Skip to main content
Log in

Science and Prediction of Heavy Rainfall over China: Research Progress since the Reform and Opening-Up of New China

  • Advances in Meteorological Research and Operation Since the Founding of The People’s Republic of China
  • Published:
Journal of Meteorological Research Aims and scope Submit manuscript

Abstract

This paper reviews the major progress on development of the science and prediction of heavy rainfall over China since the beginning of the reform and opening-up of new China (roughly between 1980 and 2019). The progress of research on the physical mechanisms of heavy rainfall over China is summarized from three perspectives: 1) the relevant synoptic weather systems, 2) heavy rainfall in major sub-regions of China, and 3) heavy rainfall induced by typhoons. The development and application of forecasting techniques for heavy rainfall are summarized in terms of numerical weather prediction techniques and objective forecasting methods. Greatly aided by the rapid progress in meteorological observing technology and substantial improvement in electronic computing, studies of heavy rainfall in China have advanced to investigating the evolution of heavy-rain-producing storms and observational analysis of the cloud microphysical features. A deeper and more systematic understanding of the synoptic systems of importance to the production of heavy rainfall has also been developed. Operational forecast of heavy rainfall in China has changed from subjective weather event forecasts to a combination of both subjective and objective quantitative precipitation forecasts, and is now advancing toward probabilistic quantitative precipitation forecasts with the provision of forecast uncertainty information.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Bai, L. Q., Z. Y. Meng, L. Huang, et al., 2017: An integrated damage, visual, and radar analysis of the 2015 Foshan, Guangdong, EF3 tornado in China produced by the landfalling Typhoon Mujigae (2015). Bull. Amer. Meteor. Soc., 98, 2619–2640, doi: 10.1175/BAMS-D-16-0015.1.

    Google Scholar 

  • Bai, R. H., and Y. Jin, 1992: Study on Rainstorms in Heilongjiang Province. China Meteorological Press, Beijing, 1–217. (in Chinese)

    Google Scholar 

  • Bao, X. H., F. Q. Zhang, and J. H. Sun, 2011: Diurnal variations of warm-season precipitation east of the Tibetan Plateau over China. Mon. Wea. Rev., 139, 2790–2810, doi: 10.1175/MWRD-11-00006.1.

    Google Scholar 

  • Bao, X. H., Y. L. Luo, J. X. Sun, et al., 2017: Assimilating Doppler radar observations with an ensemble Kalman filter for convection-permitting prediction of convective development in a heavy rainfall event during the pre-summer rainy season of South China. Sci. China Earth Sci., 60, 1866–1885, doi: 10.1007/s11430-017-9076-9.

    Google Scholar 

  • Bei, N. F., and F. Q. Zhang, 2007: Impacts of initial condition errors on mesoscale predictability of heavy precipitation along the Mei-Yu front of China. Quart. J. Roy. Meteor. Soc., 133, 83–99, doi: 10.1002/qj.20.

    Google Scholar 

  • Bentzien, S., and P. Friederichs, 2012: Generating and calibrating probabilistic quantitative precipitation forecasts from the high-resolution NWP model COSMO-DE. Wea. Forecasting, 27, 988–1002, doi: 10.1175/WAF-D-11-00101.1.

    Google Scholar 

  • Bi, B. G., K. Dai, Y. Wang, et al., 2016: Advances in techniques of quantitative precipitation forecast. J. Appl. Meteor. Sci., 27, 534–549, doi: 10.11898/1001-7313.20160503. (in Chinese)

    Google Scholar 

  • Bian, Q. H., Z. Y. Ding, M. Y. Wu, et al., 2005: Statistical analysis of typhoon heavy rainfall in North China. Meteor. Mon., 31, 61–65, doi: 10.3969/j.issn.1000-0526.2005.03.014. (in Chinese)

    Google Scholar 

  • Bikos, D., T. L. Daniel, J. Otkin, et al., 2012: Synthetic satellite imagery for real-time high-resolution model evaluation. Wea. Forecasting, 27, 784–795, doi: 10.1175/WAF-D-11-00130.1.

    Google Scholar 

  • Blackadar, A. K., 1957: Boundary layer wind maxima and their significance for the growth of nocturnal inversions. Bull. Amer. Meteor. Soc., 38, 283–290, doi: 10.1175/1520-0477-38.5.283.

    Google Scholar 

  • Brennan, M. J., G. M. Lackmann, and K. M. Mahoney, 2008: Potential vorticity (PV) thinking in operations: The utility of nonconservation. Wea. Forecasting, 23, 168–182, doi: 10.1175/2007WAF2006044.1.

    Google Scholar 

  • Cai, Z. Y., and X. P. Zhou, 1982: Some views on the heavy rain forecast. J. Guangxi Meteor., (2), 1–7. (in Chinese)

    Google Scholar 

  • Chang, C.-P., S. C. Hou, H. C. Kuo, et al., 1998: The development of an intense East Asian summer monsoon disturbance with strong vertical coupling. Mon. Wea. Rev., 126, 2692–2712, doi: 10.1175/1520-0493(1998)126<2692:TDOAIE>2.0.CO;2.

