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Abstract Pigs as a source of grafts for xenotransplantation
can help to overcome the rapidly growing shortage of human
donors. However, in the case of pig-to-human transplantation,
the antibody-xenoantigen complexes lead to the complement
activation and immediate hyperacute rejection. Methods elim-
inating hyperacute rejection (HAR) include «1,3-
galactosyltransferase (GGTA1) inactivation, regulation of
the complement system and modification of the oligosaccha-
ride structure of surface proteins. The humoral immune re-
sponse control and reduction of the risk of coagulation disor-
ders are the priority tasks in attempts to overcome acute
humoral xenograft rejection that may occur after the elimina-
tion of HAR. The primary targets for research are connected
with the identification of obstacles and development of strat-
egies to tackle them. Because of the magnitude of factors
involved in the immune, genetic engineers face a serious
problem of producing multitransgenic animals in the shortest
possible time.
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Introduction

The shortage of human organs for transplantation has moti-
vated scientists to consider how new technologies such as
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genetic, tissue and cellular engineering might be used to
improve the function or replace failing organs. As statistics
show, a demand for organ transplantation, measured by the
number of patients on waiting lists, has increased in the last
decade. In 2011, according to the Annual Report of Organ
Procurement and Transplantation Network (OPTN) in the
United States of America, there is one registered donor per
every ten patients awaiting transplantation. The situation is
very dynamic: the demand for kidney transplants has dou-
bled in the last decade, whereas at the same time that for
lung transplants has nearly halved. Improvements in the
system of organ registration and distribution, promotion of
healthy lifestyle to improve the physical fitness of the
society, decreasing the frequency of chronic graft rejec-
tions thanks to reduced toxicity of immunosuppressive
treatments and inducing tolerance are the most important
challenges of modern transplantology. However, all these
measures are insufficient to improve the short supply of
potential organs and transplantation tissues. This dramatic
situation has resulted in studies on alternative sources of
organs.

The concept of cross-species transplantation is not a new
idea. Clinical attempts in this field have been conducted
during the past 300 years (Cooper 2012). The phylogenetic
proximity of non-human primates and humans is the strongest
argument for xenotransplantation, although at the same time it
carries the greatest risk of xenozoonoses. An unlimited avail-
ability, good breeding potential, short period to reproductive
maturity, relatively short pregnancy, a high number of off-
spring, anatomical and physiological similarities to humans,
low risk of infection transfer with availability of specific
pathogen-free animals indicate pigs as animal donors of
tissues and organs for transplantation (Cooper et al.
2002). However, we must remember that the large phy-
logenetic distance will induce numerous perturbations
after xenotransplantation.
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Immunobiology of xenotransplantation

Transplantation of wild type pig organs into non-human pri-
mates activates the complement cascade by binding naturally
occurring preformed antibodies to carbohydrate Galo(1,3)Gal
epitopes on the surface of porcine endothelial cells (ECs)
causing hyperacute rejection (HAR) (Lexer et al. 1986).
Type 1 (nontranscriptional) activation is rapid and leads to
ECs retraction, expression of P-selectin (CD62P), secretion
of the platelet activating factor (PAF) and loss of the anti-
thrombotic phenotype (Cho et al. 2012). Immunoglobulin G
(IgG) after specific binding to target carbohydrate antigens on
endothelial cell membranes induces C3b production and
complement-mediated vascular collapse. Galvao et al.
showed that rabbit-to-swine multivisceral xenotransplants
undergo moderate HAR in the liver, but the other organs
suffer from severe HAR. An accumulation of IgG, espe-
cially in the vascular endothelium, was observed and
caused edema, hemorrhage, thrombosis, myositis, fibrinoid
degeneration and necrosis (2012). Free radicals, especially
reactive oxygen species (ROS) and nitric oxide species
(NOS), contribute to injury, rejection and dysfunction of
the xenotransplanted organs. HAR observed in a xenoge-
neic perfused liver was triggered by the complement sys-
tem only in the presence of leukocytes and free radical
formation (Ngo et al. 2013).

