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Abstract
An optimized method for bacterial strain differentiation, based on combination of Repeated Sequences and Whole Genome 
Alignment Differential Analysis (RS&WGADA), is presented in this report. In this analysis, 51 Acinetobacter baumannii 
multidrug-resistance strains from one hospital environment and patients from 14 hospital wards were classified on the basis 
of polymorphisms of repeated sequences located in CRISPR region, variation in the gene encoding the EmrA-homologue 
of E. coli, and antibiotic resistance patterns, in combination with three newly identified polymorphic regions in the genomes 
of A. baumannii clinical isolates. Differential analysis of two similarity matrices between different genotypes and resist-
ance patterns allowed to distinguish three significant correlations (p < 0.05) between 172 bp DNA insertion combined with 
resistance to chloramphenicol and gentamycin. Interestingly, 45 and 55 bp DNA insertions within the CRISPR region were 
identified, and combined during analyses with resistance/susceptibility to trimethoprim/sulfamethoxazole. Moreover, 184 or 
1374 bp DNA length polymorphisms in the genomic region located upstream of the GTP cyclohydrolase I gene, associated 
mainly with imipenem susceptibility, was identified. In addition, considerable nucleotide polymorphism of the gene encod-
ing the gamma/tau subunit of DNA polymerase III, an enzyme crucial for bacterial DNA replication, was discovered. The 
differentiation analysis performed using the above described approach allowed us to monitor the distribution of A. baumannii 
isolates in different wards of the hospital in the time frame of several years, indicating that the optimized method may be 
useful in hospital epidemiological studies, particularly in identification of the source of primary infections.

Keywords Acinetobacter baumannii · Hospital infections · DNA polymerase III gene DNA polymerase III subunit gamma/
tau · Genetic polymorphisms · Antibiotics · Assembled matrix data

Introduction

The genome of each microorganism is a source of knowl-
edge that can be applied for strain differentiation, based on 
bioinformatic tools and available techniques of molecular 
biology, suitable for epidemiological investigations. Among 
the species of the genus Acinetobacter, A. baumannii strains 
manifest the highest pathogenicity (Wong et al. 2017; Skari-
yachan et al. 2019). They are highly opportunistic microor-
ganisms, responsible for hospital infections related to abil-
ity to adapt to different environmental conditions (Antunes 
et al. 2014). At the beginning of the twenty-first century, no 
complete genome sequence of Acinetobacter sp. was known. 
Barbe et al. (2004) published the first sequence of Acine-
tobacter sp. ADP1 genome, and later Smith et al. (2007) 
published the complete genome of A. baumannii ATCC 
17,978. Subsequently, the first genomic sequence of the 
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multidrug-resistant A. baumannii strain was published by 
Adams et al. (2008). Presently, complete sequences of the 
genomic DNA of A. baumannii are known for about 250 
strains (http:// www. ncbi. nlm. nih. gov, database retrieved 
on 10 December 2020). As indicated by various research 
teams, repeated sequences of A. baumannii and other micro-
organisms have great impact in the process of generating 
pathogenicity for immunocompromised hosts (Zhou et al. 
2014; Shariat and Dudley 2014; Nabil et al. 2015) or adapta-
tion skills to different environmental conditions (Zhou et al. 
2014; Shariat and Dudley 2014; Karah et al. 2015).

