estimated variance for ith 
line, i = 1, 2, …, n. The selection of markers for the weighted 
regression is made by the same method as described for the 
unweighted case.

The total three-way epistasis aaagw effect of genes influ-
encing the trait from the weighted multiple linear regression 
model can be found as

The coefficients of determination were used to measure 
how both models (unweighted and weighted) fitted the data 
and, in this study, were the amount of the phenotypic vari-
ance explained by total threes of interactive models.

Results

The results of the total additive × additive × additive inter-
action effect estimates obtained are shown in Tables 1, 2, 
3, and 4. Tables 1 and 2 contain phenotypic and genotypic 
analysis for 126 doubled haploid lines of winter wheat (cross 
Mandub × Begra), respectively. Tables 3 and 4 include geno-
typic estimates of additive × additive × additive interaction 
effects for individual QTL × QTL × QTL threes for the same 
data as above, based on unweighted (aaagu) and weighted 
(aaagw) multiple linear regression and the percentage of vari-
ance accounted for, respectively.

Figure 1 shows the number of genes (effective factors) 
estimated based on only phenotypic observations and the 
number of QTLs for each trait.

Estimation based on the phenotype

Phenotypic estimates of the total additive-by-additive-by-
additive effect (aaap) are shown in Table 1. In 13 of 18 cases, 
the observed aaap effect was positive. The effect was nega-
tive for traits numbered: 5, 9, 11, 14, and 15. The highest 
positive aaap effect was observed for trait 10 (15.96); the 
lowest was for trait 9 (− 26.84). This observation came from 
the same group of isolates (IPO88004, traits 9–12) (Table 1). 
Twelve of the 18 (66.67% of all cases) aaap effects were sta-
tistically significant. Eight significant effects were positive, 
and four were negative (Table 1).

The number of genes (effective factors) varied among 
traits and groups. The highest was observed for traits 13, 
14, 16, and 18 (5 genes); the lowest for traits 3, 11, and 12 
(2 genes) (Table 1).

(7)�̂w =
(

G�W−1G
)−1

G�W−1y

(8)
âaagw =

∑p−2

k=1

∑p−1

k� = 2

k� ≠ k

∑p

k�� = 3

k�� ≠ k�

âaalklk� lk��
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The minimal and maximal line averages were higher for 
the percentage of necrosis leaf area than for the percentage 
of leaf area covered by pycnidia. The same is true for the 
total line average for the mentioned traits. For traits 13–15 
(heading data) and 16–18 (height), the differences in means 
were marginal (Table 1).

Estimation based on the genotype

The number of genes (the number of effective factors) esti-
mated based on only phenotypic observations and the num-
ber of QTLs for each trait are shown in Fig. 1.

The highest number of QTLs can be observed for trait 13 
(10, heading data), and the lowest for trait 9 (1, percentage 
of necrosis leaf area) (Fig. 1).

The number of genes was lower than the number of QTLs 
in nine cases (traits: 2, 3, 4, 6, 7, 11, 13, 14, and 15), higher 
in four cases (traits: 5, 8, 9, and 18), and equal in five cases 
(traits: 1, 10, 12, 16, and 17) (Fig. 1).

Unweighted regression

Genotypic estimates of the total additive-by-additive-by-
additive effect estimated based on unweighted (aaagu) and 
weighted (aaagw) multiple linear regression are shown in 
Tables 2 and 3.

The number of significant aaagu ranged from 0 (traits: 
1–2, 5–6, 9–10, 12, 15, 16–18) to 9 (trait: 4). The total 

aaagu effect ranged from − 14.74 (trait 4) to 15.61 (trait 3) 
(Table 2).

Compared to phenotypic estimates, the total aaagu effects 
are very different. A positive effect was observed for traits 3 
and 8 for both phenotypic and genotypic unweighted obser-
vations, while a negative effect was not aligned in any trait. 
However, the absolute value is higher for the total aaagu 
effect for traits 3, 4, and 7 (Tables 1 and 2).