Results of protocol biopsies demonstrated that the de-
gree of subsequent acute humoral xenograft rejection
(AHXR) was reduced in hDAF transgenic animals lacking
antibodies against Galx(1,3)Gal epitopes compared with
control animals. Intravenous administration of GAS914, a
soluble, polymeric form of a Galx(1,3)Gal trisaccharide,
significantly reduced xenoreactive antibodies, therefore
was able to prevent not only hyperacute rejection, but
also acute vascular rejection at its beginning (Zhong
et al. 2003). Although pigs that lack Galx(1,3)Gal parti-
cles ensure prolonged survival of xenografts, other epi-
topes are still expressed and may induce AHXR as sub-
sequent rejection.

Vascularized grafts are lost because of AHXR character-
ized by type II (transcriptional) endothelial cell activation,
thrombosis with fibrin deposition and cellular infiltration.
Natural killer cells (NK), monocyte/macrophages and neutro-
phils play a role in AHXR, but only the importance of the NK
is clear (Inverardi et al. 1997; Fox et al. 2001; Rieben and
Seebach 2005). Park et al. in their study showed that the
activity of GGTAL in the lungs, liver, spleen and testes ex-
cluding the brain and heart of heterozygous GTKO («l1,3-
galactosyltransferase gene-knockout) pigs was significantly
decreased when compared to the controls. The same pigs
had more sialylx2,6- and sialyla2,3-linked glycan than the
control. The heart, liver and kidneys of heterozygous GTKO
pigs had much higher N-glycolylneuraminic acid (Neu5Gc)
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contents than the control. Based on these results the authors
indicated Neu5Gc and named it the Hanganutziu-Deicher (H-
D) antigen, not synthesized in humans, as crucial for over-
coming the next acute immune rejection in pig-to-human
xenotransplantation (2012a, b). The cytidine
monophosphate-N-acetylneuraminic acid hydroxylase
(CMAH) catalyzes the conversion of CMP-N-
acetylneuraminic acid (CMP-Neu5Ac) into its hydroxylated
derivative CMP-N-glycolylneuraminic acid (CMP-Neu5Gc).
Lutz et al. showed that the humoral barrier to xenotransplan-
tation was reduced to a greater degree in the case of pigs
lacking both CMAH and GGTA1 gene activities than it was
with pigs lacking only GGTA1 (2013). At the same time,
Kwon et al. produced both mono- and bi-allelic CMAH
knock-out (CMAH-KO) miniature pigs with the use of zinc
finger nucleases, which showed detectable decreased tran-
script levels of the H-D antigen. CMAH-KO pigs were
healthy and showed no signs of abnormality or off-target
mutations (2013).

The vasculopathy similar to the chronic rejection of long-
surviving allografts appears in the xenografts that survive for
more than a few weeks (Ekser and Cooper 2010). In
xenospecific CD4+ T-cell activation that occurs in chronic
rejection, indirect recognition of xenoantigens is involved.
Human T-cell response against pig antigens is at least as
powerful as in the allotransplant response. Human CD4+ T
cells mainly recognize SLA class I-derived peptides and SLA
class I molecules expressed on all cell types. Identification of
the immunogenic SLA class I epitopes may facilitate devel-
opment of strategies inducing peptide-specific immune toler-
ance (Park et al. 2012a, b).

In the case of an extracorporeal perfusion of a pig
liver with human blood, porcine Kupffer cells bound N-
acetylneuraminic acid present on human erythrocytes
and destroyed more than 90 % of them showing the
other dark side of the xenotransplantation. The addition
of anti-porcine sialoadhesin mAb reduced the loss of
human erythrocytes over a 72-h period and prolonged
pig liver metabolic function throughout the extracorpo-
real perfusion (Waldman et al. 2013).

Other pig-to-human xenotransplantation obstacles include
molecular differences between the coagulation systems. The
pig tissue factor pathway inhibitor (TFPI) is unable to neutral-
ize the human factor Xa and cannot inhibit the direct activa-
tion of human prothrombin to thrombin. Pig thrombomodulin
(TM) binds human thrombin, but this complex is ineffective in
activating protein C, which promotes clotting. The von
Willebrand factor interacts with higher affinity human platelet
receptors, leading to elevated pro-coagulant activity. The bar-
riers of pig-to-human transplantation are significant, but are
being overcome by attempts to produce genetically
engineered animals to make them indistinguishable for the
human immune system.
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HAR preventing strategies

