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Abstract
Abdominal aortic aneurysm refers to abnormal, asymmetric distension of the infrarenal aortic wall due to pathological 
remodelling of the extracellular matrix. The distribution of enzymes remodelling the extracellular matrix and their expres-
sion patterns in the affected tissue are largely unknown. The goal of this work was to investigate the expression profiles of 
20 selected genes coding for metalloproteinases and their inhibitors in the proximal to the distal direction of the abdominal 
aortic aneurysm. RNA samples were purified from four lengthwise fragments of aneurysm and border tissue obtained from 
29 patients. The quantities of selected mRNAs were determined by real-time PCR to reveal the expression patterns. The 
genes of interest encode collagenases (MMP1, MMP8, MMP13), gelatinases (MMP2, MMP9), stromelysins (MMP3, MMP7, 
MMP10, MMP11, MMP12), membrane-type MMPs (MMP14, MMP15, MMP16), tissue inhibitors of metalloproteinases 
(TIMP1, TIMP2, TIMP3, TIMP4), and ADAMTS proteinases (ADAMTS1, ADAMTS8, and ADAMTS13). It was found that 
MMP, TIMP, and ADAMTS are expressed in all parts of the aneurysm with different patterns. A developed aneurysm has 
such a disturbed expression of the main participants in extracellular matrix remodelling that it is difficult to infer the causes 
of the disorder development. MMP12 secreted by macrophages at the onset of inflammation may initiate extracellular matrix 
remodelling, which, if not controlled, initiates a feedback loop leading to aneurysm formation.
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Introduction

Abdominal aortic aneurysm (AAA) is an abnormal, asym-
metric distension of the infrarenal aortic wall of 3 cm or 
greater (Keisler and Carter 2015). The enlargement affects 
the three layers of the aorta. The condition is asymptomatic, 
and when the patient is not undergoing ultrasound for other 
indications, the first symptom is aortic dissection, which 
may lead to the patient’s death (Sakalihasan et al. 2005). An 
increased risk of developing AAA is strongly correlated with 

gender, age, smoking, family history of AAA, atheroscle-
rotic disease, spinal cord injury, and genetic predisposition 
(Lederle et al. 2000; Li et al. 2013; Sakalihasan et al. 2005). 
AAAs are the major cause of morbidity and mortality in 
ageing societies (Humphrey and Holzapfel 2012). Specifi-
cally, in the overall European population, the prevalence is 
4.3–7,1%, with 80% mortality resulting from AAA rupture 
(Li et al. 2013) (Hohneck et al. 2019). In the Polish popu-
lation aged over 65 years, the incidence of AAA is 2.62% 
and almost 4 times higher in men (4.32%) than in women 
(1.23%) (Mikołajczyk-Stecyna et al. 2013; Tkaczyk et al. 
2019).

Aneurysms develop as a result of degeneration of the arte-
rial media and elastic tissues (Keisler and Carter 2015). The 
pathogenesis of AAA involves numerous processes, includ-
ing inflammation, apoptosis of vascular smooth muscle cells 
(VSMCs), degradation of extracellular matrix (ECM), and 
oxidative stress (Mikołajczyk-Stecyna et al. 2013; Tkaczyk 
et al. 2019).
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Proteases that facilitate ECM remodelling, cell migration 
and invasion, and the turnover of growth factors are one of 
the most important factors for the development of AAAs 
(van Hinsbergh et al. 2006). Matrix metalloproteinases, par-
ticularly MMP2 and MMP9, were found to be elevated in the 
affected tissue. An imbalance between proteases and their 
inhibitors results in disruption of the homeostasis between 
the synthesis and degradation of the ECM (van Hinsbergh 
et al. 2006; Kadoglou and Liapis 2004; Nosoudi et al. 2015; 
Plaisier et al. 2004; Wilson et al. 2006).

The expression of genes responsible for ECM remodel-
ling changes due to inflammation, which is a stimulus for 
the initiation of the process of abdominal aortic aneurysm 
formation. The analysis of individual parts of the aneurysm, 
rather than the analysis of the entire modified tissue in com-
parison with the control tissue, may reveal genes whose 
expression disturbances are responsible for the pathologi-
cal growth of aortic tissue. This work was focused on the 
analysis of the expression profiles of 20 selected genes in 
arbitrary defined segments along surgically removed AAAs.