The presence of tandem DNA repeats in genomes of A. 
baumannii was confirmed by several groups (Martín-Lozano 
et al. 2002; Turton et al. 2009; Irfan et al. 2011; Pourcel et al. 
2011; Minandri et al. 2012; Ergin et al. 2013; Ahmed and 
Alp 2015; Villalón et al. 2015). Based on these sequences, 
different methods of differentiation of A. baumannii strains 
have been developed; however, they take into account only 
their diversifying power of evolutionary changes of the Aci-
netobacter genus (Touchon et al. 2014). Thus, their features 
responsible for drug resistance or pseudo-immunological 
bacterial responses, encoded in the Clustered Regularly 
Interspaced Short Palindromic Repeats (CRISPR) system, 
which evolved to protect the cells from exogenous phage 
and plasmid DNA invasion, are ignored in such analyses. On 
the other hand, as suggested by Touchon et al. (2014), the 
next step in the process of strains’ classification should be 
focused on confrontation of the genetic and phenotypic fea-
tures related to pathogenicity of bacterial species. To address 
some of the above features, an optimized method for A. bau-
mannii differential analysis is proposed in this report. It is 
based on combination of the previously described method 
based on analysis of repeated sequences (Nowak-Zaleska 
et al. 2008, 2016) and whole genome alignment.

Materials and methods

Bacterial strains

We used 51 A. baumannii isolates from diagnostic materials 
of the hospital environments of Antoni Jurasz University 
Hospital in Bydgoszcz. These isolates were derived from 
11 hospital wards (Dermatology, Endocrinology, Geriatrics, 
General and Endocrine Surgery, General and Vascular Sur-
gery, Intensive Care Units, Neurology, Nephrology, Neuro-
surgery, Orthopedic, Plastic Surgery), 2 clinics (Orthopedic 
Outpatient Clinic, Surgical Outpatient Clinic), and Reha-
bilitation Department. The isolates were collected during 
the period of 2003–2006 (Table 1). The following strains 
were isolated from different diagnostic materials: 10 from 
bronchoalveolar lavages, 8 from bedsores, 2 from blood, 1 
from cerebrospinal fluid, 2 from drains, 2 from drain swabs, 

1 from needle tip, 1 from pus, 8 from respiratory secretions, 
2 from tracheostomy tube swabs, 1 from tube swab, 9 from 
ulceration wounds, and 4 from urine. Strains were identified 
based on ID GN phenotypic identification system, includ-
ing drug sensitivity. This identification was conducted using 
Kirby–Bauer method, according to CLSI instructions (for 
details, see Nowak-Zaleska et al. 2008, 2016).

Locus identification with repeated sequences

The isolates of A. baumannii were differentiated on the 
basis of previously published polymorphisms of repeated 
sequences located in the CRISPR region (Touchon et al. 
2014), variation in the gene encoding the EmrA homologue 
of E. coli (Nowak-Zaleska et al. 2016), and three newly iden-
tified (in this study) polymorphic regions (Tables 2 and 3).

DNA‑technology methods

The genetic material from the isolates was obtained using 
Genomic Mini Set, purchased from A&A Biotechnology 
(Gdynia, Poland), following the manufacturer’s instruction. 
For the DR-PCR/RFLP genotyping method, sequences of 
primers, the PCR reaction conditions, and enzymatic diges-
tion of PCR products were previously described (Nowak-
Zaleska et al. 2008). Briefly, the amplification reactions were 
conducted according to the following time–temperature pro-
file: 94 °C for 2 min, during the initial denaturation step, 
35 cycles consisting of the DNA denaturation at 94 °C for 
1 min, hybridization at 68 °C for 1 min, and extension at 
72 °C for 2 min. The amplification products were subjected 
to the restriction fragment length polymorphism (RFLP) 
analysis using HaeIII and SsiI restriction enzymes. Separa-
tion of restriction fragments was performed electrophoreti-
cally, in 12% polyacrylamide gels, and results were docu-
mented using Versa Doc Imaging System, ver. 1000. The 
homologous region of the emrA resistance-related gene, con-
taining 6-nt repeats, was analyzed as described previously 
(Nowak-Zaleska et al. 2016). Identification of three newly 
discovered polymorphic regions was possible after multi-
ple alignment of nine A. baumannii genomes (see Table 2), 
using the MAFFT 7.271 software (Katoh et al. 2002). Subse-
quently, three pairs of primers, shown in Table 3, were used 
in the PCR analysis. The PCR reactions were conducted in 
25 μl reaction mixtures, using the Eppendorf AG 22,331 
thermal cycler. The PCR mixtures were as follows: 1.5 U of 
RUN DNA polymerase (purchased from A&A Biotechnol-
ogy), PCR reaction buffer containing 10 mM KCl, 10 mM 
 (NH4)2SO4, 0.1% Triton X-100, 20 mM Tris, pH 8.5, 2 mM 
of  Mg2Cl, 2 mM of each deoxynucleoside triphosphates, 
25 pM of suitable pairs of primers, and 50 ng/μl of template 
DNA. Amplified PCR products were separated using 2% 
agarose gel electrophoresis and standard ethidium bromide 
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Table 1  Characteristics of multidrug-resistant Acinetobacter baumannii clinical isolates