Development of methods eliminating HAR is the first step to
prevent xenograft rejection. Genetically modified pig organs
not expressing the Galx(1,3)Gal epitope are grafts of choice.
An alternative method of reducing the number of
Galo(1,3)Gal epitopes is to incorporate a gene coding for
human «1,2-fucosyltransferase (HT, H-transferase) into the
pig genome. Expression of HT does not allow a complete
elimination of the epitopes. It is suggested to co-express x1,2-
fucosyltransferase and o-galactosidase (GLA), as it removes
terminal D-galactose of the epitope (Luo et al. 1999). Osman
et al. reported a greater reduction in the number of the
Galo(1,3)Gal epitopes on the surface of COS cells expressing
both GLA and HT comparing with single transgenic cells
(1997). Opposite to Osman et al., no cumulative effect of the
co-expression of both enzymes was observed by our research
team (Zeyland et al. 2014). Some advances in the control of
complement activation were also achieved by the preparation
of pig cells expressing human complement regulatory proteins
(CRPs) (Zeyland et al. 2012). CDS55 decay accelerating factor
(DAF), CD46 membrane cofactor protein (MCP) and CD59
membrane inhibitor of reactive lysis (MIRL) are the most
important complement regulators anchored in cell mem-
branes. Murine splenocytes co-expressing human HT and
CD59 showed greater resistance when exposed to the human
serum in comparison to the wild type control (Costa et al.
1999). Similar observations were made in the case of CD59
expression in GTKO splenocytes of mice (Tange et al. 1997).
In addition, it was demonstrated that the protective action of
the co-expressed CD55 and CD59 factors was higher than that
of CD55 and CD46 (Huang et al. 2001). Pigs expressing
CRPs are listed in Table 1.

Some hopes for prolonging the survival time of organs are
vested in the transgenic modulation of the clotting cascade by
the expression of anticoagulants, or their induction or elimi-
nation of procoagulants on the xenogenic vascular endotheli-
um. The considered options include the expression of factors
such as the platelet fibrinogen receptor antagonist (GPIIblIIa),
CD62P inhibitor, CD39 (ectonucleoside triphosphate
diphosphohydrolase 1), TFPI, TM, hirudin and CD73, or
knocking out genes of tissue factor, protease activated recep-
tors 3 and 4, and fibrinogen-like protein 2.

Solid xenoorgans

It is proven that the wild type pig-to-baboon liver xenotrans-
plantation induces platelet activation, phagocytosis and fatal
hemorrhage as a consequence of thrombocytopenia.
Genetically engineered pigs with the knocked out GGTA1
gene produce antibodies against Galx(1,3)Gal epitopes,
which may prove an indirect confirmation of successful Gal

deletion (Fang et al. 2012). Anyhow, Sharma et al. were able
to detect small amounts of Gal epitopes in transgenic pigs with
the homozygotic GTKO genotype (2003). In the case of
GTKO, a heart transplant survived in the baboon organism
for 6 months compared to 3 months in the case of a kidney
graft (Cozzi et al. 2000; Kuwaki et al. 2005; Tseng et al. 2005;
Yamada et al. 2005). Kim et al. transplanted livers from
GTKO pigs to baboons under immunosuppressive treatment,
suggesting that thrombocytopenia after xenotransplantation
may be overcome by aminocaproic acid (Amicar®) therapy.
One baboon, showing no histopathological evidence of rejec-
tion, died after 6 days from uncontrolled bleeding.
Aminocaproic acid treatment helped two other animals to
survive 2 and 3 days longer after xenotransplantation (2012).
To prevent thrombosis and inflammation that occur after solid
organ xenotransplantation, transgenic pigs overexpressing an-
ticoagulant, antiinflammatory and/or cytoprotective factors
may be produced. Transgenic mice expressing human endo-
thelial protein C receptor (hEPCR) were protected against
warm renal ischemia reperfusion injury. Hearts from these
mice survived longer after heterotropic transplantation in
Cé6-deficient rats showing less edema and hemorrhage (Lee
et al. 2012). Platelet aggregation plays a key role in the
development of thrombotic microangiopathy in primate recip-
ients of pig xenografts. Collagen, adenosine diphosphate and
thrombin induce greater platelet aggregation in humans than
in baboons, whereas adenosine diphosphate and thrombin
induce more platelet aggregation in cynomolgus monkeys
than in baboons. Over all, thrombin among its agonists inves-
tigated by Iwase et al. was responsible for the highest level of
platelet aggregation in all the above mentioned species (2012).
Thus thrombin formation plays a key role in the activation of
coagulation and it is suggested that organs from GTKO pigs
with human TM may lead to a decreased immunological
response.