    Google Scholar 

  • Chen, C. P., H. Z. Feng, and J. Chen, 2010: Application of Sichuan heavy rainfall ensemble prediction probability products based on Bayesian method. Meteor. Mon., 36, 32–39. (in Chinese)

    Google Scholar 

  • Chen, D. H., J. S. Xue, X. S. Yang, et al., 2008: New generation of multi-scale NWP system (GRAPES): General scientific design. Chinese Sci. Bull., 53, 3433–3445, doi: 10.1007/s11434-008-0494-z.

    Google Scholar 

  • Chen, G.-C., T.-L. Shen, and D. He, 2006: Simulation of topographic effect of hilly region to the south of Yangtze River and Yunnan-Guizhou Plateau on the Southweat Vortex during a heavy rain process. Plateau Meteor., 25, 277–284, doi: 10.3321/j.issn:1000-0534.2006.02.014. (in Chinese)

    Google Scholar 

  • Chen, G. J., F. Y. Wei, and X. J. Zhou, 2014: Intraseasonal oscillation of the South China Sea summer monsoon and its influence on regionally persistent heavy rain over southern China. J. Meteor. Res., 28, 213–229, doi: 10.1007/s13351-014-3063-1.

    Google Scholar 

  • Chen, G. T.-J., and C.-C. Yu, 1988: Study of low-level jet and extremely heavy rainfall over northern Taiwan in the Mei-Yu season. Mon. Wea. Rev., 116, 884–891, doi: 10.1175/1520-0493(1988)116<0884:SOLLJA>2.0.CO;2.

    Google Scholar 

  • Chen, G. X., R. Y. Lan, W. X. Zeng, et al., 2018: Diurnal variations of rainfall in surface and satellite observations at the monsoon coast (South China). J. Climate, 31, 1703–1724, doi: 10.1175/JCLI-D-17-0373.1.

    Google Scholar 

  • Chen, H., and D.-L. Zhang, 2013: On the rapid intensification of Hurricane Wilma (2005). Part II: Convective bursts and the upper-level warm core. J. Atmos. Sci., 70, 146–162, doi: 10. 1175/JAS-D-12-062.1.

    Google Scholar 

  • Chen, H. M., R. C. Yu, J. Li, et al., 2010: Why nocturnal long-duration rainfall presents an eastward-delayed diurnal phase of rainfall down the Yangtze River valley. J. Climate, 23, 905–917, doi: 10.1175/2009JCLI3187.1.

    Google Scholar 

  • Chen, J., and J. S. Xue, 2009: Heavy rainfall ensemble prediction: Initial condition perturbation vs multi-physics perturbation. Acta Meteor. Sinica, 23, 53–67.

    Google Scholar 

  • Chen, J., D. H. Chen, and H. Yan, 2002: A brief review on the development of ensemble prediction system. J. Appl. Meteor. Sci., 13, 497–507, doi: 10.3969/j.issn.1001-7313.2002.04.013. (in Chinese)

    Google Scholar 

  • Chen, J., J. S. Xue, and H. Yan, 2003: The impact of physics parameterization schemes on mesoscale heavy rainfall simulation. Acta Meteor. Sinica, 61, 203–218, doi: 10.11676/qxxb2003.019. (in Chinese)

    Google Scholar 

  • Chen, J., J.-S. Xue, and H. Yan, 2005a: A new initial perturbation method of ensemble mesoscale heavy rain prediction. Chinese J. Atmos. Sci., 29, 717–726, doi: 10.3878/j.issn.1006-9895.2005.05.05. (in Chinese)

    Google Scholar 

  • Chen, J., J. S. Xue, and H. Yan, 2005b: The uncertainty of mesoscale numerical prediction of heavy rain in South China and the ensemble simulations. Acta Meteor. Sinica, 19, 1–18.

    Google Scholar 

  • Chen, J., M. Y. Jiao, J. D. Gong, et al., 2006: The impact of diabatic physics on the uncertainty of heavy rainfall ensemble simulations in Beijing. J. Appl. Meteor. Sci., 17, 18–27, doi: 10.3969/j.issn.1001-7313.2006.z1.003. (in Chinese)

    Google Scholar 

  • Chen, J., Y. G. Zheng, X. L. Zhang, et al., 2013: Analysis of the climatological distribution and diurnal variations of the short duration heavy rain and its relation with diurnal variations of the MCSs over China during the warm season. Acta Meteor. Sinica, 71, 367–382, doi: 10.11676/qxxb2013.035. (in Chinese)

    Google Scholar 

  • Chen, J., F. Ping, X. C. Wang, et al., 2017: Topographic influence of Taiwan Island on Typhoon “Matmo”. Chinese J. Atmos. Sci., 41, 1037–1058, doi: 10.3878/j.issn.1006-9895.1701.16249. (in Chinese)

    Google Scholar 

  • Chen, L. S., and Y. L. Xu, 2017: Review of typhoon very heavy rainfall in China. Meteor. Environ. Sci., 40, 3–10, doi: 10. 16765/j.cnki.1673-7148.2017.01.001. (in Chinese)

    Google Scholar 

  • Chen, L. S., Y. Li, and Z. Q. Cheng, 2010: An overview of research and forecasting on rainfall associated with landfalling tropical cyclones. Adv. Atmos. Sci., 27, 967–976, doi: 10.1007/s00376-010-8171-y.

