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Abstract
Autism spectrum disorder (ASD) is a heterogeneous group of early-onset neurodevelopmental disorders known to be highly 
heritable with a complex genetic architecture. Abnormal brain developmental trajectories that impact synaptic functioning, 
excitation-inhibition balance and brain connectivity are now understood to play a central role in ASD. Ongoing efforts to 
identify the genetic underpinnings still prove challenging, in part due to phenotypic and genetic heterogeneity.
This review focuses on parent-of-origin effects (POEs), where the phenotypic effect of an allele depends on its parental 
origin. POEs include genomic imprinting, transgenerational effects, mitochondrial DNA, sex chromosomes and mutational 
transmission bias. The motivation for investigating these mechanisms in ASD has been driven by their known impacts on early 
brain development and brain functioning, in particular for the most well-documented POE, genomic imprinting. Moreover, 
imprinting is implicated in syndromes such as Angelman and Prader-Willi, which frequently share comorbid symptoms with 
ASD. In addition to other regions in the genome, this comprehensive review highlights the 15q11-q13 and 7q chromosomal 
regions as well as the mitochondrial DNA as harbouring the majority of currently identified POEs in ASD.
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Introduction

Autism spectrum disorder (ASD) represents a heterogeneous 
group of common (prevalence of 0.83% (Vos et al. 2017)), 
early-onset, neurodevelopmental conditions (American Psy-
chiatric Association 2013). ASD is characterised by differ-
ences in social interactions and communication as well as 
by restricted and repetitive behaviours and interests (Hodges 
et al. 2020). Much of the evidence to date points to the aeti-
ology of ASD being related to brain development, converg-
ing on the abnormal development of synaptic functioning, 
excitation-inhibition balance and brain connectivity (Betan-
cur et al. 2009; McFadden and Minshew 2013; Sohal and 
Rubenstein 2019).

ASD is known to be highly heritable (heritability approx. 
80% (Bai et al. 2019)) with a complex genetic architecture. 

The majority of heritability is due to common variation, with 
rare and de novo structural variation contributing to a lesser 
extent (Searles Quick et al. 2021). ASD is typically grouped 
into either syndromic or non-syndromic ASD. Syndromic 
ASD, ASD plus or complex ASD occurs in approximately 
25% of patients with the remaining 75% having what is 
referred to as essential or non-syndromic ASD (Carter and 
Scherer 2013). Syndromic ASD presents with additional 
phenotypes and/or dysmorphic features and is typically 
associated with chromosomal abnormalities or mutations 
in a single gene with diagnosis usually determined through 
some form of genetic testing (Fernandez and Scherer 2017; 
Sztainberg and Zoghbi 2016). For the majority of non-syn-
dromic ASD cases, the genetic aetiology is unknown and 
is still proving challenging due to the considerable pheno-
typic and genetic heterogeneity present (Rylaarsdam and 
Guemez-Gamboa 2019). Other, more complex mechanisms 
of transmission may explain some of the as-yet unaccounted 
for heritability (Yoon et al. 2020). For instance, parent-of-
origin effects (POEs) are a group of complex genetic effects 
that alter the phenotype in the offspring through a variety of 
mechanisms that modify gene expression in a parent-of-ori-
gin specific manner (Guilmatre and Sharp 2012). The most 
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well-known mechanism responsible for POEs is genomic 
imprinting; however, other mechanisms include transgen-
erational effects (for example, maternal genetic effects and 
mother–offspring interaction effects), mitochondrial DNA, 
sex chromosomes and mutational transmission bias (for 
example, triplet-repeat-associated diseases) (see Guilmatre 
and Sharp 2012 for a general POE review). Advances in 
the field of ASD genomic research over the last 10 years, 
coupled with new and emerging evidence, make this an 
excellent time for this original review, highlighting the role 
of POEs in ASD aetiology. In this review, we introduce dif-
ferent POE mechanisms, giving motivation for their poten-
tial roles in ASD, and subsequently detail specific evidence 
for particular genes and genomic regions showing POEs in 
ASD. Throughout the review, we use the term autism spec-
trum disorder (ASD) but acknowledge that studies referred 
to may have had different definitions/diagnostic criteria and 
use the term autism for example.

Parent of origin mechanisms

Genomic imprinting

We inherit one copy of each autosomal gene from each of 
our parents. For the vast majority of these genes, both cop-
ies are capable of being expressed; however, for a small 
subset (128 genes in humans, geneimprint.com (imprint 
status = Imprinted-All), January 2022), one copy does not 
function (either partially or completely) due to the epige-
netic mechanism, genomic imprinting. This mechanism 
silences one chromosome region in a parent-of-origin-
dependent manner, leading to expression of only one copy 
of the gene. Imprinting is regulated by parental-specific epi-
genetic markers, including methylation and histone modifi-
cations established in gametogenesis and early embryonic 
development (Court et al. 2014; Hutter et al. 2010). Here 
we refer to imprinted genes as either maternally imprinted 
when the maternal copy of the allele is silenced or paternally 
imprinted when the paternal copy of the allele is silenced.