Xenotransplantation of transgenic organs from pigs ex-
pressing human complement regulatory factors did not acti-
vate the complement cascade, showing effectiveness of the
strategy in overcoming HAR. Hearts from transgenic pigs
expressing DAF and CD359, transplanted into baboons,
showed less vascular injury and functioned for prolonged
periods when compared to hearts from wild-type pigs
(McCurry et al. 1995). CD59/DAF pig hearts transplanted
into baboons immunosuppressed with cyclosporine,
methylprednisone or leflunomide/mofetil mycophenolate
functioned for 85-130 h. Wild-type pig hearts survived for
only 20-80 min. Hearts from transgenic animals showed less
HAR, but were characterized by acute vascular rejection with
a high level of IgG deposits (Chen et al. 1999). Cynomolgus
monkeys and baboons under immunosuppressive treatment
received kidneys or hearts from pigs expressing human DAF.
The presence of hDAF fully prevented kidney xenograft in
cynomolgus monkey from HAR and partially grafted hearts in
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Table 1 Pig genetic
modifications for
xenotransplantation

Introduced/inactivated gene

Expected effect

p GGTAL1
h CD55, CD46, CD59
h HT

h GLA

p CMAH

HLA-E/h 32-microglobulin

p ULBP1

h CD47
p — porcine, h — human, ULBP1 h CD39
(UL16 binding protein 1), HLA h'T™, TFPI
(human leukocyte antigen), p CTLA4-Ig
CTLAA4Ig (cytoxic T-lymphocyte LEA29Y
associated antigen4- h CIITA-D
immunoglobulin); TNFRI-Fc -DN
(tumor necrosis factor-alpha h TRAIL
receptor I-Fc); HO-1 (heme PERV siRNA
oxygt?nase—l); C.IITA—DN h GnT-III
(dominant-negative mutant class

h TNFRI-Fc

II transactivator), GnT-III (N-
acetylglucosaminyltransferase h A20
III), A20 (tumor necrosis factor- h HO-1

Inactivation/ prevents HAR

Expression/ prevents HAR

Expression/ prevents HAR

Expression/ prevents HAR

Inactivation/ reduces xenoantigenicity

Expression/ prevents rejection assisted by NK cells
Inactivation/ prevents rejection assisted by NK cells
Expression/ prevents rejection assisted by macrophages
Expression/ prevents thrombosis

Expression/ prevents delayed xenograft rejection
Expression/ prevents the T-cell-mediated response
Expression/ prevents activation of T-cells

Expression/ prevents human cellular immune response
Expression/ prevents cellular immune response
Expression/ prevents activation of PERV

Expression/ reduces xenoantigenicity

Expression/ prevents hTNF-x-mediated inflammation and apoptosis
Expression/ prevents acute vascular rejection

Expression/ anti-oxidative, anti-apoptotic, and anti-inflammatory effect

alpha—induced protein 3)

cynomolgus monkeys or baboons (Schuurman et al. 2002).
McGregor et al. performed heterotopic heart transplantations
from hCD46 transgenic pigs to baboons using a combination
of therapeutic agents. Two out of seven grafts were lost as a
result of rejection. The median graft survival time was 96 days.
No consumptive coagulopathy, cellular infiltration or post-
transplantation lymphoproliferative disorders occurred
(2005). Mohiuddin et al. suggested a critical role for B cells
in the mechanisms of elicited non-Galx(1,3)Gal antibody and
delayed xenograft rejection. They reported a significant ex-
tension of heterotopic hCD46/GTKO pig cardiac xenograft
survival in specific pathogen free baboons. Peritransplant B-
cell depletion in the context of an established immunosup-
pressive regimen prolonged GTKO/hCD46 graft survival up
to 236 days (maximum). B-cell depletion persisted for over
2 months (2012).

Hyperacute rejection, acute humoral xenograft rejection
and acute cellular rejection in case of solid genetically mod-
ified xenoorgans can be partially controlled by an administra-
tion of immunosuppressive therapies, but the development of
graft vasculopathy in the case of chronic rejection is still a big
challenge.