No Isolates* Antibiograma Genotype  patternb Combined analysis 
 clusterc

Source of  isolates#

1 2005VI.70.ICU I 1 1 Ulceration wound
2 2006III.107.NS II 8 2 Respiratory secretion
3 2006I.96.ICU II 8 2 BAL
4 2006I.95.ICU II 8 2 BAL
5 2006I.93.R II 8 2 Urine
6 2006I.92.ICU II 8 2 BAL
7 2006II.105.E II 7 3 Respiratory secretion
8 2006IV.108.NS II 7 3 CSF
9 2005XI.85.ICU II 8 2 BAL
10 2005XII.91.ICU II 8 2 BAL
11 2005XI.88.R II 8 2 Urine
12 2005XI.87.PS II 8 2 Bedsores
13 2006II.98.R II 8 2 Respiratory secretion
14 2005VI.71.R II 10 4 Respiratory secretion
15 2006II.100.G II 10 4 Urine
16 2006II.101.ICU II 10 4 Blood
17 2005X.79.NS II 10 4 Urine
18 2006II.102.ICU II 9 5 BAL
19 2005IV.68.R II 13 6 Drain swab
20 2003VI.43.G&ES II 6 7 Ulceration wound
21 2003VIII.45.O II 6 7 Drain swab
22 2003IX.48.N II 6 7 Tracheostomy tube swab
23 2004XI.61.O II 15 8 Ulceration wound
24 2004X.59.OC III 4 9 Bedsores
25 2006I.94.NS IV 8 10 Respiratory secretion
26 2006II.104.NS IV 7 11 Respiratory secretion
27 2004VIII.55.OC V 2 12 Bedsores
28 2003XI.50.O V 6 13 Bedsores
29 2005I.65.O V 4 14 Drain
30 2003IX.47.ICU VI 6 15 BAL
31 2005VIII.72.G&ES VI 15 16 Ulceration wound
32 2003VIII.44.ICU VII 6 17 Ulceration wound
33 2003IX.46.G&ES VII 6 17 Ulceration wound
34 2003III.42.ICU VII 12 18 Tracheostomy tube swab
35 2003IX.49.D VIII 14 19 Ulceration wound
36 2005IV.67.ICU IX 15 20 Ulceration wound
37 2004IV.52.E X 15 21 Bedsores
38 2006II.103.ICU X 15 21 BAL
39 2004X.58.R X 15 21 Tube swab
40 2005III.66.O XI 4 22 Drain
41 2004X.56.NS XII 11 23 Blood
42 2004X.57.NS XII 15 24 Bedsores
43 2004XI.63.R XIII 3 25 Pus
44 2004VIII.54.ICU XIII 5 26 BAL
45 2004XI.62.G XIII 4 27 Bedsores
46 2005 V.69.SC XIII 15 28 Ulceration wound
47 2004VI.53.N XIV 16 29 Bedsores
48 2006II.106.NS XV 8 30 Respiratory secretion
49 2005XII.90.Nef XV 8 30 Respiratory secretion
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staining procedure (Sambrook et al. 1989). Images of the 
gels were obtained using Versa Doc Imaging System, ver. 
1000.

