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Abstract
Hailey-Hailey disease (HHD) is a rare, late-onset autosomal dominant genodermatosis characterized by blisters, vesicular lesions,
crusted erosions, and erythematous scaly plaques predominantly in intertriginous regions. HHD is caused by ATP2C1mutations.
About 180 distinct mutations have been identified so far; however, data of only few cases from Central Europe are available. The
aim was to analyze the ATP2C1 gene in a cohort of Polish HHD patients. A group of 18 patients was enrolled in the study based
on specific clinical symptoms. Mutations were detected using Sanger or next generation sequencing. In silico analysis was
performed by prediction algorisms and dynamic structural modeling. In two cases, mRNA analysis was performed to confirm
aberrant splicing. We detected 13 different mutations, including 8 novel, 2 recurrent (p.Gly850Ter and c.325-3 T >G), and 6
sporadic (c.423-1G > T, c.899 + 1G >A, p.Leu539Pro, p.Thr808TyrfsTer16, p.Gln855Arg and a complex allele: c.[1610C >
G;1741 + 3A >G]). In silico analysis shows that all novel missense variants are pathogenic or likely pathogenic. We confirmed
pathogenic status for two novel variants c.325-3 T > G and c.[1610C > G;1741 + 3A > G] by mRNA analysis. Our results
broaden the knowledge about genetic heterogeneity in Central European patients with ATP2C1 mutations and also give further
evidence that careful and multifactorial evaluation of variant pathogenicity status is essential.
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Introduction

Hailey-Hailey disease (HHD, OMIM 16960, or Benign
Chronic Pemphigus.) is a rare (incidence 1:50000) autosomal
dominant genodermatosis. The symptoms, aggravating

periodically, onset in third–fourth decade include blisters, ve-
sicular lesions, crusted erosions, and erythematous scaly
plaques, which occur mainly on groins, axillae, neck, and
other intertriginous areas, and mucosa may also be involved.
Lesions may be odorous and painful and lead to mobility
affecting fissures (Li et al. 2016; Zamiri and Munro 2016).
In histopathological findings, suprabasalar and intraepidermal
keratinocyte acantholysis with a “dilapidated brick wall” ap-
pearance is due to abnormal epidermal Ca2+ distribution by
secretory pathway Ca(2+) ATPase 1 (hSPCA1) caused by
mutation in its gene: calcium-transporting ATPase type 2C
member 1 (ATP2C1) (Cheng et al. 2010; Micaroni et al.
2016; Cialfi et al. 2016). Importantly, ATP2C1 is expressed
in all tissues, although HHD clinical symptoms are solely
isolated to the skin. Four isoforms differing by alternative
processing of the C-terminus are produced, but only few of
ATP2C1 mutations localized beyond the core of 26 exons are
present in each transcript (Nellen et al. 2017). The majority of
ATP2C1 mutations lead to a premature termination codon
(PTC); thus the dominant inheritance pattern of HHD seems
to result from haploinsufficiency. Nevertheless, as around 1/3
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of mutations lead to missenses or in-frame rearrangements,
other mechanisms may be involved (Dobson-Stone et al.
2002; Kitajima 2002). Thus, to understand the pathophysio-
logical molecular mechanism of HHD, further investigation is
required. Worldwide, only about 300 individuals have been
described so far with 179 distinct ATP2C1 variants (Nellen
et al. 2017). The majority of them are Asians, and only few
cases from Central Europe were published, including a not
genotyped case report from Poland (Rácz et al. 2005;
Sudbrak et al. 2000; Chlebicka et al. 2012).

Herein, we report the results of the first genetic investiga-
tion in 18 Polish HHD patients together with characterization
of splicing mutations and in silico structural dynamic model-
ing of novel missense mutations.

Patients and methods

Eighteen probands of Polish descent (Table 1) with clinical
HHD manifestation (according to Matsuda et al. (2014)) have
been enrolled in the study, together with their relatives, if avail-
able. The average age at diagnosis was 29 years old (range: 15–
40). All patients gave informed consent for participation.

All coding exons of ATP2C1 were analyzed using Sanger
sequencing (primers and PCR conditions available on request)
or panel next generation sequencing (customized KAPA
Library Preparation Kit - Roche) using MiSeq (Illumina).
The variants were annotated against NCBI RefSeq:
NM_014382.3 and checked for presence in the GnomAD,
ClinVar, HGMD Professional and ATP2C1 LOVD v.3.0
databases.