Islet xenotransplantation
Non-vascularized tissue transplantation is believed not to

provoke classical HAR rejection. Porcine islet endocrine cells
express low levels of the Galo(1,3)Gal epitope, which makes
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them resistant to most xenoreactive antibodies (Dor et al.
2004). The islet isolation procedure removes most of the
vasculature and moreover, after transplantation islet revascu-
larization is of the recipient origin. In vitro exposure of por-
cine Langerhans islets to human whole blood results in a rapid
inflammatory reaction followed by macroscopic coagulation,
complement activation, consumption of platelets and infiltra-
tion of immune cells (mainly T cells) (Bennet et al. 2000).
Instant blood-mediated inflammatory reaction (IBMIR) is
characterized by kinetics similar to HAR, but antibody depo-
sition is not observed. Porcine islets that survive IBMIR
undergo cell-mediated rejection. A broad spectrum of factors,
i.a. the implementation site or immunosuppression treatment,
can affect porcine islet survival after transplantation to a
primate recipient. The portal vein is the site of choice also in
allotransplantation, but unfortunately it is also risky because of
the islet graft direct contact with blood leading to IBMIR and
early cell loss. Islet damage involves membrane leakage, anti-
body deposition, complement activation, formation of the C5b-
9 membrane attack complex and mitochondrial dysfunction.
The gastric submucosal space, subcutaneous fat, intramuscular
(e.g. parathyroid glands), intraperitoneal and omental sites are
investigated as alternatives for the portal vein. In spite of the
massive loss, estimated at up to 80 %, the remaining cells are
able to control blood sugar and sustain normoglycaemia. An
immunosuppressive compilation of anti-IL2R and anti-CD40L
monoclonal antibodies, fingolimod or tacrolimus, everolimus
and leflunomide, supported the survival of wild-type porcine
islets in pancreatectomized cynomolgus macaques for longer
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than 180 days. This resulted from suppressing indirect activa-
tion of T cells, induction of IgG antibodies, expression of
proinflammatory cytokines and invasion of infiltrating mono-
nuclear cells (Hering et al. 2006). Also temporal T-cell deple-
tion, as in the clinically practiced anti-thymocyte-globulin ther-
apy, combined with human alpha-1-antitrypsin administration,
may promote islet xenograft acceptance (Ashkenazi et al. 2013).
Luan and Iwata encapsulated rat islets with agarose-
immobilized microbeads of the inhibitor of the classical and
alternative complement activation pathways, called soluble
complement receptor 1 (SCR1). After transplantation to mice
not treated with immunosuppressants, grafts survived 22 days
longer than the control islets showing some protective effect of
sCR1 (2012). Although the xenogeneic islet microencapsulation
prevents direct contact with the host immune system, the ob-
served graft infiltration by host macrophages leads to
pericapsular fibrotic overgrowth in the case of encapsulated fetal
porcine islet-like cell clusters transplanted into the peritoneal
cavity of immunocompetent mice (Vaithilingam et al. 2013).
Macrophages were also responsible for a function collapse of
the encapsulated human islets in Ca2+/Ba2+ alginate
microbeads transplanted to diabetic Balb/c mice (Qi et al. 2012).

As an alternative to the immunosuppressive strategies and
islet encapsulation, some transgenic attempts to reduce T-cell
mediated immune response were undertaken. Transgenic pigs
expressing the human tumor necrosis factor-alpha-related
apoptosis-inducing ligand (TRAIL) have been produced
(Klose et al. 2005). The main biological role of TRAIL is to
kill tumor and virus-infected cells. DR4 and DR5 — death
receptors highly expressed on activated lymphocytes, induce
apoptosis after engagement by TRAIL. Adenocarcinoma cells
and mastocytoma tumors expressing TRAIL avoided attack of
tumor-specific T cells and tumor-infiltrating macrophages,
respectively. Expression of human TRAIL on porcine dendrit-
ic cells in vitro attenuated the human primary T cell response
(Kemter et al. 2012).