Weighted regression

The number of significant aaagw ranged from 0 (traits: 1–2, 
5–10, 12, 16–18) to 10 (trait: 13). The cases with 0 sig-
nificant threes are similar to the results of the unweighted 
regression, except for traits 7 and 8 (significant only for 
unweighted) and 15 (significant only for weighted). The 
total aaagw effect ranged from − 23.39 (trait: 4) to 21.65 
(trait: 3) (Table 2). The absolute values of the total effect 
were also larger for the weighted regression than for the 
unweighted variant for all cases where comparison was pos-
sible (Table 2). The number of detected threes by weighted 
regression was higher in two cases (traits: 13 and 15), lower 
in four cases (traits: 4, 7, 8, and 14), and the same for the 
rest (Table 2).

Genotypic estimates of additive-by-additive-by-addi-
tive interaction effects for individual QTL × QTL × QTL 
threes based on unweighted (aaagu) and weighted (aaagw) 
multiple linear regression are shown in Table 3. Forty-
nine statistically significant threes were observed. The 

Table 2  Genotypic estimates of 
the total additive-by-additive-
by-additive effects estimated on 
the basis of unweighted (aaagu) 
and weighted (aaagw) multiple 
linear regression

Trait number QTLs number Unweighted Weighted

Number 
of aaagu

aaagu effects Number 
of aaagw

aaagw effects

Min Max Total Min Max Total

1 4 0 0
2 4 0 0
3 3 1 15.61 15.61 15.61 1 21.65 21.65 21.65
4 5 9  − 9.15 9.9  − 14.74 8  − 12.72 10.47  − 23.39
5 2 0 0
6 4 0 0
7 5 4  − 7.93 6.59  − 13.03 0
8 3 1 2.686 2.686 2.686 0
9 1 0 0
10 3 0 0
11 4 1 6.8 6.8 6.8 1 11.33 11.33 11.33
12 2 0 0
13 10 6  − 3.351 3.08  − 0.292 10  − 4.243 4.7 17.441
14 7 2  − 3.113 3.411 0.298 1  − 3.78  − 3.78  − 3.78
15 7 0 4  − 4.73 4.3  − 0.55
16 5 0 0
17 4 0 0
18 2 0 0
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QTLs most frequently found in threes were as follows: 
4,407,404 (9 times), 1,678,083|F|0–32:T > C-32:T > C 
(7 times), 1,021,903|F|0–14:G > A-14:G > A (7 times), 
3,028,296 (7 times), 992,306|F|0–7:A > G-7:A > G (7 times), 
3,021,909 (7 times), 1,110,543|F|0–16:C > T-16:C > T 
(6 times), 2,257,522|F|0–45:C > T-45:C > T (6 times), 
and 1,226,085 (6 times) (Table  3). Using unweighted 
regression, the genes most frequently found in threes 
were as follows: 1,678,083|F|0–32:T > C-32:T > C (7 
times), 2,257,522|F|0–45:C > T-45:C > T (6 times), 
and 1,110,543|F|0–16:C > T-16:C > T (5 times) 
(Table  3). Using weighted regression, the genes 
most frequently observed in threes were as follows: 
1,678,083|F|0–32:T > C-32:T > C (7 times), 4,407,404 
(6 times), 992,306|F|0–7:A > G-7:A > G (6 times), 
3,028,296 (6 times), 1,110,543|F|0–16:C > T-16:C > T 
(5 times), 3,021,909 (5 times), 1,226,085 (5 times), and 
2,257,522|F|0–45:C > T-45:C > T (4 times) (Table 3).

For the percentage variance accounted for by the indi-
vidual QTL × QTL × QTL threes based on unweighted and 
weighted multiple linear regression, the models are better 
fit by weighted regressions in all cases (Table 4). The R2 
coefficients for the weighted regressions ranged from 9.6% 

(trait 4) to 51.8% (trait 4). These values were higher than the 
coefficients for unweighted regression from 0.8% (trait 3) up 
to 15.5% (trait 4) (Table 4).