Imprinting is often tissue- and/or temporal-specific 
(Abramowitz and Bartolomei 2012; Reik and Walter 2001) 
and is necessary for optimal functioning of this small set 
of genes, most of which are involved in early development 
(including embryonic, placental and post-natal develop-
ment), and behaviour, especially social behaviour (Falls 
et al. 1999; Lawson et al. 2013). Copy number variations 
(deletions or duplications), uniparental disomies (both chro-
mosomes, or parts of a chromosome, are inherited from only 
one parent), aberrant methylation marks (epimutations) and 
point mutations can disrupt imprinting and have been identi-
fied as being associated with a range of human diseases and 

disorders, including neurodevelopmental and neuropsychi-
atric disorders (Soellner et al. 2017).

There are several motivations for considering imprint-
ing in ASD. Early work on mouse chimaeras showed that 
imprinted genes have effects on general early growth, and 
on brain development in particular, including brain size and 
cell composition (Allen et al. 1995; Keverne et al. 1996), 
providing some of the first indications for imprinted genes 
having a potential role in neurodevelopment. Additionally, 
behavioural studies conducted on the adult stage of these 
mouse chimaeras pointed to imprinted genes in the brain as 
having an impact on behaviours such as aggression (Allen 
et al. 1995). In humans, many of the identified imprinted 
genes are expressed in the adult, influencing both cogni-
tive and behavioural phenotypes (Isles and Wilkinson 2000; 
Davies et al. 2001, 2005)).

The most convincing hypothesis for the evolution of 
imprinting in mammals is the genetic conflict or parental 
tug-of-war hypothesis. This hypothesis suggests that mater-
nally and paternally imprinted genes differentially regulate 
resources passed through the placenta from the mother to 
the developing embryo and subsequently exert an influence 
on the expression of traits in the offspring (Moore and Haig 
1991). The conflict has advantages when females are likely 
to have more than one mate. In such a scenario, it is in the 
father’s genetic interest to maximise resources for the current 
pregnancy, as he cannot be certain if future offspring from 
this mother will share his DNA. In contrast, it is in the moth-
er’s genetic interest to limit the resources shared with each 
offspring from each pregnancy, as they will all inherit half 
of her DNA. Thus, genes promoting growth are favoured by 
the father, whereas the mother will benefit from silencing her 
copy of such genes (Moore and Haig 1991). A good example 
of this is the maternally imprinted early growth-promoting 
gene IGF2 (Constância et al. 2002). When maternal imprint-
ing of IGF2 is disrupted, there is an increase in birth weight, 
by up to 50% when both copies are expressed, resulting in 
the imprinting disorder Beckwith‐Wiedemann syndrome 
(Byars et al. 2014). Whereas when both copies are silenced, 
Silver-Russell syndrome results, which is characterised by 
undergrowth (Eggermann et al. 2010). In a study examin-
ing behavioural phenotypes, a higher proportion of children 
with Beckwith‐Wiedemann syndrome than expected also 
presented with ASD (6.8%) (Kent et al. 2008).

In the case of ASD, this parental tug-of-war hypothesis 
has been further extended to an imprinted brain developmen-
tal theory for ASD and schizophrenia. This theory proposes 
that imbalances during brain development (resulting from 
either enhanced effects of maternally imprinted genes, defi-
cits in effects of paternally imprinted genes, or the action of 
both) can lead to ASD phenotypes. When the imbalance is 
in the opposite direction, with enhanced maternally biased 
effects, the risk of schizophrenia increases (Badcock and 
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Crespi 2006, 2008; Byars et al. 2014; Crespi 2013; Crespi 
and Badcock 2008; Úbeda and Gardner 2010, 2011).

Syndromic forms of ASD have provided additional evi-
dence for imprinted genes having a role in neurodevelop-
ment. The syndromic forms of ASD, Angelman syndrome 
and Prader-Willi syndrome, are two well-characterised 
reciprocal chromosome 15q11-q13 imprinting disorders. 
These disorders present with mental, physical, cognitive and 
behavioural impacts on their phenotypes, and in a number of 
cases, with comorbid ASD (Hogart et al. 2010).

Transgenerational effects: maternal genetic effects

Maternal genetic effects occur when the mother’s genotype 
exerts an influence on the offspring’s phenotype independ-
ent of the offspring’s genotype (Wolf and Wade 2009), for 
example, through the intrauterine environment. Several 
mechanisms, including the folate- and homocysteine-related 
pathways and immunity or inflammation, play critical roles 
in the development of the foetal nervous system in utero and 
can be impacted by maternal genetic effects. There is estab-
lished and emerging evidence for their role in ASD (Azzini 
et al. 2020; Edmiston et al. 2017; Johnson 2003).