Materials and methods

Patient characteristics

A total of 29 samples from 3 females and 26 males were 
collected following AAA surgery from patients who were 
scheduled for open aortic repair (OAR). The patients who 
underwent surgery for AAA included in this study were 
of both sexes, ranging in age from 57 to 82 years (mean 
67.5 ± 6.35 years). The AAA patients excluded from the 
study were those who fulfilled the following criteria: (a) 
chronic obstructive pulmonary disease (COPD); (b) dia-
betes; (c) creatinine level > 1.0; (d) reconstruction of cor-
onary vessels and thoracic aorta (CABG); (e) reconstruc-
tion of carotid artery (ICA); (f) diagnosed generalized 

atherosclerosis (AO); (g) family history of AAA or inherited 
cardiovascular syndromes; and (h) lack of ability to provide 
informed consent for surgical treatment. The research plan 
was approved by the Bioethics Committee of the Medical 
University of Silesia in Katowice, protocol no. KNW/0022/
KB1/55/14 and its further extension no. KNW/0022/
KB1/55/1/14/17.

Materials

Fragments of AAA, usually approximately 50 mm long, 
were collected from the patients upon surgery. Non-aneu-
rysmal aortic samples of the aneurysm neck (unaffected 
samples) were simultaneously collected for use as controls 
(Fig. 1).

All surgical procedures were performed in the planned 
mode. Briefly, the material collected for the research was 
part of the aneurysm excised during an OAR. The samples 
were collected intraoperatively in the General and Vascular 
Surgery Clinic (Katowice-Ochojec, Poland) and secured 
immediately in the operating room at room temperature 
in sterile 50 mL tubes filled with 25 mL of Dulbecco’s 
modified Eagle’s medium (Gibco, Grand Island, NY, USA) 
supplemented with glucose (4.5 mg/mL) (high-glucose 
DMEM), penicillin (10,000 U/ml), streptomycin (10 mg/ml), 
and amphotericin B (25 µg/ml) (PAA Laboratories, Pasch-
ing, Austria). The procedures were established to maintain 
living cells because the specimens were also used for cell 
isolation and their culture to characterize the cell types in the 
separated layers of the AAA wall. Immediately upon arrival 
to the cell culture facility, the aneurysm was divided into 4 
fragments, border, control/border (C); neck, upper/proximal 
(1); aneurysm bag, middle/central (2); and the end segment, 
bottom/distal region (3) (Ziaja 2013), where the second part 
was the aneurysm sack of the excised AAA. From the frag-
ments, specimens of ~ 4 mm × 4 mm × 2–4 mm were imme-
diately subjected to RNA isolation and purification (Fig. 1).

Fig. 1  Abdominal aortic 
aneurysm collected during 
an open aortic repair (OAR) 
schematically showing the plan 
of partitioning of the tissue. 
From each segment, pieces 
of ~ 4 mm × 4 mm × 2–4 mm 
were subjected immediately to 
RNA isolation and purification 
(boxed)

Control proximal -
segment 1 

aneurysm bag - segment 2 distal part – segment 3 

Blood flow
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Methods

Total RNA was isolated in duplicates using Zymogen Quick 
RNA Mini Prep (Ambion, Austin, Texas, USA) following 
sample homogenization in TissueLyser II (Qiagen, Venlo, 
The Netherlands). Quality and quantity evaluation was per-
formed using a NanoDrop 2000 spectrophotometer (Thermo 
Fisher Scientific, Waltham, Massachusetts, USA). Total 
RNA (1 to 2 µg) was transcribed using a cDNA transcrip-
tor first-strand cDNA synthesis lit (Roche, Penzberg, Upper 
Bavaria, Germany) using random hexamers. Expression 
analyses with Real Time ready Custom Panel 384–96 
(configuration no. 100131839; Roche, Penzberg, Upper 
Bavaria,  Germany) and LightCycler 480 Probe Master 
(Roche) were performed using a LightCycler 480 II (Roche). 
The genes analysed in this report are listed in Table 1.