Discussion

The breeding process aims to obtain genotypes with traits 
superior to parental forms (Cullis et al. 2020). Decisions 
on the suitability of breeding material can be influenced 
by genes with significant additive effects, as well as by the 
interactions of these genes (epistatic and higher orders) 
(Bocianowski et al. 2019; Voss-Fels et al. 2019; Ali et al. 
2020; Labroo et al. 2021; Raffo et al. 2022). A major chal-
lenge in the post-genomic era, especially in estimating 
QTL effects, QTL-QTL interactions (Yang et al. 2007) and 
QTL–QTL–QTL interactions (Cyplik et al. 2023), is under-
standing the genetic architecture of quantitative traits.

Breeding programs using QTLs should consider not only 
epistatic effects, but also higher-order interactions. To under-
stand the genetic basis of quantitative traits, it is important to 
determine the contribution of QTL–QTL–QTL triplet inter-
actions. The assumption of the absence of QTL–QTL–QTL 

Fig.1  The number of genes (the number of effective factors) estimated on the basis of only phenotypic observations and the number of QTLs for 
particular traits
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triple interaction in genetic QTL mapping models can lead to 
incorrect estimation (underestimation) of parameters related 
to QTL effects and their QTL–QTL epistasis interactions 
(Bocianowski 2013).

The paper presents a numerical comparison of three meth-
ods for estimating additive–additive–additive interaction 
effects. The comparison was carried out on 126 doubled hap-
loid lines (DHLs) of winter wheat obtained from the Mandub 
(the German cultivar revealed a high level of resistance at 
the seedling and adult plant stages) × Begra (susceptible cul-
tivar) (Piaskowska et al. 2021). The lines were analyzed for 18 
traits, including percentage of necrosis leaf area, percentage 
of leaf area covered by pycnidia, heading data and height. The 
present results demonstrated the use of weighted regression 
to determine the triplets of QTLs and estimate the effects of 
their QTL–QTL–QTL interaction. Consistent with the best 
literature, only Cyplik et al. (2023) previously used weighted 
regression to evaluate QTL-QTL-QTL triple interaction. 
However, they used a different approach, using weighted 
regression at all three stages—for QTL selection, epistatic 
pairs, and QTL–QTL–QTL triples. The consequence of this 
approach was to obtain different QTL–QTL–QTL triples (in 
100% of cases) for both approaches: unweighted regression 
and weighted regression. The paper uses weighted regression 
for already selected QTLs. Thirty-one selected QTLs yielded 
a total of 75 associations for 18 traits. This is a larger number 
of QTLs than those obtained previously using linkage map-
ping performed on the same data (Piaskowska et al. 2021). 
Piaskowska et al. (2021) detected 23 QTLs: 12 QTLs associ-
ated with resistance to STB and 11 QTLs associated with 
plant height or heading date.

In their Monte Carlo simulation study, Cyplik and 
Bocianowski (2023) considered 84 different experimental 
situations, comparing estimates of the parameter associated 
with the triple interaction effects of aaa obtained by four 
methods: a phenotypic method and three genotypic methods 
(one unweighted and two weighted). One of the weighted 
regression variants used in the numerical comparisons in the 
studies presented here proved to be the best method in terms 
of the closest estimates of the assumed true value of aaa, the 
smallest mean squared errors of the estimates and the largest 
coefficients of determination characterizing the goodness of 
the model. The use of weighted regression always yielded 
higher, in absolute value, aaa estimates of gene–gene-gene 
interaction effects the use of unweighted regression. Com-
pared to phenotypic estimates, the total aaagu effects are very 
different. A positive effect was observed for traits 3 and 8 
for both phenotypic and genotypic unweighted observations, 
and a negative effect was not aligned for any trait. However, 
the absolute value is higher for the total aaagu effect for 
traits 3, 4 and 7. The coefficients of determination for the 
models including weights were larger than those for the tra-
ditional unweighted regression. For the percentage variance 

accounted for by the individual QTL × QTL × QTL threes 
based on unweighted and weighted multiple linear regres-
sion, the models are better fitted for weighted regressions 
in all cases. The coefficients values ranged from 9.6% (trait 
4) to 51.8% (trait 4). Values were higher, ranged from 0.8% 
(trait 3) up to 15.5% (trait 4).