Mutational transmission bias: trinucleotide repeats

Large expansions of specific trinucleotide repeat motifs 
result in trinucleotide-repeat-associated diseases. These 
motifs are often present in the general population at harm-
less levels but can expand to reach pathogenic levels when 
meiotic transmission to offspring takes place. As the rate 
of contraction and expansion during transmission is often 
different between males and females for many of these 
repeats, this results in POEs (Guilmatre and Sharp 2012). 
The neurodevelopmental disorder, Fragile X syndrome, is 
an X-linked dominant trinucleotide-repeat disorder and con-
sidered a syndromic form of ASD (Abbeduto et al. 2014).

Mitochondrial DNA

Mitochondrial DNA (mtDNA), consisting of 37 genes, is 
exclusively maternally inherited and, together with many 
nuclear DNA genes, is responsible for generating the energy 
needed to power cells (Rossignol and Frye 2012). The com-
plex role of mitochondria across all tissues and organs (only 
red blood cells have no mitochondria) means that mitochon-
drial disorders are often multi-systemic and multi-sympto-
matic. The number of mitochondria per cell varies widely 
(heteroplasmy), but the brain is known to have a very high 
demand on mitochondrial energy, in particular at neural syn-
apses (Pei and Wallace 2018). If this energy supply is in any 
way disrupted, it can impact brain function and by extension 
could increase risk for neuropsychiatric disorders such as 

ASD (Chen et al. 2015; Giulivi et al. 2010; Pei and Wallace 
2018; Yoo et al. 2017).

Identified parent‑of‑origin effects in ASD

In the following sections, we detail specific chromosomes, 
genomic regions and genes where evidence of POEs in ASD 
has been identified. The key findings outlined here are also 
summarised in Table 1.

Chromosome 7q

In a linkage study involving ASD-affected families and sib-
pairs, significant evidence of paternal identity-by-descent 
sharing was identified on chromosome 7q32.3–34 (Ashley-
Koch et al. 1999). In addition, the authors also detected sig-
nificant linkage disequilibrium with paternal transmissions 
in multiplex and simplex ASD families. A genome-wide 
parent-of-origin linkage analysis conducted in affected sib-
pairs identified two distinct regions, at 7q21.1–22.2 and at 
7q32.1–32.3, as showing an excess of paternal and mater-
nal identity-by-descent sharing in ASD, respectively (Lamb 
et al. 2005). Although neither of these peaks overlap with 
a known imprinted region, they lie close to imprinted gene 
clusters (Schanen 2006).

CADPS2 gene, chromosome 7q31.32

CADPS2 shows tissue-specific mono-allelic expression 
(maternally inherited allele expressed in blood and specific 
brain regions; amygdala) (Bonora et al. 2014). Cadps2-
knockout mice show deficits in neuronal development and 
abnormal social behaviour (Sadakata et al. 2007, 2012; Sad-
akata and Furuichi 2009, 2010). Given its prominent role in 
the nervous system and the evidence from mouse studies, it 
has been considered an excellent candidate ASD gene, and 
evidence for downregulation in ASD compared to non-ASD 
brains has been shown (Voineagu et al. 2011). Bonora et al. 
(2014) identified a novel intragenic deletion in CADPS2 in 
two siblings with mild intellectual disability (ID) and epi-
lepsy (Bonora et al. 2014). In a follow-up mutation screening 
study in the same article, the authors discovered a missense 
variant of maternal origin that disrupts the interaction of 
CADPS2 and the dopamine receptor D2DR, in a cohort of 
ASD/ID patients.

MEST gene, chromosome 7q32.2

MEST has long been known to be maternally imprinted 
with mono-allelic expression exclusively of the paternal 
copy (Pilvar et al. 2019). Maternal methylation appears 
to be driving this imprinting effect (Court et al. 2014; 
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Partida et al. 2018; Schneider et al. 2012). Inactivation of 
the paternal allele for MEST in mice resulted in embryonic 
growth retardation and abnormal maternal behaviour sug-
gesting a role in adult behaviour; additionally, methylation 
levels of MEST have been linked to cognitive ability (Lefe-
bvre et al. 1998; Lorgen-Ritchie et al. 2019). Using whole-
genome sequencing, an association was found between 
ASD and recurrent paternal rare cis-regulatory structural 
variants overlapping variant-intolerant genes (Brandler 
et al. 2018), including but not limited to CNTN4, LEO1, 
RAF1 and MEST. Furthermore, these were transmitted 
to affected offspring more frequently than to their unaf-
fected siblings. Positive association was found between 
MEST and ASD in a Korean male case–control cohort 
(Kwack et al. 2008), while a targeted sequencing study 
of the 7q32 region containing MEST, COPG2 and KLF14 
showed nominal positive association (which did not sur-
vive Bonferroni correction) between two haploblocks and 

ASD in a study of 7q32-linked ASD families (Korvatska 
et al. 2011).