    Google Scholar 

  • Chen, L. S., Z. Y. Meng, and C. H. Cong, 2017: An overview on the research of typhoon rainfall distribution. J. Marine Meteor., 37, 1–7, doi: 10.19513/j.cnki.issn2096-3599.2017.04.001. (in Chinese)

    Google Scholar 

  • Chen, M., Z. Y. Tao, Y. G. Zheng, et al., 2007: The Front-related vertical circulation occurring in the pre-flooding season in South China and its interaction with MCS. Acta Meteor. Sinica, 65, 785–791, doi: 10.11676/qxxb2007.074. (in Chinese)

    Google Scholar 

  • Chen, M. X., Y. C. Wang, X. Xiao, et al., 2013: Initiation and propagation mechanism for the Beijing extreme heavy rainstorm clusters on 21 July 2012. Acta Meteor. Sinica, 71, 569–592, doi: 10.11676/qxxb2013.053. (in Chinese)

    Google Scholar 

  • Chen, S.-J., Y.-H. Kuo, W. Wang, et al., 1998: A modeling case study of heavy rainstorms along the Mei-Yu front. Mon. Wea. Rev., 126, 2330–2351, doi: 10.1175/1520-0493(1998)126<2330:AMCSOH>2.0.CO;2.

    Google Scholar 

  • Chen, X. C., K. Zhao, and M. Xue, 2014: Spatial and temporal characteristics of warm season convection over the Pearl River Delta region, China, based on 3 years of operational radar data. J. Geophys. Res. Atmos., 119, 12,447-12,465, doi: 10.1002/2014JD021965.

    Google Scholar 

  • Chen, X. C., F. Q. Zhang, and K. Zhao, 2016: Diurnal variations of the land-sea breeze and its related precipitation over South China. J. Atmos. Sci., 73, 4793–4815, doi: 10.1175/jas-d-16-0106.1.

    Google Scholar 

  • Chen, X. C., F. Q. Zhang, and K. Zhao, 2017: Influence of monsoonal wind speed and moisture content on intensity and diurnal variations of the Mei-Yu season coastal rainfall over South China. J. Atmos. Sci., 74, 2835–2856, doi: 10.1175/JAS-D-17-0081.1.

    Google Scholar 

  • Chen, Y., and P. M. Zhai, 2015: Synoptic-scale precursors of the East Asia/Pacific teleconnection pattern responsible for persistent extreme precipitation in the Yangtze River Valley. Quart. J. Roy. Meteor. Soc., 141, 1389–1403, doi: 10.1002/qj.2448.

    Google Scholar 

  • Chen, Y.-L., X. A. Chen, and Y.-X. Zhang, 1994: A diagnostic study of the low-level jet during TAMEX IOP 5. Mon. Wea. Rev., 122, 2257–2284, doi: 10.1175/1520-0493(1994)122<2257:ADSOTL>2.0.CO;2.

    Google Scholar 

  • Chen, Y. R. X., and Y. L. Luo, 2018: Analysis of paths and sources of moisture for the South China rainfall during the presummer rainy season of 1979-2014. J. Meteor. Res., 32, 744–757, doi: 10.1007/s13351-018-8069-7.

    Google Scholar 

  • Chen, Y. S., G. Brunet, and M. K. Yau, 2003: Spiral bands in a simulated hurricane. Part II: Wave activity diagnostics. J. Atmos. Sci., 60, 1239–1256, doi: 10.1175/1520-0469(2003)60<1239:SBIASH>2.0.CO;2.

    Google Scholar 

  • Chen, Z. M., W. B. Min, and C. G. Cui, 2004: New advances in Southwest China Vortex research. Plateau Meteor., 23, 1–5, doi: 10.3321/j.issn:1000-0534.2004.z1.001. (in Chinese)

    Google Scholar 

  • Cheng, Z. Q., L. S. Chen, and Y. Li, 2012: Interaction between landfalling tropical cyclone and summer monsoon with influences on torrential rain. J. Appl. Meteor. Sci., 23, 660–671, doi: 10.3969/j.issn.1001-7313.2012.06.003. (in Chinese)

    Google Scholar 

  • Chou, J. F., 2002: The Nonlinearity and Complexity in Atmospheric Sciences. China Meteorological Press, Beijing, 149 pp. (in Chinese)

    Google Scholar 

  • Chou, L. C., C.-P. Chang, and R. T. Williams, 1990: A numerical simulation of the Mei-Yu front and the associated low level jet. Mon. Wea. Rev., 118, 1408–1428, doi: 10.1175/1520-0493(1990)118<1408:ansotm>2.0.co;2.