For four of the eighteen (22.22%) traits, the number of 
QTL was less than three, resulting in the apparent lack of 
any possibility of QTL–QTL–QTL triples. For seven of the 
eighteen (38.89%) traits, at least three QTLs were identi-
fied, but there were no significant QTL–QTL–QTL triples. 
More favorable, smaller numbers above could be obtained 
using lower restrictions than the assumed false positive 
probability of 0.001. However, it was assumed that highly 
significant QTLs and their triples were selected (for triples 
also p < 0.001) to make the results as useful as possible for 
breeding and selection programs, among others.

Thirty-one different QTLs accounted for 38 dif-
ferent QTL–QTL–QTL threes.  The most fre-
quently occurring QTLs in threes were: 4407404 (9 
times) as well as 1678083|F|0–32:T > C-32:T > C, 
1021903|F|0–14:G > A-14:G > A, 992306|F|0–7:A > G-7:A > G, 
3021909 and 3028296 (7 times). Twenty-four dif-
ferent QTLs accounted for 24 different significant 
QTL–QTL–QTL triplets for the unweighted regres-
sion. The marker 1678083|F|0–32:T > C-32:T > C was 
the most frequent (7 times) in the triplets. Twenty-six 
different QTLs accounted for 25 different significant 
QTL–QTL–QTL triplets for the weighted regression. The 
marker 1678083|F|0–32:T > C-32:T > C was the most frequent 
(7 times) in the triples for the weighted regression. Eleven of 
38 (28.95%) QTL–QTL–QTL triplets were significant for the 
same trait using unweighted and weighted regression. Thir-
teen (34.21%) of the QTL–QTL–QTL triples were significant 
using unweighted regression but not using weighted regres-
sion. Fourteen of the 38 (36.84%) QTL–QTL–QTL triplets 
were significant using weighted regression, while they were 
not significant using traditional unweighted regression. None 
of the QTL–QTL–QTL triples were significant for more than 
one of the observed traits.

The selected QTLs were located on nine chromosomes: 
1B, 2A, 2B, 2D, 3A, 4A, 4B_2, 7A and 7B. Piaskowska et al. 
(2021) detected 23 QTLs located on six chromosomes: 1B, 
2B, 2D, 4B_2, 5B and 7B. In 19 of 38 cases (50%), all three 
QTLs forming the QTL–QTL–QTL triplet were located 
in a single linkage group. In 14 cases (36.84%), only two 
of the three QTLs forming the triplet were located in one 
linkage group. In contrast, in five cases (13.16%), all three 
QTLs forming the QTL–QTL–QTL triplet were located in 
three different linkage groups. The results obtained are very 
interesting and require further study. The number of linkage 
groups containing QTLs forming the QTL–QTL–QTL triplet 
may be one of the parameters assumed in simulation studies.

690



Journal of Applied Genetics (2023) 64:679–693 

1 3

Conclusions

Estimation of higher-order interactions is usually ignored, not 
because they are unimportant, but because of the high require-
ment for data. Higher-order interactions are very common and 
have a huge impact on phenotype. The results show that when 
using weighted regression on marker observations, the result-
ing estimates have a higher absolute value than when using 
unweighted regression. The triple interaction had a signifi-
cant effect on the expression of the quantitative traits studied. 
The proposed weighted regression method for estimating the 
parameter connected with the additive-by-additive-by-additive 
of gene-by-gene-by-gene interaction effect can bridge the gap 
between the phenotypic and genotypic methods. The methods 
presented were a useful statistical tool for QTL characteriza-
tion and allowed estimation QTL–QTL–QTL interactions. 
Weighted multiple linear regression, with weights being the 
inverse of the variances for each line, is a useful statistical 
tool for estimating the parameter associated with the additive-
additive-additive interaction effect (aaa).
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