Other tissue/cellular xenotransplantations

Parkinson’s disease (PD) is a brain disorder related to the loss
of dopamine producing cells. A possible therapeutic solution
would be to implement PD patients with pig mesencephalic
dopaminergic-enriched cells. This strategy was applied in
Macaca fascicularis after PD induction. Twelve PD monkeys
received human embryonic neural precursor cells expressing
CTLA-4-Ig (cytoxic T-lymphocyte associated antigen4-im-
munoglobulin), which can bind to B7 molecules expressed
on dendritic cells and activate the tryptophan catabolic path-
way that can lead to indirect inhibition of lymphocyte activa-
tion and T cell death. Control studies showed a highly signif-
icant recovery of spontaneous locomotion in all grafted ani-
mals, which can be partially explained by a fragmentary

restoration of dopaminergic activity detected by PET scans
in at least six animals. This progress in locomotor activity was
observed even after more than 15 months. Histological anal-
yses showed the existence of porcine grafts composed of
dopaminergic, serotoninergic and GABAergic differentiated
neurons and various glial components, which is very promis-
ing for humans suffering from PD (Badin et al. 2010).

Allotransplantation of the liver as a whole organ is limited
by the shortage of human donors. Xenotransplantation of pig
hepatocytes could provide patients with hope of alleviating
metabolic deficiencies and supporting the damaged organ
function. Nagata et al. transplanted 1-2 billion hepatocytes
into spleens of cynomolgus monkeys under immunosuppres-
sive treatment. Xenogeneic hepatocytes functioned for more
than 80 days after infusion and for more than 253 days after
retransplantation with no perceivable influence on the grafts’
survival (2007).

Corneal blindness is still a highly prevalent disease. In the
developed world corneal allotransplantation is widely available,
but globally the demand for corneas far exceeds their supply.
The cornea as not immediately vascularized, immunologically
privileged tissue is believed to be more promising than solid
xenoorgans after transplantation. Immune privilege is an evolu-
tionary adaptation that protects structures (i.e. the brain, ovaries,
testes, adrenal cortex) from damage caused by an inflammatory
immune response. The cornea, anterior chamber, vitreous cavity
and sub-retinal space are immune-privileged in the eye. The
cornea is avascular and the aqueous humor contains several
factors with anti-complement activity. Wild type Wuzhishan
pig corneal grafts were rejected within 15 days without any
signs of HAR after orthotopic penetrating xenotransplantation
into the eyes of non-immunosupressed rhesus monkeys.
Rejection was delayed for more than 4 months by conjunctival
injection with betamethasone. The use of lamellar corneal xe-
nografts maintained corneal transparency for more than
3 months without steroid treatment to the eye (Pan et al.
2007). Kelley et al. reported that five of six small (6.5 mm)
human corneal grafts in rhesus monkeys survived over 6-9
months. Five out of six larger grafts (9.5 mm) had been rejected
by the end of the 6-month period. These findings suggest that
graft size influences survival (Kelley et al. 1984). Jie et al.
checked the survival of corneal graft from Wuzhishan pigs in
rhesus monkeys after xenotransplantation following donor bone
marrow transplantation (BMT). Animals were tested for chime-
rism, mixed lymphocyte reaction (MLR) and immunoglobulin
and the complement levels in the serum. The mean survival time
was 10 days longer than in the control monkeys that also
received intravenous injection of cyclophosphamide (CP), but
did not undergo BMT. Immunoglobulin and complement levels
in the serum showed a downward trend. Histopathological
examinations demonstrated that the corneal xenografts had min-
imal inflammatory cell infiltration and no eosinophil infiltration
in monkeys after BMT (2013).
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Adipose-derived mesenchymal stem cells (AD-MSCs) are
thought to be promising sources in regenerative medicine of
eye diseases, especially to treat retinal blindness. Human AD-
MSC were xenotransplanted into the eyes of rats and assessed
for survival during a 6-month period. AD-MSCs were detect-
ed in the vitreous humor for up to 90 days, but they were also
integrated into the ocular tissues. Some of the cells crossed the
blood-retina barrier and were detected in the spleen, indicating
the problem of stem cell migration to non-target sites
(Haddad-Mashadrizeh et al. 2013a, b). The same problem
was observed in the case of human AD-MSCs crossing the
blood barrier after xenotransplantation to the rat brain
(Haddad-Mashadrizeh et al. 2013a, b). This should be limited
by the use of immune privilege cells and tissues for
implantation.