    Google Scholar 

  • Clark, A. J., I. L. Jirak, S. R. Dembek, et al., 2018: The Community Leveraged Unified Ensemble (CLUE) in the 2016 NOAA/Hazardous Weather Testbed Spring Forecasting Experiment. Bull. Amer. Meteor. Soc., 99, 1433–1448, doi: 10.1175/BAMS-D-16-0309.1.

    Google Scholar 

  • Cong, C. H., L. S. Chen, X. T. Lei, et al., 2012: A study on the mechanism of the tropical cyclone remote precipitation. Acta Meteor. Sinica, 70, 717–727, doi: 10.11676/qxxb2012.058. (in Chinese)

    Google Scholar 

  • Cong, C. H., X. T. Lei, and P. Y. Chen, 2016: A comparative study on two processes of typhoon remote rainfall over Shandong Province. Period. Ocean Univ. China, 46, 21–31, doi: 10.16441/j.cnki.hdxb.20160034. (in Chinese)

    Google Scholar 

  • Cui, X.-P., S.-T. Gao, Z.-P. Zong, et al., 2005: Physical mechanism of formation of the bimodal structure in the Meiyu front system. China Phys. Lett., 22, 3218–3220, doi: 10.1088/0256-307X/22/12/066.

    Google Scholar 

  • Dai, K., B. G. Bi, and Y. J. Zhu, 2018a: Investigation of the medium-range forecast errors for the extreme rainfall event in North China during July 19-20, 2016. Chinese Sci. Bull., 63, 340–355, doi: 10.1360/N972017-00889. (in Chinese)

    Google Scholar 

  • Dai, K., Y. J. Zhu, and B. G. Bi, 2018b: The review of statistical post-process technologies for quantitative precipitation forecast of ensemble prediction system. Acta Meteor. Sinica, 76, 493–510, doi: 10.11676/qxxb2018.015. (in Chinese)

    Google Scholar 

  • Deng, G., J. D. Gong, L. T. Deng, et al., 2010: Development of mesoscale ensemble prediction system at National Meteorological Center. J. Appl. Meteor. Sci., 21, 513–523, doi: 10.3969/j.issn.1001-7313.2010.05.001. (in Chinese)

    Google Scholar 

  • Ding, Y. H., 1993: A Study of Sustained Heavy Rainfall in the Yangtze-Huai River Valleys in 1991. China Meteorological Press, Beijing, 1–253. (in Chinese)

    Google Scholar 

  • Ding, Y. H., 1994: Monsoons Over China. Dordrecht, Kluwer Academic, 419 pp.

    Google Scholar 

  • Ding, Y. H., 2005: Advanced Meteorology. China Meteorological Press, Beijing, 585 pp. (in Chinese)

    Google Scholar 

  • Ding, Y. H., 2015: On the study of the unprecedented heavy rainfall in Henan Province during 4-8 August 1975: Review and assessment. Acta Meteor. Sinica, 73, 411–424, doi: 10.11676/qxxb2015.067. (in Chinese)

    Google Scholar 

  • Ding, Y. H., 2019: The major advances and development of the theory on heavy rains in China. Torr. Rain Disas., 38, 395–406. (in Chinese)

    Google Scholar 

  • Ding, Y. H., and J. C. L. Chan, 2005: The East Asian summer monsoon: An overview. Meteor. Atmos. Phys., 89, 117–142, doi: 10.1007/s00703-005-0125-z.

    Google Scholar 

  • Ding, Y.-H., Z.-Y. Cai, and J.-S. Li, 1978: A case study on the excessively severe rainstrom in Henan Province in early August 1975. Scientia Atmos. Sinica, 2, 276–289, doi: 10.3878/j.issn.1006-9895.1978.04.02. (in Chinese)

    Google Scholar 

  • Ding, Z.-Y., X.-Q. Zhang, J.-H. He, et al., 2001: The study of storm rainfall caused by interaction between the non-zonal high level jet streak and the far distant typhoon. J. Trop. Meteor., 17, 144–154, doi: 10.3969/j.issn.1004-4965.2001.02. 006. (in Chinese)

    Google Scholar 

  • Dong, G. H., Q. Y. He, Y. W. Liu, et al., 2011: The role of sea breeze front in local storm of Bohai coast. Meteor. Mon., 37, 1100-1107. (in Chinese)

  • Dong, G. H., Y. W. Liu, M. N. Sun, et al., 2013: Effect of urban heat island and sea breeze front superimposition on a local heavy rainfall event. Meteor. Mon., 39, 1422–1430, doi: 10. 7519/j.issn.1000-0526.2013.11.005. (in Chinese)

    Google Scholar 

  • Dong, M. Y., L. S. Chen, Y. Li, et al., 2010: Rainfall reinforcement associated with landfalling tropical cyclones. J. Atmos. Sci., 67, 3541–3558, doi: 10.1175/2010jas3268.1.