CNTNAP2 gene, chromosome 7q35‑36.1

Using a combination of linkage and association analyses, 
two linkage peaks and a common genetic variant (display-
ing maternal over-transmission) significantly associated with 
ASD susceptibility were identified in the CNTNAP2 gene 
(Arking et al. 2008). CNTNAP2 is one of the largest genes 
in the human genome and is a member of the neurexin fam-
ily, playing a role in brain development; regulating interac-
tions between neurons and glia cells and contributing to the 
development of neuron axon structures (Waterhouse 2013). 
However, evidence for imprinting of CNTNAP2 is mixed, 
some studies argue against CNTNAP2 imprinting, at least 
in the adult human brain (Schneider et al. 2014), and others 
suggest imprinting might regulate expression of CNTNAP2 

Table 1   Summary of the main POEs that have been identified as having an association with ASD. The location/gene, whether the effect is 
maternal or paternal, and the corresponding references are detailed

Location/gene Maternal or paternal POE References

Chromosome 7q
   7q21.1–22.2 Paternal identity-by-descent sharing Lamb et al. (2005)
   7q32.1–32.3 Maternal identity-by-descent sharing Lamb et al. (2005)
   7q32.3–34 Paternal identity-by-descent sharing Ashley-Koch et al. (1999)
   CADPS2 Maternal mono-allelic expression Bonora et al. (2014)
   MEST Paternal transmission with maternal imprinting Korvatska et al. (2011); Kwack et al. (2008); Brandler 

et al. (2018)
   CNTNAP2 Maternal over-transmission vs paternal transmission Arking et al. (2008)

Chromosome 15q11-13
   Chr15q11-13 Duplications Maternal transmission Cook et al. (1997); Depienne et al. (2009); Schroer 

et al. (1998); Urraca et al. (2013)
   UBE3A Maternal transmission with paternal imprinting Urraca et al. (2013); Hsiao et al. (2019)
   SNRPN Paternal transmission with maternal imprinting; 

paternal transcript deficiency
Kim et al. (2008); Talkowski et al. (2012); Hogart 

et al. (2009)
X chromosome
   FMR1 Maternal transmission Kaufmann et al. (2017)
   Turner syndrome Maternal transmission Skuse et al. (1997); Good et al. (2003)

Mitochondrial DNA
   mtDNA point mutations Maternal transmission Wang et al. (2016); Graf et al. (2000); Pons et al. 

(2004); Connolly et al. (2010)
   mtDNA haplogroups Maternal transmission Chalkia et al. (2017)
   MT-ND5 and MT-ATP6 Maternal transmission Patowary et al. (2017)

Maternal genetic effects
   HLA-DR4 (chromosome 

6p21.3)
Maternal genetic effect Johnson et al. (2009)

   GSTP1*A (chromosome 
11q13.2)

Maternal genetic effect Williams et al. (2007)

   SHANK3 (chromosome 22) Maternal genetic effect Connolly et al. (2017)
   RFC1 (chromosome 21) Maternal genetic effect James et al. (2010)
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under certain tissue-specific and/or developmental-stage 
specific conditions (I. S. Lee et al. 2015; Lin et al. 2012). A 
number of other studies have identified associations between 
this gene and ASD (in particular language development) 
but have either not tested for or have not identified a POE 
(Alarcón et al. 2008; Anney et al. 2012; Bakkaloglu et al. 
2008; Chiocchetti et al. 2015; Li et al. 2010; Sampath et al. 
2013; Whalley et al. 2011).

Chromosome 15q11‑13 region

Duplications of chromosome 15q11‑13

Duplications in the 15q11-13 region (15q duplication syn-
drome, dup15q) are considered to be one of the most com-
mon cytogenetic abnormalities observed in ASD (1–3% 
of cases based on individual studies (Cook et al. 1997; 
Depienne et al. 2009), lower estimates of approximately 
1 in 500 based on larger studies (Moreno-De-Luca et al. 
2013)). The majority of duplications that result in an ASD 
phenotype are maternal in origin, with paternally derived 
duplications leading to either normal or mild phenotypes (for 
example, developmental delay) (Bolton et al. 2001; Browne 
et al. 1997; Cook et al. 1997; Mao et al. 2000; Schroer et al. 
1998). Only duplications that specifically cover at least a 
portion of what is referred to as the Prader-Willi/Angelman 
syndrome critical region (15q11.2–13.1, BP2-BP3), approxi-
mately 5 Mb, are of interest (Finucane et al. 2016). Duplica-
tions not covering this region do not appear to have a clinical 
outcome (Browne et al. 1997; Chaste et al. 2014).

The majority of duplications (80%) result from a de novo 
maternal isodicentric chromosome 15 duplication (idic(15)), 
where an additional extra small chromosome is present, and 
ASD is highly likely for these individuals (Finucane et al. 
2016; Moreno-De-Luca et al. 2013). The less frequent (20%) 
duplications occur within the long (q) arm of chromosome 
15—maternal interstitial duplication 15 (int dup(15)), the 
majority of which are de novo (85%), with the remaining 
(15%) maternally inherited (Depienne et al. 2009; Finucane 
et al. 2016). These individuals are highly likely to present 
with ASD (Browne et al. 1997; Schroer et al. 1998; Urraca 
et al. 2013). The phenotype is similar to those with mater-
nal idic(15) but often less severe, suggesting that there may 
be a maternal dosage effect for these duplications (Hogart 
et al. 2010; Moreno-De-Luca et al. 2013). Other research 
has suggested that maternal int dup(15) is not fully penetrant 
(Boyar et al. 2001), although it may be that penetrance is 
complete, but is presenting with a mild phenotype (Finucane 
et al. 2016).