Statistical analysis

Statistical analysis was performed using Epi Info 7.2.3.1 
software using two-tailed Fisher exact test analysis. The val-
ues “1” and “0” were representing resistant and susceptible 
strains for different antibiotics used in our study. Similarity 
matrices of different genotypes and resistance features and 
phylogenetic trees were constructed using package MVSP 
ver. 3.22.

Results and discussion

To enhance the currently available methods of differentiation 
of A. baumannii strains, we were searching for previously 
unknown PCR-derived fragment length polymorphism vari-
ations in randomly identified regions of selected genomic 
sequences. The theoretical values of PCR fragment lengths 
of the newly discovered polymorphic regions for nine A. 
baumannii genomes are presented in Table 2. Among three 
identified polymorphic regions, only one was character-
ized by the highest length polymorphism. It was recognized 
as a gene fragment coding for DNA polymerase III subu-
nit gamma/tau, with the Protein_id = AFI95102.1 in the 

Table 1  (continued)

No Isolates* Antibiograma Genotype  patternb Combined analysis 
 clusterc

Source of  isolates#

50 2005IX.76.ICU XV 10 31 BAL
51 2005IX.78.G&VS XV 10 31 Needle tip
HGDI index 0.8 0.8816 0.9718

a For details of particular antibiogram patterns, see Table 5
b For details of particular genotype patterns, see Table 4
c Numbers arisen from combination of antibiogram and genotype patterns
* Abbreviations for isolates (the last letter(s) in the name): D—Dermatology, E—Endocrinology, G—Geriatrics, G&ES—General and Endocrine 
Surgery, G&VS—General and Vascular Surgery, ICU—Intensive Care Unit, N—Neurology, Nef—Nephrology, NS—Neurosurgery, O—Ortho-
pedic, OC—Orthopedic Outpatient Clinic, PS—Plastic Surgery, R—Rehabilitation, SC—Surgical Outpatient Clinic
# Abbreviations for source of isolates: BAL—bronchoalveolar lavage; CSF—cerebrospinal fluid

Table 2  The sizes of PCR 
products for designed pairs of 
primers calculated for selected 
Acinetobacter baumannii 
genomes

* NCBI—National Center for Biotechnology Information

Genome NCBI accession numbers* of 
Acinetobacter baumannii strains

PCR product length (bp)

Genomic region 1 Genomic region 2 Genomic region 3

Primer pairs:
Aci7 and Aci8

Primer pairs:
Aci13 and Aci14

Primer pairs:
Aci17 and Aci18

CP001172.2
Acinetobacter baumannii AB307-0294

204 184 404

NC_011586.2
Acinetobacter baumannii AB0057

162 184 405

CP002522.2
Acinetobacter baumannii TCDC-AB0715

180 236 508

NC_010611.1
Acinetobacter baumannii ACICU

144 1274 508

CP001937.2
Acinetobacter baumannii MDR-ZJ06

222 1374 500

CP003500.1
Acinetobacter baumannii MDR-TJ

222 1374 508

CP003847.1
Acinetobacter baumannii BJAB0715

156 186 406

NZ_CP018664.1
Acinetobacter baumannii ATCC 17,978

210 185 306

NC_010410.1
Acinetobacter baumannii AYE

234 1373 405
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MDR-TJ A. baumannii genome (GenBank accession no. 
CP003500.1) (Table 3).

In order to increase variation of analyzed A. baumannii 
isolates, two other previously described variable regions in 
the genomes of A. baumannii were included in our study 
(Nowak-Zaleska et al. 2008, 2016). The combined applica-
tion of the three genetic aforementioned genotypic methods, 
DR-PCR/RFLP, different number of P-A dipeptide repeats 
encoded in the N-terminal part of EmrA-homologue gene, as 
well as three new variables, namely, Aci7 and Aci8, Aci13 
and Aci14, and Aci17 and Aci18 (Table 4), combined with 
known information about resistance patterns for each isolate 
(Table 5), allowed for recognition of 31 different clusters 
shown in Table 1.