Gene expression profiling

Gene expression was analysed using GenEx ver6 software 
(MultiD analyses AB; Göteborg, Szwecja). Raw data were 
subjected to normalization to sample amount followed by 

normalization to the reference genes GAPDH, GusB, PPIA, 
and RPL13a (Table 1). Relative expression of target genes 
(ΔΔCt) was calculated with the comparison against the con-
trol/border samples. The last preprocessing step was filling 
the missing data with 0.

Statistical analyses

The Kolmogorov–Smirnov test was employed to determine 
if the data from the expression analysis showed a normal dis-
tribution. Only for the MMP11 the distribution was normal. 
Due to the small sample group size, the data for the analy-
sis were based on the calculations of the median and sem 
(Weissgerber et al. 2015). In the case of not normally distrib-
uted data, the non-parametric test (one-tailed Mann–Whit-
ney test) was used for data analysis. The threshold for the 
p-value was set to less than 0.05. For MMP11 analysis, a 
one-tailed t-test was used with the p-value set to less than 
0.05. For the determination of the differential expression 
of genes, scatter plot analysis was used with a significance 
area equal to 1. Spearman correlation coefficients  (rS) were 

Table 1  Alphabetical list of genes used in the study with appropriate assay IDs (Roche) and HGNC symbols. Four reference genes are listed at 
the beginning of the table

No Assay ID Human gene symbol Description

1 141139 GAPDH Glyceraldehyde-3-phosphate dehydrogenase [Source: HGNC Symbol; Acc: 4141]
2 144221 GUSB Glucuronidase, beta [Source: HGNC Symbol; Acc: 4696]
3 102088 PPIA Peptidylprolyl isomerase A (cyclophilin A) [Source: HGNC Symbol; Acc: 9253]
4 102119 RPL13A Small nucleolar RNA, C/D box 32A [Source: HGNC Symbol; Acc: 10159]
5 102984 ADAMTS1 ADAM metallopeptidase with thrombospondin type 1 motif 1 [Source: HGNC Symbol; Acc: 217]
6 108591 ADAMTS8 ADAM metallopeptidase with thrombospondin type 1 motif, 8 [Source:HGNC Symbol;Acc:224]
7 109363 ADAMTS13 ADAM metallopeptidase with thrombospondin type 1 motif, 13 [Source: HGNC Symbol; Acc: 1366]
8 148270 MMP1 Matrix metallopeptidase 1 (interstitial collagenase) [Source: HGNC Symbol; Acc: 7155]
9 139230 MMP2 Matrix metallopeptidase 2 (gelatinase A, 72 kDa gelatinase, 72 kDa type IV collagenase) [Source: 

HGNC Symbol; Acc: 7166]
10 103167 MMP3 Matrix metallopeptidase 3 (stromelysin 1, progelatinase) [Source: HGNC Symbol; Acc: 7173]
11 104396 MMP7 Matrix metallopeptidase 7 (matrilysin, uterine) [Source: HGNC Symbol; Acc: 7174]
12 146302 MMP8 Matrix metallopeptidase 8 (neutrophil collagenase) [Source: HGNC Symbol; Acc:7175]
13 136019 MMP9 Matrix metallopeptidase 9 (gelatinase B, 92 kDa, gelatinase, 92 kDa, type IV collagenase) [Source: 

HGNC Symbol; Acc: 7176]
14 108842 MMP10 Matrix metallopeptidase 10 (stromelysin 2) [Source: HGNC Symbol; Acc: 7156]
15 148278 MMP11 Matrix metallopeptidase 11 (stromelysin 3) [Source: HGNC Symbol; Acc: 7157]
16 tbd MMP12 Matrix metallopeptidase 12 (macrophage elastase) [Source: HGNC Symbol; Acc: 7158]
17 140652 MMP13 Matrix metallopeptidase 13 (collagenase 3) [Source: HGNC Symbol; Acc: 7159]
18 109081 MT1-MMP Matrix metallopeptidase 14 (membrane-inserted) [Source: HGNC Symbol; Acc: 7160]
19 108327 MT2-MMP Matrix metallopeptidase 15 (membrane-inserted) [Source: HGNC Symbol; Acc: 7161]
20 108880 MT3-MMP Matrix metallopeptidase 16 (membrane-inserted) [Source: HGNC Symbol; Acc: 7162]
21 147557 TIMP1 TIMP metallopeptidase inhibitor 1 [Source: HGNC Symbol; Acc: 11820]
22 110664 TIMP2 TIMP metallopeptidase inhibitor 2 [Source: HGNC Symbol; Acc: 11821]
23 101221 TIMP3 TIMP metallopeptidase inhibitor 3 [Source: HGNC Symbol; Acc: 11822]
24 112044 TIMP4 TIMP metallopeptidase inhibitor 4 [Source: HGNC Symbol; Acc: 11823]