The majority (65–75%) of Prader-Willi syndrome cases 
result from a loss of function of the paternal copy of mater-
nally imprinted genes in the 15q11.2–13 region due to 
deletions, with the remainder of cases (20–30%) due to 

maternal uniparental disomy (mUPD) on chromosome 15 or 
imprinting defects (1–3%) (Cassidy et al. 2012). The clini-
cal characteristics of Prader-Willi syndrome include infan-
tile hypotonia and failure to thrive in infancy, hyperphagia 
and increased risk of obesity, mild-to-moderate intellectual 
disability and a distinctive behavioural phenotype (Cassidy 
et al. 2012; Dykens et al. 2011; Rangasamy et al. 2013). 
For individuals with Prader-Willi syndrome, there is an 
increased risk of ASD (comorbidity estimates between 12.3 
and 36.5%, the lower rate from clinician determined diagno-
ses, the higher rate based on a screening tool) (Dykens et al. 
2017; Veltman et al. 2005). Notably, a number of studies 
have shown that individuals with Prader-Willi syndrome as 
a result of a mUPD have a higher risk for ASD (Dykens et al. 
2017; Schanen 2006; Veltman et al. 2004, 2005). This, cou-
pled with the fact that maternally inherited duplications in 
the 15q11-13 region are among the most frequently observed 
chromosomal rearrangements in ASD, strongly suggests a 
role for the maternally expressed genes of this imprinted 
region being implicated in ASD (Dykens et al. 2017; Hogart 
et al. 2010; Schanen 2006).

UBE3A gene, chromosome 15q11.2

UBE3A plays a role in post-translational ubiquitination and 
regulation of synaptic plasticity (Greer et al. 2010) and is 
specifically paternally imprinted in mature neurons (Hsiao 
et al. 2019). A mouse model with three-fold increase in 
expression of maternal Ube3a in mature neurons showed 
impaired social behaviour and communication, with 
increased repetitive behaviour (Smith et al. 2011). Inter-
estingly, the mouse model with two-fold increase in brain 
Ube3a had fewer behavioural deficits. These mice are good 
models for ASD showing that Ube3a is a dose sensitive 
gene.

In humans, even in the presence of a maternal duplica-
tion, UBE3A is still paternally imprinted and with higher 
expression levels (Herzing 2002). In a phenotype/genotype 
analysis of individuals with int dup(15), the authors con-
cluded that the duplications were sufficient to give rise to the 
phenotype, most likely due to the over-expression of UBE3A 
(Urraca et al. 2013). Several linkage and association stud-
ies have examined this gene for links with ASD but with 
inconsistent findings (Cook et al. 1998; Guffanti et al. 2011; 
Nurmi et al. 2001, 2003).

The majority of Angelman syndrome cases are caused by 
deletions which lead to a decrease in expression of UBE3A, 
the remaining due to mutations in UBE3A, paternal unipa-
rental disomy (pUPD) and imprinting defects (Dagli and 
Williams 2017). For Angelman syndrome, the clinical char-
acteristics include motor dysfunction, intellectual disability, 
speech impairment and seizures (Greer et al. 2010; Ran-
gasamy et al. 2013). High rates of comorbidity with ASD 
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have been shown for Angelman syndrome (Mertz et al. 
2014).

As mentioned, Prader-Willi syndrome individuals with a 
mUPD show more ASD traits than Prader-Willi syndrome 
individuals with paternal deletions. Using human post-mor-
tem brain samples, cortical tissue expression of UBE3A was 
shown to be substantially higher for Prader-Willi syndrome 
individuals with mUPD than for those with a deletion form 
(Hogart et al. 2007).

Iossifov et al. reported a de novo T485A missense muta-
tion in UBE3A in an ASD male proband; however, they did 
not test whether the variant was present on the paternal or 
maternal copy of the chromosome (Iossifov et al. 2014). 
A functional investigation of this mutation in UBE3A in 
human cell culture experiments showed that the T485A 
variant inhibits UBE3A self-regulation, leading to increased 
UBE3A activity, and increases dendritic spine formation (Yi 
et al. 2015).