Detailed analysis of bacterial isolates and diagnostic 
material revealed significant differences between A. bau-
mannii isolates from bronchoalveolar lavage (BAL) and 
other clinical samples (p < 0.0001), as well as significant 
correlation between resistance pattern II and genotype  8th 
(p < 0.01), presented in Table 1. In addition, significant 
correlation (p < 0.05) between the frequency of occur-
rence of  8th A. baumannii genotype in the first trimester 
of 2006 year in comparison to other periods of isolation 
time was also evident. Higher Hunter–Gaston Discrimina-
tory Index (HGDI), presented in Table 1, was determined 

using the method developed in this study, in comparison to 
previously published genotyping methods (Nowak-Zaleska 
et al. 2008, 2016). Furthermore, in the course of statistical 
data analysis, we observed that strains representing clus-
ters 2 and 4 from combined genetic–phenotypic analysis, 
shown in Table 1, were isolated in two consecutive years 
2005 and 2006 (p < 0.0001). These strains represent the  15th 
genotype pattern, which was present in 2004 and 2005, but 
with different resistance patterns II, VI, IX, X, XII, and XIII 
(p = 0.01). In addition, three strains representing  21st cluster 
with the resistance pattern X appeared in years 2004 and 
2006. Moreover, strains with genotypes 6, 12, and 14 were 
only present in 2003 (p < 0.0001), in comparison to other 
genotypes, and what is interesting, the resistance pattern 
II appeared each year, while patterns V, VI, VII, and VIII 
appeared only between 2003 and 2005 (p = 0.01).

Combined analysis of similarity matrices, obtained using 
data from Tables 4 and 5, revealed that out of 19 combina-
tions of genetic and resistance markers, only three were 
significantly different (p < 0.05) (Table 6), as indicated by 
χ2 value higher than 4, obtained from two phylogenetic 
trees presented in Fig. 1. Among significantly different 
mixed parameters identified, there were (1) 172 bp DNA 
insertion, located in the CRISPR locus, identified using 
the SsiI enzyme for genotypes 7 to 11, in combination 

Table 4  Set of different genotypes shown as PCR length polymorphisms in nucleotide base pairs for 51 MDR Acinetobacter baumannii isolates

* EmrA—an enzyme from Escherichia coli
# —restriction pattern number

Genotypes Three new PCR regions (length 
in bp)

PCR-DR/RFLP region (length in bp) EmrA*—homo-
logue gene frag-
ment
(length in bp)Genomic 

region 1
Aci7 and 
Aci8

Genomic 
region 2
Aci13 
and 
Aci14

Genomic 
region 3
Aci17 
and 
Aci18

HaeIII pattern SsiI pattern

#1 #2 #3 #4 #5 #6 #7 #1 #2 #3 #4 5 #6 #7 #8

1 156 184 600 106 0 63 60 57 54 45 0 137 109 88 76 63 43 38 138
2 234 184 405 107 83 78 64 60 59 55 0 0 111 0 74 61 43 38 126
3 204 184 405 106 82 63 60 57 54 45 0 137 109 88 76 63 43 38 126
4 210 184 405 106 82 63 60 57 54 45 0 137 109 88 76 63 43 38 126
5 234 184 405 106 82 63 60 57 54 45 0 137 109 88 76 63 43 38 126
6 222 184 405 106 82 63 60 57 54 45 0 137 109 88 76 63 43 38 126
7 234 1374 508 106 82 63 60 57 54 45 172 134 110 89 76 63 42 37 126
8 222 1374 508 106 82 63 60 57 54 45 172 134 110 89 76 63 42 37 126
9 210 1374 508 106 82 63 60 57 54 45 172 134 110 89 76 63 42 37 132
10 210 1374 508 106 82 63 60 57 54 45 172 134 110 89 76 63 42 37 126
11 180 1374 508 106 82 63 60 57 54 45 172 134 110 89 76 63 42 37 120
12 144 1374 306 109 77 71 64 58 55 0 0 137 109 88 76 63 43 38 132
13 210 1374 405 106 82 63 60 57 54 45 0 137 109 88 76 63 43 38 126
14 210 1374 405 106 82 63 60 57 54 45 0 137 109 88 76 63 43 38 132
15 156 1374 306 109 77 71 64 58 55 0 0 137 109 88 76 63 43 38 132
16 162 1374 306 109 77 71 64 58 55 0 0 137 109 88 76 63 43 38 132
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Table 5  Set of different 
antibiotic resistance patterns 
determined for 51 MDR 
Acinetobacter baumannii strains