    Google Scholar 

  • Dorninger, M., E. Gilleland, B. Casati, et al., 2018: The setup of the MesoVICT Project. Bull. Amer. Meteor. Soc., 99, 1887–1906, doi: 10.1175/BAMS-D-17-0164.1.

    Google Scholar 

  • Dou, J. J., Y. C. Wang, R. Bornstein, et al., 2015: Observed spatial characteristics of Beijing urban climate impacts on summer thunderstorms. J. Appl. Meteor. Climatol., 54, 94–105, doi: 10.1175/JAMC-D-13-0355.1.

    Google Scholar 

  • Du, J., and J. Li, 2014: Application of ensemble methodology to heavy-rain research and prediction. Adv. Meteor. Sci. Technol., 4, 6–20. (in Chinese)

    Google Scholar 

  • Du, Y., and R. Rotunno, 2014: A simple analytical model of the nocturnal low-level jet over the Great Plains of the United States. J. Atmos. Sci., 71, 3674–3683, doi: 10.1175/jas-d-14-0060.1.

    Google Scholar 

  • Du, Y., and G. X. Chen, 2018: Heavy rainfall associated with double low-level jets over southern China. Part I: Ensemblebased analysis. Mon. Wea. Rev., 146, 3827–3844, doi: 10.1175/MWR-D-18-0101.1.

    Google Scholar 

  • Du, Y., and R. Rotunno, 2018: Diurnal cycle of rainfall and winds near the south coast of China. J. Atmos. Sci., 75, 2065–2082, doi: 10.1175/JAS-D-17-0397.1.

    Google Scholar 

  • Du, Y., and G. X. Chen, 2019a: Heavy rainfall associated with double low-level jets over southern China. Part II: Convection initiation. Mon. Wea. Rev., 147, 543–565, doi: 10.1175/MWR-D-18-0102.1.

    Google Scholar 

  • Du, Y., and G. X. Chen, 2019b: Climatology of low-level jets and their impact on rainfall over southern China during the earlysummer rainy season. J. Climate, 32, 8813–8833, doi: 10.1175/JCLI-D-19-0306.1.

    Google Scholar 

  • Du, Y., Q. H. Zhang, Y. Yue, et al., 2012: Characteristics of lowlevel jets in Shanghai during the 2008-2009 warm seasons as inferred from wind profiler radar data. J. Meteor. Soc. Japan Ser. II, 90, 891–903, doi: 10.2151/jmsj.2012-603.

    Google Scholar 

  • Du, Y., Q. H. Zhang, Y.-L. Chen, et al., 2014: Numerical simulations of spatial distributions and diurnal variations of lowlevel jets in China during early summer. J. Climate, 27, 5747–5767, doi: 10.1175/JCLI-D-13-00571.1.

    Google Scholar 

  • Du, Y., R. Rotunno, and Q. H. Zhang, 2015: Analysis of WRFsimulated diurnal boundary layer winds in Eastern China using a simple 1D model. J. Atmos. Sci., 72, 714–727, doi: 10.1175/JAS-D-14-0186.1.

    Google Scholar 

  • Duan, W. S., Y. Wang, Z. H. Huo, et al., 2019: Ensemble forecast methods for numerical weather forecast and climate prediction: Thinking and prospect. Climatic Environ. Res., 24, 396–406. (in Chinese)

    Google Scholar 

  • Duan, Y. H., J. D. Gong, J. Du, et al., 2012: An overview of the Beijing 2008 Olympics Research and Development Project (B08RDP). Bull. Amer. Meteor. Soc., 93, 381–403, doi: 10.1175/bams-d-11-00115.1.

    Google Scholar 

  • Ebert, E. E., and W. A. Jr. Gallus, 2009: Toward better understanding of the contiguous rain area (CRA) method for spatial forecast verification. Wea. Forecasting, 24, 1401–1415, doi: 10.1175/2009WAF2222252.1.

    Google Scholar 

  • Ebert, E. E., U. Damrath, W. Wergen, et al., 2003: The WGNE assessment of short-term quantitative precipitation forecasts. Bull. Amer. Meteor. Soc., 84, 481–492.