SNRPN gene, chromosome 15q11.2

SNRPN is a maternally imprinted gene that regulates expres-
sion of Nr4a1, a nuclear receptor critical for cortical neu-
ron development (Barr et al. 1995; H. Li et al. 2016; Reed 
and Leff 1994). Several studies have reported uniparental 
methylation POEs for this gene (Court et al. 2014; Partida 
et al. 2018). SNRPN has been proposed as a likely candidate 
gene for Prader-Willi syndrome (Cassidy et al. 2000). In a 
trio study design, two SNPs in SNRPN showed marginal 
imprinting effects (Kim et al. 2008) and a balanced chro-
mosomal abnormality was identified in an individual with 
ASD without Angelman syndrome or Prader-Willi syndrome 
(Talkowski et al. 2012). Through a post-mortem brain tis-
sue analysis, Hogart et al. 2009 identified deficiencies in 
the paternally expressed transcripts of SNRPN in a female 
individual with ASD and milder Prader-Willi-like charac-
teristics (Hogart et al. 2009). In addition, methylation levels 
of SNRPN have been linked to cognitive ability (Lorgen-
Ritchie et al. 2019).

FMR1 gene, X chromosome

Fragile X syndrome is predominantly caused by a CGG tri-
plet repeat mutation expansion in the promoter region of the 
FMR1 gene at the chromosome Xq27.3 locus (Kaufmann 
et al. 2017). This syndrome is understood to be the most 
common single-gene cause of ASD (1–6% of ASD cases) 
(Kaufmann et al. 2017). As Fragile X syndrome is X-linked, 
it affects more males than females and more severely (Kauf-
mann et al. 2017). Fragile X syndrome is characterised by 
males almost always exhibiting moderate intellectual dis-
ability, having a characteristic appearance (macrocephaly 
with a prominent forehead, long face, large protruding ears 

and a prominent chin, the dysmorphism is milder in females) 
and behaviour (Fernandez and Scherer 2017; Sherman et al. 
2005). Males carrying a full mutation (> 200 repeats) do 
not produce offspring, whereas males with an intermediate 
(45–54 repeats) or premutation (45–54 repeats) will pass 
it on, but only daughters will inherit the mutation (Nolin 
et al. 2019). For maternal transmissions, pre-mutations can 
expand to full mutations, which is rarely the case for pater-
nal transmissions (Nolin et al. 2003, 2019). This results in a 
greater chance of offspring developing Fragile X syndrome 
when the mother is the premutation carrier compared to the 
father. In addition, there is a paternal bias for contraction 
of the premutation triplet repeats (Nolin et al. 2019). This 
triplet repeat mutation results in abnormal methylation of 
FMR1 and either partial or complete silencing of the gene 
(Kidd et al. 2019). The upshot is decreased production of 
the Fragile X mental retardation protein (FMRP) which has 
a vital role in synaptic plasticity and brain development as 
it regulates protein synthesis at the synapses (Penagarikano 
et al. 2007).

Turner syndrome, X chromosome

Turner syndrome results when one of the X chromosomes 
(maternal or paternal) is either partially or fully missing and 
shows an increased rate of ASD (Creswell and Skuse 1999; 
Donnelly et al. 2000; Skuse et al. 1997). Turner syndrome 
clinical characteristics include growth disorders, reproduc-
tive system and cardiovascular abnormalities and autoim-
mune diseases (Cui et al. 2018). From a POE perspective, 
the phenotype varies depending on whether the single X 
chromosome has been maternally or paternally inherited 
(Donnelly et al. 2000; Skuse et al. 1997). Turner syndrome 
girls with a paternally derived X chromosome were shown to 
be more socially adept than girls with a maternally derived 
chromosome (Skuse et al. 1997). This led to Skuse et al. 
(1997) hypothesising the presence of a maternally imprinted 
genetic locus for social cognition on the X chromosome, 
which was further supported by Good et al. (Good et al. 
2003; Skuse et al. 1997). Given the higher prevalence of 
ASD in males, and as they do not inherit the paternal X 
chromosome, Skuse has also speculated that a paternally 
expressed locus may be present on the X chromosome that 
gives a protective effect against ASD (Skuse 2000).

Mitochondrial DNA mutations

While mtDNA mutations are mainly associated with clas-
sical mitochondrial diseases (MELAS syndrome, MERRF 
syndrome, Leigh syndrome, Leber’s hereditary optic neu-
ropathy, etc.), the majority of these diseases have some form 
of neurological, neurodevelopmental or psychiatric com-
ponent, not surprising considering the energy demand of 
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both the central nervous system and the brain (Bressan and 
Kramer 2021; C. S. Dela Cruz and Kang 2018). Studies of 
biochemical markers of abnormal aerobic respiration, such 
as elevated lactate levels, have provided indirect evidence 
of mitochondrial dysfunction in ASD (Correia et al. 2006; 
Žigman et al. 2021). Cohorts of individuals with mitochon-
drial disease have also been shown to have increased risk of 
ASD in comparison to the general population (10–20% rates 
of ASD compared to 2% in the general population), and the 
reverse is also true; individuals with ASD have been shown 
to have increased rates of mitochondrial disease compared to 
the general population (1–5% rates of mitochondrial disease 
compared to 0.05% in the general population) (Legido et al. 
2013). Together, these findings suggest a real relationship 
between ASD and mitochondrial diseases. Interestingly, 
some imprinted genes also appear to affect mitochondrial 
function (Bressan and Kramer 2021; Panov et al. 2020; 
Urraca et al. 2013; Victor et al. 2021; Yazdi et al. 2013).