Novel missense mutations were analyzed using in silico
algorithms: DANN, MutationTaster, FATHMM, FATHMM-
MKL, GERP, MutationAssessor, SIFT, Provean, and Poly-
Phen2, classified according to ACMG guidelines (Richards
et al. 2015) and visualized using dynamic structural modeling
(Yasara Structure Package v.15.7.12). Briefly, isoform 1a of
hSPCA1 (NP_055197.2) was modeled by homology, using
eight closest templates identified in RCSB Protein Data
Bank (PDB) records, IDs: 3N5K, 4BEW, 1WPG, 2YN9,
2YFY, 2ZXE, 4RET, and 4HYT. For each template, up to five
alternative sequential alignments have been tested. Finally, the
best scoredmodels were built on the basis of 1WPG (37.2% of
sequence identity and 56.7% of sequence similarity within
802 residues of 919 being aligned) and 3N5K (36.8%,
56.2%, and 810, respectively) PDB records. However, the
final hybrid model, which combines the optimal parts of the
top models, was scored substantially higher than the latter and
thus was further used.

Novel intronic mutations were evaluated with the use of
three splice site prediction algorithms: MaxEnt, NNSPLICE,
and HSF. In order to confirm the putative cryptic splicing of
mutations c.325-3 T > G and c.1741 + 3A > G, RNA was

isolated from peripheral blood leukocytes, reverse transcribed,
and PCR amplified and analyzed using Sanger sequencing
(Fig. 1). As negative and positive controls, we included
RNA isolated from a healthy person and from a HHD patient
with the already known mutation c.1308 + 1G > T.

Results

ATP2C1 variants were detected in 17/18 probands, resulting
in a detection frequency of 94%. Overall, we detected 13
different heterozygous ATP2C1 variants, (6 missense or non-
sense, 3 splice site, 1 complex allele (missense and intronic in
cis), and 3 deletions or duplications). Eight of them (8/13,
61%, Table 1) are novel, i.e., c.2548G > T, c.325-3 T > G,
c . 4 2 3 - 1G > T, c . 8 9 9 + 1G > A , c . 1 6 1 6 T > C ,
c.2408_2420dup, c.2564A > G, and a complex allele:
c.[1610C > G;1741 + 3A > G]. Identified mutations localize
in the following exons: 26 (2/13), 18 (3/13), and (single var-
iant each) in 7, 8, 12, 21, 23, and 25 and introns 4, 6, and 11.

The molecular dynamic modeling or/and in silico predic-
tion analysis (Table 2) together with mRNA analysis of puta-
tive splicing mutations (Fig. 1) enabled us to confirm the
likely pathogenic status of these novel variants. Precisely,
novel c.325-3 T > G, c.1741 + 3A > G, and recurrent
c.1308 + 1G > T mutations cause in-frame skipping of exons
5, 18, and 15, respectively, which seems to severely affect the
protein structure.

Discussion

The majority of mutations (61%) identified in this study have
never been reported before, including two recurrent novel
splice site c.325-3 T >G (intron 4) and nonsense c.2548G >
T (exon 26) mutations, identified in 2/17 (12%) and 4/17
(24%) in different Polish families, respectively. This could
suggest specific founder mutations in this ethnic population.
All ATP2C1 missense mutations are localized in exons 8, 12,
18, and 26, which is partially in concordance with previous
observations clustering in exons 12, 13, 18, 21 and 23
(Micaroni et al. 2016).

Half (4/8) of the novel mutations could easily be classified
as pathogenic due to introduction of a premature stop codon
(p.Gly850Ter, p.Thr808TyrfsTer16) or change in the con-
served consensus sequence of the canonical splice sites
(c.423-1G > T, c.899 + 1G > A). The novel missense muta-
tions, p.Gln855Arg, p.Leu539Pro and the p.Thr537Arg de-
tected in ciswith 1741+3A>G, were analysed using molecular
dynamic modeling and standard in silico tools.

Molecular dynamic modeling showed that conversion of
Gln855 into Arg would distort the transmembrane helical
structure and form a positively charged region located in the
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proximity of the ion channel, which seemingly would affect
protein location and Ca2+ transport. The effect of p.Leu539Pro
is less clear; however it is possible that this substitution would
destabilize hydrophobic core formed between β-sheet struc-
tures and hence influence ATPase alpha subunit interactions,
which in turn could affect ATP binding, its hydrolysis, and
finally ion transportation. Unfortunately, no family data were
available for probands with p.Leu539Pro and p.Gln855Arg;
thus the genotype-phenotype segregation could not be
performed.

The clinical significance of another missense, the
p.Thr537Arg in exon 18 is more difficult to evaluate. In
GnomAD, no records for p.Thr537Arg can be found. The
prediction algorithms (PolyPhen, SIFT, MutationTaster) indi-
cated possible pathogenic effect of p.Thr537Arg.
Contradictory to them, dynamic structural modeling showed
that this solvent exposed substitution most probably does not
result in significant conformational change. Furthermore, the
p.Thr537Arg was found in cis with a novel, mutation
c.1741 + 3A > G in intron 18, which leads to exon 18 in-