501Journal of Applied Genetics (2021) 62:499–506



1 3

calculated to determine the correlation between genes 
(Online Resource 1).

Results

Expression of mRNA in AAA tissues

An attempt was made to isolate RNA from all fragments in 
29 patients. Unfortunately, the quantity and quality of the 
isolated total RNA from all samples were neither satisfying 
nor sufficient for effective analysis by RT-qPCR. The RNA 
was successfully isolated only from samples of 14 patients 
and it was not always possible to get biological replicates. 
For the same reasons, the study group did not include tissues 
from women but only from men (Online Resource 2).

Using total RNA extracted from 7 border tissues, 13 from 
the proximal and middle part of AAA, and 20 from the dis-
tal part, RT-PCR was performed to detect the presence and 
relative expression of specific mRNA. The mRNA of the 
analysed genes was detected in all parts of AAA, except for 
MMP10 and ADAMTS13. For the two genes, the expression 
was detected in less than 40% of the samples. Additionally, 

in the case of MMP10, there was no expression of this gene 
in the proximal part of AAAs (Online Resource 3).

Differential mRNA expression of extracellular matrix 
enzymes in AAA segments

To investigate the differences between ECM enzymes, the 
relative expression of genes in the aneurysm sac and sur-
rounding segments was measured. Based on the distribution 
of expression between pathological tissue and the border, 
genes could be clustered into four groups (Fig. 2 and Online 
Resource 4).

Group I (Online Resource 5) is constituted of genes show-
ing higher expression in the aneurysm sac than in the adja-
cent tissues. Proangiogenic MMP2, MT-MMP1, and TIMP2, 
known to be associated with ECM remodelling, were more 
abundant in the aneurysm sac and significantly differed from 
the expression in proximal segments. In group II (Online 
Resource 6) were genes that revealed decreased expression 
in the distal when compared to the proximal part. MMP2 
and TIMP1 have been identified as strong proangiogenic 
and anti-apoptotic factors and showed significant differences 
between the two segments of the analysed tissues. Group 
III (Online Resource 7) included genes with no changes in 

Fig. 2  Relative expression of 
selected genes encoding matrix 
metalloproteinases and matrix 
metalloprotease inhibitors in 
aneurysm and surrounding 
tissues representing the four 
gene groups. Non-parametric 
Mann–Whitney test and T-test 
(for MMP11) were performed 
(* p < 0.05, ** p < 0.05). a, 
group I; b, group II; c, group 
III; and d, group IV. The grey 
line represents the trend in the 
expression gradient
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the expression between the analysed segments. In group IV 
were genes which revealed lower expression in pathological 
tissue than in surrounding tissues. The antiangiogenic factor 
MT-MMP2 and proteins expressed by depleted VSMC (e.g. 
MMP8 and MMP13) showed the lowest expression in the 
aneurysm sac in comparison to adjacent tissues.

The highest fold change between proximal fragment and 
aneurysm sac was observed for TIMP4 (3.82 ± 0.002), and 
no differences have been detected between those fragments 
for TIMP1, MMP12, MMP10, MMP11, ADAMTS13, and 
MMP8 (Table 2). Smaller differences in expression of most 
analysed genes were observed between the aneurysm sac 
and the distal part. The greatest differences were found here 
for ADAMTS8 (2.92 ± 0.13). No differences in expression 
were detected for MMP1, MMP7, MMP9, MMP10, MMP11, 
MMP12, MT-MMP1, MT-MMP3, ADAMTS13, TIMP2, and 
TIMP3). Significantly large changes in the expression of 
the analysed genes were observed between the proximal 
and distal parts, with the greatest difference for MMP3 
(-4.33 ± 0.41). No expression changes were detected for 

MMP8, MMP10, MMP11, MMP13, MT-MMP3, MT-MMP2, 
ADAMTS1, ADAMTS8, and ADAMTS13.