Pig RBC (red blood cell) diameters and counts are similar,
although the average life span is shorter than that of human
RBCs. Porcine hemoglobin with a similar three-dimensional
structure shares 85 % sequence identity with its human coun-
terpart. Pig RBCs do not express swine leukocyte antigens,
thus reducing immunogenicity. Removing Gala(1,3)Gal epi-
topes by GLA treatment prevented binding of baboon and
human antibodies to pRBCs in vitro. GLA treated pRBCs
were undetectable for baboon immunological system for at
least several hours. Previous treatment of wild type pRBCs
with GLA and neuraminidase would be required to eliminate
the risk of a hemolytic reaction after transfusion (Cooper
2012). In vitro, native human or baboon serum IgM binding
was detected on GTKO pRBCs, but it was significantly lower
than binding to wild type pRBCs, while IgG binding was
absent or minimal. In vivo studies showed that GTKO
pRBC:s are rapidly phagocytosed from the primate circulation
by a mechanism not involving anti-Gal antibodies (Rouhani
et al. 2004). GTKO pRBCs are significantly more compatible
than ABO-incompatible human RBCs and wild type pRBCs,
but they are not comparable with ABO-compatible human
combinations (Long et al. 2009). In the context of blood
transfusion, production of GTKO pigs with added hCD47
expression is being considered. The limited compatibility
(73 %) of amino acid sequences between the pig and human
CD47 may contribute to phagocytosis of xenogeneic cells by
macrophages that can even act in the absence of antibodies or
complement opsonization. SIRP«x (the signal regulatory pro-
tein o) is a receptor on macrophages that interacts with CD47
and prevents autologous phagocytosis. Expression of human
CD47 on porcine cells provides inhibitory signaling to SIRPx
on human macrophages (Ide et al. 2007).

Final conclusions

When we consider xenotransplantation in the context of its
safety as a clinical approach, we think of minimizing the risk

@ Springer

of infectious agent transmission through this procedure.
The considerable phylogenetic distance between humans
and pigs may limit the prevalence of infections caused by
zoonotic pathogens (bacterial, viral and parasitic), espe-
cially when animals are bred under strictly controlled con-
ditions in selected, pathogen-free herds. Specific knock-
outs and short interfering RNAs specific for viral se-
quences have been proposed as a strategy of virus eradica-
tion from the pig herds (Fiebig et al. 2003; Miyagawa et al.
2005). During the past decade, no transmission of infec-
tious agents to humans exposed to live porcine cells and
tissues was recorded. Nevertheless, the greatest hazard is
still seen in porcine endogenous retroviruses (PERVs),
classified on the basis of the differences in receptor recog-
nition to the A, B and C classes. PERV-A and PERV-B can
infect human cells in vitro, but PERV-C lacks this capacity.
Recombination between PERV-A and PERV-C is possible.
Although this recombinant virus can infect human cells, no
PERV-A/C virus infection was reported in humans. Pigs
with a low expression of PERV-A and PERV-B and free
from PERV-C should be used for xenotransplantation.
Another virus — porcine cytomegalovirus (PCMV) —
was detected in primates after xenotransplantation, but it
did not lead to invasive disease of the host. When it comes
to the porcine lymphotropic viruses (PLHVs), only PLHV-
1 is associated with a lymphoproliferative syndrome, but
such a disorder has not been observed after pig-to-primate
xenotransplantations (Mueller et al. 2004).

There are four weaknesses associated with strategies
involved in preventing xenograft rejection: the use of
immunosuppression and inducing the tolerance, encour-
aging non-infectious or latent pathogens to become ma-
licious. GTKO pig cells release viruses without
Galx(1,3)Gal epitopes, which makes them less visible
for immunological system. Expression of hCRPs on the
surface of transgenic pig cells may contribute to a
weakening of the complement defense against infections
and at the same time encourage pathogens to adopt
human complement regulatory proteins as the infectious
binding receptors (Weiss 1998).

In conclusion, only pigs with numerous genetic modifi-
cations obtained through interbreeding of organisms with
single modifications or through cotransfection with several
gene constructs will become a real reservoir of organs for
medical purposes. Crossbreeding of genetically modified
pigs available for research (Table 1) give us hope for
xenotransplantation to become a medical procedure com-
monly used.
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