A systematic review by Cruz et al. (2019) identified a 
number of studies showing that genetic variations in mtDNA 
are associated with neurological disorders, including neu-
rodevelopmental disorders such as ASD. A whole-exome 
sequencing study of ASD-affected individuals, together 
with their unaffected siblings and mothers, showed that the 
transmission of mtDNA point mutations of suspected high 
pathogenicity was greater between mothers and affected 
children than between mothers and unaffected siblings, with 
a higher frequency of these mutations in the ASD probands 
with lower Intelligence quotient (IQ) and/or deficit in social 
behaviour (Wang et al. 2016). Two mtDNA genes, MT-ND5 
and MT-ATP6, have been linked to ASD through a whole-
exome sequencing study of ten multiplex families (Patowary 
et al. 2017). This builds on other research that identified 
mutations in the MT-ATP6 gene as linked to ASD (Piryaei 
et al. 2012; Rossi et al. 2017). A mutation of the MT-TK 
gene was found to be associated with members of a family 
(mother and three children) with multiple neurological dis-
orders, including a boy with an autism-like phenotype and 
was suggested as the basis for his ASD (Graf et al. 2000). 
For the MT-TL1 mtDNA gene (associated with mitochon-
drial encephalopathy, lactic acidosis and stroke-like episodes 
(MELAS) syndrome which can coexist with ASD (Griffiths 
and Levy 2017)), two mutations have been potentially linked 
to ASD: A3243G in five mother–offspring pairs (Pons et al. 
2004) and A3260G in a single family (Connolly et al. 2010). 
In an alternative approach, Chalkia et al. examined mito-
chondrial lineages (ASD-affected individuals, their parents 
and siblings) which encompass ancient mtDNA functional 
polymorphisms for association with ASD risk (Chalkia 
et al. 2017). They found evidence that particular European, 
Asian and Native American haplogroups showed a signifi-
cant increase in risk for ASD when compared with the most 
common European haplogroup.

Maternal genetic effects

Johnson et al. identified a maternal genetic effect in mothers 
of ASD offspring for the HLA-DR4 (chromosome 6p21.3) 
allele, suggesting that this finding supports the possibility 
of an immune component to ASD acting during pregnancy 
(Johnson et al. 2009). An over-transmission of the GSTP1*A 
haplotype on chromosome 11q13.2 to mothers of ASD off-
spring was identified by Williams et al. 2007 (Williams et al. 
2007). GSTP1 is associated with oxidative stress, further-
ing the evidence for inflammation in the intrauterine envi-
ronment impacting on ASD risk. SHANK3 (chromosome 
22q13.33) encodes a synaptic scaffold protein, essential 
in the postsynaptic density, and several studies have found 
associations with ASD (Boccuto et al. 2013; Durand et al. 
2007; Leblond et al. 2014; Sanders et al. 2015). Connolly 
et al. presented evidence to suggest that a mutation in the 
mother’s SHANK3 gene could increase the likelihood of her 
offspring having ASD (Connolly et al. 2017). The folate 
pathway supports the change between cell proliferation and 
differentiation during the early stages of development. If the 
availability of folate derivatives in the intrauterine environ-
ment is altered, neurodevelopment can be disrupted (James 
et al. 2010). Through a case–control analysis followed by a 
trio design, James et al. found that the maternal genotype 
carrying a functional polymorphism in RFC1 (involved in 
folate metabolism, chromosome 21) was associated with an 
increased risk of ASD, whereas the offspring genotype was 
not (James et al. 2010).

Discussion

The aetiology of ASD is driven by a combination of envi-
ronmental and genetic factors (Searles Quick et al. 2021), 
though a large proportion of the genetic risk remains unex-
plained. To improve our understanding of ASD pathogen-
esis, we need to investigate alternative models of inherit-
ance. POEs are good examples of such alternative forms 
that should be pursued to help explain some of the missing 
heritability of this complex disorder. Despite this, it remains 
an under-studied branch of ASD research.

In this review, we have described different mechanisms 
of POEs and presented a range of evidence for their role 
in ASD. We have summarised evidence supporting both 
maternal and paternal imprinting at the 7q32.1–32.3 and 
15q11-13 chromosomal regions, related to both ASD and the 
syndromic forms of ASD, Angelman and Prader-Willi syn-
dromes, showing how crucial the imprinted brain is for the 
developmental and behaviour phenotypes associated with 
ASD. Indeed, a recent study has shown that both imprint-
ing and brain development correlate with ASD (Li et al. 
2020). There is also increasing evidence, both from genetic 

309Journal of Applied Genetics (2023) 64:303–317



1 3

and biochemical studies, suggesting that genetic variants 
in mitochondrial DNA are associated with ASD. While 
the relationship between ASD and mitochondrial diseases 
is clear, future genetic studies that include mitochondrial 
genetic variants (which are historically often excluded from 
the analysis of genome-wide association studies and next-
generation sequencing studies) will be needed to assess the 
full impact of mitochondrial variants in ASD probands and 
the developing autistic brain.