Fig. 1 Results of functional
analysis of three splicing
mutations in ATP2C1 gene and
modeling of altered protein
products (ATPase2C1). Results of
DNA genotyping: A1, E1, F1,
nucleotide substitutions indicated
by red arrows; results of cDNA
analysis: A2, E2, F2 (patients
samples) and control samples
(A3, E3, F3); schematic view of
altered and normal transcripts
(C1, E4, F4); predicted structure
models of ATPase2C1 protein: B
– wild type protein showing or-
ganization of transmembrane he-
lices with amino acids 109–120
marked in blue; C2- protein lack-
ing amino acids 109–120; D –
wild type protein showing orga-
nization of ATP binding domain
(amino acids 407–436 marked in
magenta, amino acids 524–580
marked in green); E5 – protein
lacking amino acids 407–436, F5
– protein lacking amino acids
524–580

J Appl Genetics (2020) 61:187–193 191



frame skipping as we have shown by mRNA analysis. Thus,
the protein, if at all synthetized, lacks 57 codons including
codon 537. This example of a complex allele containing two
variants is not reported before, and c.[1610C > G;1741 +
3A >G], which both were assigned as potentially pathogenic
by common prediction algorithms, draws attention on an im-
portant issue of careful pathogenicity status evaluation, espe-
cially when only selected exons are investigated. Importantly,
when p.Thr537Arg status was evaluated alone, it was assigned
as “likely pathogenic” using ACMG classification (Richards
et al. 2015), which later changed into “uncertain significance”
when we detected c.1741 + 3A >G and proved its impact on
splicing.

Novel c.325-3 T >G and recurrent c.1308 + 1G > T muta-
tions also lead to in-frame exons skipping (of exons 5 and 15,
respectively). Moreover, given that skipping of exons 5 and
15 due to other mutations have been described before
(Kitajima 2002; Matsuda et al. 2014; Xiao et al. 2019), our

observation indicates that despite distinct molecular lesions,
the functional effect of mutations may be similar, which could
be significant with regard to the purposes of personalized
treatment.

In summary, this is the first report of genetic analysis in
Polish HHD patients. Thirteen variants were identified and
characterized, including eight unreported before and two re-
current. The results further show heterogeneity in the ATP2C1
mutational spectrum, with possible ethnic-specificity. Last but
not the least, by showing a case of complex allele c.[1610C >
G;1741 + 3A > G], we also point that careful in silico and
extended molecular analysis is essential with respect to proper
interpretation of mutation pathogenicity.
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Table 2 Results of structural dynamic modeling.

Part B – results of structural modeling

NAME p.Thr537Arg p.Leu539Pro p.Gln855Arg
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INTERA
CTIONS

Solvent exposed. Thr537 replacement by 
Arg may be accommodated without 

significant change of the protein structure 
(RMSD for CA atoms of the domain 

estimated to 0.47Å)

Located in β-sheet proximal to the putative 
hydrolase site of ATPase alpha subunit

Contributes to the strongly packed hydrophobic 
core build by side chains of Arg 403, Ile 404,  

Ala 407, Phe 478, Gln 494, Leu 527, Ser 529, Thr 
537, Leu 539. 

Hence, Leu539Pro replacement seem to induce 
compensation, probably by reorientation of 

numerous residues (RMSD for CA atoms of the 
domain estimated to 0.96Å).

Located in the transmembrane helical region. The side chain 
makes numerous hydrophobic contacts with Ile 852 , Ile 859

and with other residues located in the neighboring helices: Met 
741, Phe 812, Thr 813, Val 816 and Phe 817. Most of these 

interactions are lost upon Gln855Arg replacement.  Moreover, 
Gln 855 is proximal to the putative ion transporting channel 

(Asp, Asp, Asn, Asn), so Gln855Arg replacement most 
probably will also directly affect Ca transport.

PREDIC
TED 

EFFECT 
OF 

SUBSTIT
UTION

Unfavorable electrostatic interaction with 
a proximal Arg403 may slightly affect 

domain protein stability

Disorganization of the hydrophobic core most 
probably results in a substantial decrease of the 

protein stability

Distortion of transmembrane helices organization together with 
positively charged region located in the proximity of ion 

channel will most probably severely disrupt Ca transport .

POLY-PHEN 2 Probably damaging (score: Hum Div 
0.985/1, Hum Var:  0.924/1)

Probably damaging (score: Hum Div 0.992/1, 
Hum Var:  0.936/1)

Probably damaging (score: Hum Div 1/1, Hum Var:  1/1)

SIFT Deleterious (score: 0.02, median: 3.59) Tolerated (score: 0,06, median: 3.57) Deleterious (score: 0, median: 3.57)

MUTATION
TASTER

disease causing (p-value: 1) disease causing (p-value: 1) disease causing (p-value: 1)

REGISTERED IN 
THE OTHER 
DATABASES 

no no no

Schematic 
representation of the 

domain. 

Thr537, Leu539 and 
Gln855 are viewed 

as ball and stick 
models and 

indicated by green 
arrows.

Abbreviations: F -familial, S - sporadic, ND - no data
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