Discussion

Our study carefully examined the expression of 20 genes 
encoding matrix metalloproteinases and their inhibitors. It is 
commonly accepted that MMP and TIMP overexpression is 
the major factor in aneurysm progression. Studies by others 
on profiling of the expression of 16 genes encoding MMPs 
revealed their elevated levels in AAAs, but the only signifi-
cantly higher expressed was MMP9 (Armstrong et al. 2002). 
Additionally, no changes were detected in TIMP expression. 
Reports by others also showed the overexpression of mRNA 
and higher concentration of protein encoded by MMP12 in 
AAA tissues (Curci et al. 1998). At the protein level, also, 
increased content of MMP1 and MMP9 as well as TIMP2 
was found (Koullias et al. 2004).

Abdominal aortic aneurysms are not the same; thus, the 
differences between the aneurysm’s segments make them 
difficult to interpret. Researchers were mostly focused on the 
differences between affected tissues and their normal coun-
terparts from control non-AAA donors. To overcome the 
difficulties caused by heterogeneity of AAA structures, some 
assessments were performed using DENSE cardiovascular 
magnetic resonance or analyses of the regional distribution 
of aortic wall thickness (Raghavan et al. 2006; Wilson et al. 
2019). However, no correlations of gene expression profiles 
were conducted. Proximal to distal aneurysm analyses usu-
ally were performed in the clinic, but no extensive basic 
research was conducted (Polanczyk et al. 2019). Analysis 
of the distribution of expression along the AAAs presented 
in this work gave a better understanding of the processes 
involved in the progression of aneurysms. The margin, non-
aneurysmal aortic samples was assumed as control/reference 
tissue, which allowed to further elucidate the molecular base 
of the development and progression of AAA.

Here, the expression of mRNAs encoding metallopro-
teinases and their inhibitors was found to be irregular and 
variable along AAA. For example, the ratio MMP1:TIMP1 
mRNAs, which differed between segments (from 0.85 in the 
proximal part, nearly doubled (1.65) in aneurysm sac and 
1.1 in the distal segment) could be a result of dysregulation 
of their expression in the segments. Moreover, only moder-
ate correlation  (rS = 0.41) was found between the relative 
expression of MMP1 and TIMP1 along the aneurysm tissue. 
Soluble protease, MMP1, breaks down interstitial collagens, 
including types I and III, both present in the arterial walls. 
MMP1 is only inhibited by TIMP1, and therefore, the regu-
lation of the two gene products is critical for proper matrix 
remodelling.

Table 2  Fold change of expression between parts of aneurysm

Statistically significant data are marked in bold.  Non-parametric 
Mann–Whitney test and T-test (for MMP11) were performed (* 
p < 0.05, ** p < 0.05)

Gene Proximal vs 
aneurysm sac

Aneurysm sac 
vs distal part

Proximal vs distal

Group I
  TIMP4 -3,82169** 2,19975 -1,73733*
  ADAMTS8 -3,39204 2,92517 -1,1596
  ADAMTS1 -2,28174 2,20776 -1,03351
  TIMP3 -2,25861* -1,06421 -2,40363*
  MMP1 -1,92413 -1,07369 -2,06593
  MMP7 -1,89143 1,2481 -1,51544
  MMP3 -1,72753 -2,50842 -4,33338
  MMP2 -1,50789* -1,28329 -1,93506*
  MT-MMP1 -1,48615* -1,21837 -1,81067*
  TIMP2 -1,46273** 1,03951 -1,40714
  MT-MMP3 -1,29784* 1,10869 -1,1706

Group II
  MMP9 -1,65547 -1,06107 -1,75657*
  TIMP1 -1,18729 -1,26522 -1,50218*
  MMP12 -1,13957 -1,17196 -1,33552*

Group III
  MMP10 -1,05705 1,00192 -1,05502
  MMP11 1,09707 -1,1213 -1,02208
  ADAMTS13 1,11656 -1,0644 1,04901