Meaning of symbols: R, resistance; S, susceptibility; I, intermediate phenotype
Antibiotics abbreviations: AN, amikacin; ATM, aztreonam; C, chloramphenicol; CAZ, ceftazidime; CFP, 
cefoperazone; CIP, ciprofloxacin; CTX, cefotaxime; GM, gentamycin; IPM, imipenem; NN, tobramycin; 
NET, netilmicin; SXT, trimethoprim/sulfamethoxazole; TIC, ticarcillin
Identical results for GM and C for different restriction patterns SsiI_1 and SsiI_2 are named C/GM and 
GM/C

Resist-
ance 
pattern

Antibiotic resistance/susceptibility

IPM NET NN CAZ CIP CTX CFP TIC ATM SXT C/GM GM/C AN

I R S R S R R R R R R R R R
II S R R R R R R R R R R R R
III S R S R R R R R R R R R R
IV S R R R R R R R R R R R S
V S R R R S R R R R R R R R
VI S S R R R R R R R R R R R
VII S S S R R R R R R R R R R
VIII S S S S S S S S S S R R R
IX S S R R R R R I R R R R R
X S S I R R R R I R R R R R
XI S R R R I R R R I R R R R
XII S I R R R R R R R R R R R
XIII S R R R R R R I R R R R R
XIV S R I R R R R I R R R R R
XV S R R R R R R R R R R R I

Table 6  Set of two joined-similarity matrices obtained for 19 differ-
ent genotypes indicated by underlined values, and for 19 different 
antibiotic resistance patterns. All values are from the range between 
1 and 100%. Abbreviations "_s" and "_r" indicate intermediate 