    Google Scholar 

  • Faculty of Meteorology, Department of Geophysics, Peking University, 1977: An essay on the interaction between the weather-bearing systems of the westerlies and the intertropical convergence zone. Scientia Atmos. Sinica, 1, 132–137, doi: 10.3878/j.issn.1006-9895.1977.02.07. (in Chinese)

    Google Scholar 

  • Feng, X. B., 2019: The evolution of rainfall distribution and environmental impact on landfalling tropical cyclones over China. Master Dissertation, Nanjing University, Nanjing, 58 pp. (in Chinese)

    Google Scholar 

  • Fu, S. M., and J. H. Sun, 2012: Circulation and eddy kinetic energy budget analyses on the evolution of a Northeast China cold vortex (NCCV) in May 2010. J. Meteor. Soc. Japan Ser. II, 90, 553–573, doi: 10.2151/jmsj.2012-408.

    Google Scholar 

  • Fu, S. M., J. H. Sun, S. X. Zhao, et al., 2011a: A study of the impacts of the eastward propagation of convective cloud systems over the Tibetan Plateau on the rainfall of the Yangtze-Huai River basin. Acta Meteor. Sinica, 69, 581–600, doi: 10.11676/qxxb2011.051. (in Chinese)

    Google Scholar 

  • Fu, S. M., J. H. Sun, S. X. Zhao, et al., 2011b: The energy budget of a southwest vortex with heavy rainfall over South China. Adv. Atmos. Sci., 28, 709–724, doi: 10.1007/s00376-010-0026-z.

    Google Scholar 

  • Fu, S. M., F. Yu, D. H. Wang, et al., 2013: A comparison of two kinds of eastward-moving mesoscale vortices during the Meiyu period of 2010. Sci. China Earth Sci., 56, 282–300, doi: 10.1007/s11430-012-4420-5.

    Google Scholar 

  • Fu, S.-M., W.-L. Li, and J. Ling, 2015: On the evolution of a longlived mesoscale vortex over the Yangtze River Basin: Geometric features and interactions among systems of different scales. J. Geophys. Res. Atmos., 120, 11,889-11,917, doi: 10.1002/2015JD023700.

    Google Scholar 

  • Fu, S.-M., J.-H. Sun, J. Ling, et al., 2016a: Scale interactions in sustaining persistent torrential rainfall events during the Meiyu season. J. Geophys. Res. Atmos., 121, 12,856-12,876, doi: 10.1002/2016JD025446.

    Google Scholar 

  • Fu, S. M., H. J. Wang, J. H. Sun, et al., 2016b: Energy budgets on the interactions between the mean and eddy flows during a persistent heavy rainfall event over the Yangtze River valley in summer 2010. J. Meteor. Res., 30, 513–527, doi: 10. 1007/s13351-016-5121-3.

    Google Scholar 

  • Fu, S.-M., J.-P. Zhang, J.-H. Sun, et al., 2016c: Composite analysis of long-lived mesoscale vortices over the middle reaches of the Yangtze River valley: Octant features and evolution mechanisms. J. Climate, 29, 761–781, doi: 10.1175/JCLI-D-15-0175.1.

    Google Scholar 

  • Fu, S.-M., R.-X. Liu, and J.-H. Sun, 2018: On the scale interactions that dominate the maintenance of a persistent heavy rainfall event: A piecewise energy analysis. J. Atmos. Sci., 75, 907–925, doi: 10.1175/JAS-D-17-0294.1.

    Google Scholar 

  • Fu, S.-M., Z. Mai, J.-H. Sun, et al., 2019: Impacts of convective activity over the Tibetan Plateau on plateau vortex, southwest vortex, and downstream precipitation. J. Atmos. Sci., 76, 3803–3830, doi: 10.1175/JAS-D-18-0331.1.

    Google Scholar 

  • Fujiyoshi, Y., Y. H. Ding, and Y. Zhang, 2006: Outline of GAME/HUBEX. Final Report of GAME/HUBEX, Y. Fujiyoshi and Y. H. Ding ed., GAME Project Office Publication Series, No. 43, 1–6.

    Google Scholar 

  • Gao, K., and Y. M. Xu, 2001: A simulation study of structure of mesovortexes along the Meiyu front during 22-30 June 1999. Chinese J. Atmos. Sci., 25, 740–756, doi: 10.3878/j.issn.1006-9895.2001.06.02. (in Chinese)

    Google Scholar 

  • Gao, S. T., and S. Q. Sun, 1984: The forming of subsynoptic scale low-level jet stream. Scientia Atmos. Sinica, 8, 178–188, doi: 10.3878/j.issn.1006-9895.1984.02.08. (in Chinese)

    Google Scholar 

  • Gao, S. T., Y. S. Zhou, and L. K. Ran, 2018: A review on the formation mechanisms and forecast methods for torrential rain in China. Chinese J. Atmos. Sci., 42, 833–846, doi: 10.3878/j.issn.1006-9895.1802.17277. (in Chinese)

    Google Scholar 

  • Gilbert, K. K., J. P. Craven, D. R. Novak, et al., 2015: An introduction to the national blend of global models project. Proc. Special Symposium on Model Postprocessing and Downscaling, Amer. Meteor. Soc., Phoenix, AZ, Paper ID 3.1.