GROUP IV
  MT-MMP2 -1,51556 1,34533 -1,12654
  MMP8 1,10681 -1,27731 -1,15405
  MMP13 1,91792 -1,85845 1,032

503Journal of Applied Genetics (2021) 62:499–506



1 3

In the inception of angiogenesis, the genes encoding 
MMP2, MMP9, MT1-MMP, TIMP1, and TIMP2 play key 
roles (Safina et al. 2007). The very strong to almost com-
plete correlation of expression between genes involved in 
the onset of angiogenesis suggests that the regulation of 
angiogenesis occurred in the AAA border tissue (Online 
Resource 1). Therefore, as the abnormal tissue deteriorates, 
the surrounding tissue compensates for the lack of oxygen 
and nutrients in the affected tissue, by exporting the products 
to the ECM.

Proteolytic degradation of the ECM in the aneurysm wall 
is mainly governed by active MMP2 and MMP9, whose 
genes showed different expression patterns, with the high-
est peak in the aneurysm sack in MMP2 and in the distal 
part in MMP9.

Variable expression of genes encoding the 3 collagenases 
MMP1, MMP3, and MMP13 in the AAAs was observed. 
The lowest expression of MMP13 was detected in the aneu-
rysm sac. For MMP1 and MMP3, the lowest expression was 
in the proximal part. MMP1 is primarily secreted by mesen-
chymal cells such as vascular smooth muscle cells (VSMCs) 
or fibroblasts and is activated by MMP3 and the urokinase 
plasmin activator (uPA)/plasmin system. Other groups also 
reported lower expression of TIMP1 than MMP1 (Knox 
et al. 1997). VSMCs express MMP13, which is consistent 
with the fact that VSMCs are depleted in aneurysms, leading 
to a lack of collagenases needed for proteolysis of the excess 
of collagen in the medial and adventitial layers (Kadoglou 
and Liapis 2004).

The involvement of these MMPs in angiogenesis pri-
marily relates to the degradation of ECM, but it should be 
noted that the activities of these proteases are complex and 
may involve other effects, such as the activation of growth 
factors and cytokinesis, the recruitment of endothelial pro-
genitor cells, and the degradation of inhibitors (Kadoglou 
and Liapis 2004; Safina et al. 2007). Tissue remodelling 
involving proteolysis is only one of the critical steps in 
angiogenesis. Excessive proteolysis leads to damage of 
the blood vessel and can promote ECM decay, preventing 
cell migration instead of their attachment to it. In healthy 
blood vessels, there is no or very low expression of matrix 
metalloproteinases.

The AAA inflammatory process involves macrophages 
producing proMMP12 and activating the proteolytic deg-
radation of ECM depending on the action of MMP2 and 
MMP9. The process is then dispersed on both sides of the 
focal point of inflammation. As aneurysm enlarges, apop-
tosis of endothelial cells and expansion of VSMCs occur, 
leading to the overexpression of proangiogenic enzymes. 
In response to the overexpression of MMP2 and MMP9 
under the influence of MMP12, antiangiogenic enzymes 

start to balance their expression, which leads to their over-
expression. Moreover, in AAA, the overgrowth of VSMCs 
produces the ECM surplus, which leads to nutrient and 
oxygen deficiency. The tissue that surrounds the aneu-
rysm must compensate for those conditions by ECM pro-
teolysis and angiogenesis toward overgrown tissue, thus 
overexpressing metalloproteinases that are transported in 
the ECM toward the focal point of the AAA. The excess 
of proangiogenic proteases is counteracted by inhibitors 
that presumably arise from the central part of the develop-
ing aneurysm. The highest expression of genes encoding 
TIMP4 and other inhibitors in aneurysm sac is the strong 
evidence for this postulate. TIMP4 expressed by VSMCs 
is linked to pathological inflammation engaging ECM 
remodelling (Koskivirta et al. 2006).

In conclusion, the report delivers new evidence on the 
differential expression patterns of selected genes involved 
in ECM synthesis and its remodelling between AAA seg-
ments. Results provide insight into the complex interplay 
between MMPs and their inhibitors as well as between 
the process that aortic vessels undergo during the forma-
tion of AAA. The molecular mechanisms underlying the 
AAA progression needs further to work out all possible 
interactions in AAA segments but also in particular layers 
of aberrant aortic vessel walls.
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