resistance patterns considered two times as susceptible or resistant, 
respectively. The "0" value was replaced by "1E-06" for diagonal cor-
relation calculation purposes. Significant (p < 0.05) combinations of 
genetic and resistance/susceptibility features are highlighted in black
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Aci13&14 || IPM 78.9 49.4 33.4 20.6 15.1 13.2 12.3 11.6 11.1 7.7 11.0 24.2 21.1 16.4 15.1 12.7 8.8 7.8 24.3
Aci17&18 || NET_r 0.0 65.2 63.4 39.7 30.0 26.4 24.8 23.5 22.5 15.9 22.2 45.7 40.5 32.2 29.9 25.5 18.0 16.1 45.9
Aci7&8 || NN_r 15.4 76.2 40.6 69.6 55.1 49.3 46.8 44.6 42.9 31.4 42.4 77.9 70.8 58.6 55.0 47.9 35.2 31.7 78.2
HaeIII_1 || CAZ 0.0 81.8 88.0 47.8 83.2 76.1 72.8 70.0 67.6 51.7 41.3 85.4 98.7 87.4 83.2 74.2 57.2 52.2 90.8
HaeIII_2 || CIP_r 14.3 72.7 88.0 92.3 45.6 87.0 83.6 80.7 78.4 60.7 39.5 69.6 82.0 89.2 93.7 84.9 67.4 62.1 74.4
HaeIII_3 || CTX 13.3 78.3 92.3 96.3 96.3 40.3 96.5 93.4 90.9 72.5 33.0 62.8 74.8 81.7 92.3 98.0 79.0 73.1 67.6
HaeIII_4 || CFP 13.3 78.3 92.3 96.3 96.3 100 38.9 96.9 94.4 75.7 32.7 60.5 71.6 79.3 89.1 97.9 82.3 76.4 64.5
HaeIII_5 || TIC_r 13.3 78.3 92.3 96.3 96.3 100 100 36.4 97.4 78.7 32.1 58.0 68.8 76.5 86.1 95.4 85.3 79.3 61.8
HaeIII_6 || ATM_r 13.3 78.3 92.3 96.3 96.3 100 100 100 33.5 81.1 31.2 55.8 66.5 74.0 83.6 92.9 87.8 81.8 59.6
HaeIII_7 || SXT 13.3 78.3 92.3 96.3 96.3 100 100 100 100 4.3 30.9 41.0 50.7 56.3 65.8 74.3 86.7 81.6 45.0
SsiI_1 || C/GM 12.5 75.0 88.9 92.9 92.9 96.6 96.6 96.6 96.6 96.6 -47.8 46.2 42.1 40.7 36.6 33.8 27.2 25.3 43.3
SsiI_2 || GM/C 12.5 75.0 88.9 92.9 92.9 96.6 96.6 96.6 96.6 96.6 100 14.1 86.5 78.8 70.1 62.0 47.0 42.8 94.1
SsiI_3 || AN_r 13.3 69.6 84.6 88.9 88.9 92.9 92.9 92.9 92.9 92.9 96.6 96.6 41.3 86.2 81.9 73.0 56.1 51.2 92.1
SsiI_4 || NET_s 0.0 94.1 70.0 76.2 66.7 72.7 72.7 72.7 72.7 72.7 69.6 69.6 63.6 49.8 89.8 81.1 63.7 58.6 78.5
SsiI_5 || NN_s 18.2 73.7 90.9 78.3 78.3 83.3 83.3 83.3 83.3 83.3 80.0 80.0 75.0 66.7 58.2 90.6 72.0 66.4 74.3
SsiI_6 || CIP_s 15.4 66.7 83.3 88.0 96.0 92.3 92.3 92.3 92.3 92.3 88.9 88.9 84.6 60.0 72.7 58.0 80.9 75.0 65.8
SsiI_7 || TIC_s 18.2 73.7 72.7 78.3 78.3 83.3 83.3 83.3 83.3 83.3 80.0 80.0 75.0 66.7 80.0 72.7 56.6 93.8 49.9
SsiI_8 || AN_s 14.3 63.6 80.0 84.6 84.6 88.9 88.9 88.9 88.9 88.9 92.9 92.9 96.3 57.1 69.6 80.0 69.6 37.8 45.4
emrA_hm || ATM_s 14.3 72.7 88.0 92.3 92.3 96.3 96.3 96.3 96.3 96.3 92.9 92.9 88.9 66.7 78.3 96.0 78.3 84.6 50.3
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with resistance to chloramphenicol and gentamycin; (2) 
45 and 55 bp DNA insertions in the same locus, identified 
using the HaeIII enzyme, combined with trimethoprim/
sulfamethoxazole resistance or susceptibility patterns; and 
(3) 184 or 1374 bps DNA length polymorphisms in the 
second genomic region (see tree new PCR region, Table 4), 

identified in our study for genotypes 1 to 6 and 7 to 16, in 
combination with imipenem resistance, characteristic for 
pattern I or susceptibility features, characteristic for other 
patterns (Table 6).

The presence of A. baumannii genotypes over a period 
of 4 years in the hospital wards (Table 7), and location of 

Fig. 1  Phylogenetic trees for different pairs of genetic polymorphisms 
and resistance/susceptibility features. Branches order obtained based 
on nearest neighbor method and length–distance calculation based on 

χ2 method. Significant (p < 0.05) differences indicated in black boxes 
were identified based on cut-off χ2 value = 4
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determined genotypes over a 4-year period in hospital wards 
(Table 8), was also assessed. This analysis provides a possibil-
ity to identify the presence of specific isolates in various wards 
over the period of several years. We suggest that such analy-
ses may be useful in epidemiological studies on the origin 
and migration of particular bacterial strains between different 
wards of an investigated hospital. It also gives the possibility 
to analyze the strains regardless of the time period in which 
they were collected.