We have aimed to present POEs where there is a reason-
able degree of evidence and have not included studies where 
there is uncertainty regarding the presence of a POE. How-
ever, it should be noted that many of the ASD POE findings 
detailed in this review, in particular the earlier studies, are 
based on small sample size datasets, often individual fami-
lies or a small number of cases. This is further complicated 
by the fact that ASD is a heterogeneous phenotype. There-
fore, comparing studies can be problematic due to different 
diagnostic criteria (e.g., screeners versus diagnostic tools), 
potentially increasing phenotypic heterogeneity. In addition, 
the findings that have been identified are often understood 
to be rare. As with all rare variant studies, this raises ques-
tions about power for statistical hypothesis testing (Wray 
and Gratten 2018); however, increasing sample size and/
or replicating in many scenarios is not feasible. The recent 
generation of whole genome and whole-exome sequencing 
data from large ASD cohorts, such as the studies by Iossifov 
et al. and Brandler et al., provides an even greater opportu-
nity to identify rare ASD variants which may have parent-
of-origin effects; however, care must be taken to ensure the 
right statistical tests are performed to identify POEs in these 
studies (Brandler et al. 2018; S. Connolly and Heron 2014; 
Iossifov et al. 2014).

We see in this review that POEs play a role in several 
syndromic forms of ASD (Angelman, Prader-Willi and 
Fragile X syndromes). Although syndromic forms account 
for only a small proportion of ASD cases (~ 5%), the bio-
logical insights gained from studying syndromic ASD may 
offer avenues for the understanding of non-syndromic ASD 
(Sztainberg and Zoghbi 2016). However, care needs to be 
taken with identifying ASD comorbidity, as syndromic 
forms of ASD often have different developmental trajec-
tories from non-syndromic ASD (Sztainberg and Zoghbi 
2016). Furthermore, care needs to be applied in the choice 
of ASD diagnostic tool, as diagnosing ASD when the mental 
age is low is difficult with standard tools (Lord et al. 2000; 
Miller et al. 2019). In the case of Angelman syndrome for 
example, Hogart et al. note that the comorbidity studies 
should be interpreted with caution due to the severity of the 
cognitive and language impairments and the low mental age 
range which could be resulting in an over-estimate of ASD 
comorbidity in Angelman syndrome (Hogart et al. 2010; 
Trillingsgaard and Østergaard 2004). The assumption here is 

also that the same set of genes identified in these syndromes 
are also involved in the comorbid ASD. When IQ or men-
tal age is low, there is the possibility that the ID could be 
mimicking aspects of the ASD phenotype (Grafodatskaya 
et al. 2010).

As is clear from the evidence presented here, determin-
ing POEs in ASD is an evolving field. For example, with 
regard to imprinting, it is not a simple case of taking a list of 
imprinted genes and determining if ASD is linked or asso-
ciated with these genes. Rather, the imprinting status for a 
number of these genes is also an evolving area of research. 
The temporal- and tissue-specific nature of imprinting 
poses challenges for determining whether or not a gene is 
imprinted. Authors have also noted and demonstrated that 
imprinting and maternal genetic effects are known to mimic 
each other, making determination of the POE type more dif-
ficult (Connolly and Heron 2014; Wolf and Wade 2009).

To conclude, the evidence reviewed here converges on the 
role of ASD POEs in brain development and brain function-
ing. In particular, a number of the POEs show involvement 
with synaptic functioning (for example, mutations in FMR1, 
UBE3A, SHANK3, mtDNA). This is an exciting and expand-
ing field of research, linking together what, on the surface, 
appear to be quite disparate mechanisms. It is curious that 
such distinct mechanisms all appear to converge on similar 
developmental and functional pathways, leading to similar 
etiological outcomes/presentations. Given the early stages 
of our understanding of POEs in ASD, we are yet to fully 
feel their implications in the clinical setting. No doubt as 
genomic technologies develop, including, for example, tech-
nologies that allow for epigenetic profiling, diagnostic test-
ing for POEs will become more straightforward which has 
the potential to impact diagnostic testing in ASD. In addi-
tion, POEs offer another avenue to further tease apart the 
complex nature of the ASD phenotype with the ultimate goal 
being to identify usable drug targets and biomarkers that will 
have tangible impacts for ASD in terms of treatments and 
interventions. One current example of this is Nr4a1, which 
has been proposed as a possible drug target for SNRPN-
related neurodevelopment disorders, including Prader-Willi 
syndrome and ASD (H. Li et al. 2016) and is already under 
consideration as a drug target in cancer (Hedrick et al. 2015; 
S. O. Lee et al. 2014). We are interested to see how the field 
develops in the future and how our understanding of ASD 
and related disorders will change with a better understanding 
of the contributions of POEs to ASD.
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