    Google Scholar 

  • Gilleland, E., D. A. Ahijevych, B. G. Brown, et al., 2010: Verifying forecasts spatially. Bull. Amer. Meteor. Soc., 91, 1365–1373, doi: 10.1175/2010BAMS2819.1.

    Google Scholar 

  • Gu, W., L. Wang, Z.-Z. Hu, et al., 2018: Interannual variations of the first rainy season precipitation over South China. J. Climate, 31, 623–640, doi: 10.1175/JCLI-D-17-0284.1.

    Google Scholar 

  • Guan, W. N., H. B. Hu, X. J. Ren, et al., 2019: Subseasonal zonal variability of the western Pacific subtropical high in summer: Climate impacts and underlying mechanisms. Climate Dyn., 53, 3325–3344, doi: 10.1007/s00382-019-04705-4.

    Google Scholar 

  • Hamill, T. M., E. Engle, D. Myrick, et al., 2017: The U.S. national blend of models for statistical postprocessing of probability of precipitation and deterministic precipitation amount. Mon. Wea. Rev., 145, 3441–3463, doi: 10.1175/MWR-D-16-0331.1.

    Google Scholar 

  • Hamill, T. M., J. S. Whitaker, and S. L. Mullen, 2006: Reforecasts: An important dataset for improving weather predictions. Bull. Amer. Meteor. Soc., 87, 33–46, doi: 10.1175/BAMS-87-1-33.

    Google Scholar 

  • Han, Y. H., M. Y. Jiao, J. Chen, et al., 2013: Study on the method of rainfall ensemble probability forecast based on Bayesian theory and its preliminary experiments. Meteor. Mon., 39, 1–10. (in Chinese)

    Google Scholar 

  • He, G. B., 2012: Review of the southwest vortex research. Meteor. Mon., 38, 155–163. (in Chinese)

    Google Scholar 

  • He, J. Z., and R. S. Wu, 1989: Numerical study on the low level jet in the planetary boundary layer. Acta Meteor. Sinica, 47, 443–449, doi: 10.11676/qxxb1989.059. (in Chinese)

    Google Scholar 

  • He, L. F., A. H. Xu, and T. Chen, 2009: Cold air activities and topographic forcing in severe torrential rainfall in a landing typhoon depression (Tailim). Meteor. Sci. Technol., 37, 385–391, doi: 10.3969/j.issn.1671-6345.2009.04.001. (in Chinese)

    Google Scholar 

  • He, Q. Y., Y. Y. Xie, G. H. Dong, et al., 2011: The role of sea-land breeze circulation in local convective torrential rain happening in Tianjin on 26 September 2009. Meteor. Mon., 37, 291–297. (in Chinese)

    Google Scholar 

  • He, Z. W., Q. H. Zhang, K. Zhao, et al., 2018: Initiation and evolution of elevated convection in a nocturnal squall line along the Meiyu front. J. Geophys. Res. Atmos., 123, 7292–7310, doi: 10.1029/2018JD028511.

    Google Scholar 

  • Hence, D. A., and R. A. Jr. Houze, 2012: Vertical structure of tropical cyclones with concentric eyewalls as seen by the TRMM Precipitation Radar. J. Atmos. Sci., 69, 1021–1036, doi: 10.1175/JAS-D-11-0119.1.

    Google Scholar 

  • Holton, J. R., 1967: The diurnal boundary layer wind oscillation above sloping terrain. Tellus, 19, 199–205, doi: 10.3402/tellusa. v19i2.9766.

    Google Scholar 

  • Hong, W., and X. J. Ren, 2013: Persistent heavy rainfall over South China during May-August: Subseasonal anomalies of circulation and sea surface temperature. Acta Meteor. Sinica, 27, 769–787, doi: 10.1007/s13351-013-0607-8.

    Google Scholar 

  • Hoskins, B. J., 1996: On the existence and strength of the summer subtropical anticyclones. Bull. Amer. Meteor. Soc., 77, 1287-1292.

  • Hoskins, B. J., M. E. McIntyre, and A. W. Robertson, 1985: On the use and significance of isentropic potential vorticity maps. Quart. J. Roy. Meteor. Soc., 111, 877–946, doi: 10.1002/qj. 49711147002.

    Google Scholar 

  • Hsieh, Y.-P., 1956: A preliminary survey of certain rain-bearing systems over China in spring and summer. Acta Meteor. Sinica, 27, 1–23, doi: 10.11676/qxxb1956.001. (in Chinese)

    Google Scholar 

  • Hu, K. X., R. Y. Lu, and D. H. Wang, 2010: Seasonal climatology of cut-off lows and associated precipitation patterns over Northeast China. Meteor. Atmos. Phys., 106, 37–48, doi: 10.1007/s00703-009-0049-0.