Conclusions

In conclusion, 16 different genotypes out of 51 MDR A. 
baumannii clinical isolates were identified in our study. 
Based on combined comparative analysis of genetic and 

resistance patterns, two significantly different patterns of 
DNA polymorphisms in the CRISPR coding region, resist-
ance to chloramphenicol and gentamycin features, and 
resistance or susceptibility to trimethoprim/sulfamethoxa-
zole, specific groups of isolates were identified. Out of 19 
genetic markers and antibiotic resistance features, three of 
them were shown to be statistically significantly different 
using two statistical tools (Table 6, Fig. 1). In addition, 
184 or 1374 bp DNA length polymorphisms in genomic 
region no. 2, located upstream of the GTP cyclohydrolase 
I gene, with the Locus_tag = "ABTJ_01152", associated 
in 94% with susceptibility to imipenem, was identified. 
Finally, the highest genetic diversity, determined within 
the DNA polymerase III subunit gamma/tau gene, can be 
recommended for future genotyping of multidrug-resistant 
A. baumannii strains. We suggest that the optimized meth-
ods, proposed in this report and based on combination of 
Repeated Sequences and Whole Genome Alignment Dif-
ferential Analysis (RS&WGADA), can be useful in epide-
miological studies concerning specific strains of pathogenic 
bacteria present in investigated hospitals.

Table 7  Presence of A. baumannii genotypes over a period of 4 years

Abbreviations for wards: D—Dermatology, E—Endocrinology, G—
Geriatrics, G&ES—General and Endocrine Surgery, G&VS—Gen-
eral and Vascular Surgery, ICU—Intensive Care Unit, N—Neurology, 
Nef—Nephrology, NS—Neurosurgery, O—Orthopedic, OC—Ortho-
pedic Outpatient Clinic, PS—Plastic Surgery, R—Rehabilitation, 
SC—Surgical Outpatient Clinic

Year of isolation of the strain 
(number of genotypes determined)

Ward Genotype
(number of isolates)

2006(5) ICU 8 (3), 10, 9, 15
NS 8 (3), 7 (2)
R 8 (2)
E 7
G 10

2005(6) ICU 1, 8 (2), 15, 10
R 8, 10, 13
PS 8
NS 10
O 4 (2)
G&ES 15
SC 15
Nef 8
G&VS 10

2004(7) ICU 5
O 15
OC 4, 2
E 15
R 15, 3
NS 11, 15
G 4
N 16

2003(3) ICU 6 (2), 12
G&ES 6 (2)
O 6 (2)
N 6
D 14

Table 8  Location of determined genotypes over a 4-year period in 
hospital wards

Abbreviations for wards: D—Dermatology, E—Endocrinology, G—
Geriatrics, G&ES—General and Endocrine Surgery, G&VS—Gen-
eral and Vascular Surgery, ICU—Intensive Care Unit, N—Neurology, 
Nef—Nephrology, NS—Neurosurgery, O—Orthopedic, OC—Ortho-
pedic Outpatient Clinic, PS—Plastic Surgery, R—Rehabilitation, 
SC—Surgical Outpatient Clinic

Genotype Year(number of genotypes) Hospital ward(s)

15 2006(1) ICU
2005(3) ICU, G&ES, SC
2004(4) O, E, R, NS

8 2006(8) ICU, NS, R
2005(5) ICU, R, Nef

10 2006(2) ICU, G
2005(4) ICU, R, NS, G&VS

4 2005(2) O
2004(2) OC, G

6 2003(7) ICU, G&ES, O, N
7 2006(3) E
1 2005(1) ICU
2 2004(1) ICU
3 2004(1) R
5 2004(1) ICU
9 2006(1) ICU
11 2004(1) NS
12 2003(1) ICU
13 2005(1) R
14 2003(1) D
16 2004(1) N
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