    Google Scholar 

  • Hua, C., and Q.-J. Liu, 2011: Numerical simulation of cloud microphysical features of landfall Typhoon Krosa. J. Trop. Meteor., 27, 626–638, doi: 10.3969/j.issn.1004-4965.2011.05.003. (in Chinese)

    Google Scholar 

  • Huang, F. J., and H. Y. Xiao, 1989: The meso-scale characteristics of southwest vortex heavy rainfall. Meteor. Mon., 15, 3–9. (in Chinese)

    Google Scholar 

  • Huang, L., and Y. L. Luo, 2017: Evaluation of quantitative precipitation forecasts by TIGGE ensembles for South China during the presummer rainy season. J. Geophys. Res. Atmos., 122, 8494–8516, doi: 10.1002/2017JD026512.

    Google Scholar 

  • Huang, L., Y. L. Luo, and D.-L. Zhang, 2018: The relationship between anomalous presummer extreme rainfall over South China and synoptic disturbances. J. Geophys. Res. Atmos., 123, 3395–3413, doi: 10.1002/2017JD028106.

    Google Scholar 

  • Huang, S.-S., 1978: Some aspects of the studies on the activities of the subtropical high and its predictions. Scientia Atmos. Sinica, 2, 159–168, doi: 10.3878/j.issn.1006-9895.1978.02.09. (in Chinese)

    Google Scholar 

  • Huang, S.-S., 1981: A diagnostic analysis of the formation and variation of the low-level jet during heavy-rain processes. Scientia Atmos. Sinica, 5, 123–135, doi: 10.3878/j.issn.1006-9895.1981.02.02. (in Chinese)

    Google Scholar 

  • Huang, S. S., 1986: Heavy Rainfall over Southern China in the Pre-Summer Rainy Season. Guangdong Science and Technology Press, Guangzhou, 244 pp. (in Chinese)

    Google Scholar 

  • Huang, Y. J., Y. B. Liu, Y. W. Liu, et al., 2019: Mechanisms for a record-breaking rainfall in the coastal metropolitan city of Guangzhou, China: Observation analysis and nested very large eddy simulation with the WRF model. J. Geophys. Res. Atmos., 124, 1370–1391, doi: 10.1029/2018JD029668.

    Google Scholar 

  • Huang, Z., D. Zhang, and L. X. Lin, 2005: Synoptic analysis of heavy rain related to monsoon trough in the latter flood season of Guangdong. Meteor. Mon., 31, 19–24, doi: 10.3969/j.issn.1000-0526.2005.09.004. (in Chinese)

    Google Scholar 

  • IPCC, 2013. Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press, Cambridge, 1535 pp.

    Google Scholar 

  • Ji, C.-X., G.-Y. Xue, F. Zhao, et al., 2007: The numerical simulation of orographic effect on the rain and structure of Typhoon Rananim during landfall. Chinese J. Atmos. Sci., 31, 233–244, doi: 10.3878/j.issn.1006-9895.2007.02.05. (in Chinese)

    Google Scholar 

  • Jiang, J. X., and X. K. Xiang, 1998: Mesoscale analysis of causes for “96.8” extreme torrential rain of Hebei Province. Quart. J. Appl. Meteor, 9, 304–313. (in Chinese)

    Google Scholar 

  • Jiang, J. Y., J. X. Jiang, Y. L. Bu, et al., 2007: Heavy rainfall associated with monsoon depression in South China: Structure analysis. Acta Meteor. Sinica, 65, 537–549, doi: 10.11676/qxxb2007.050. (in Chinese)

    Google Scholar 

  • Jiang, S.-C., T. Zhang, M.-S. Zhou, et al., 1981: The heavy rainstorms in North China induced by a landed northward moving and decaying typhoon—Heavy rainstorms of semi-tropical system attributes. Acta Meteor. Sinica, 39, 18–27, doi: 10.11676/qxxb1981.003. (in Chinese)

    Google Scholar 

  • Jiang, X. L., Y. L. Luo, D.-L. Zhang, et al., 2020: Urbanization enhanced summertime extreme hourly precipitation over the Yangtze River Delta. J. Climate, 33, 5809–5826, doi: 10.1175/JCLI-D-19-0884.1.

    Google Scholar 

  • Jiang, X. Y., and W. D. Liu, 2007: Numerical simulations of impacts of urbanization on heavy rainfall in Beijing using different land-use data. Acta Meteor. Sinica, 21, 245–255.

    Google Scholar 

  • Jiang, Z. N., D.-L. Zhang, R. D. Xia, et al., 2017: Diurnal variations of presummer rainfall over southern China. J. Climate, 30, 755–773, doi: 10.1175/JCLI-D-15-0666.1.

    Google Scholar 

  • Jin, X., T. W. Wu, and L. Li, 2012: The quasi-stationary feature of nocturnal precipitation in the Sichuan Basin and the role of the Tibetan Plateau. Climate Dyn., 41, 977–994, doi: 10.1007/s00382-012-1521-y.

    Google Scholar 

  • Johnson, A., and X. G. Wang, 2012: Verification and calibration of neighborhood and object-based probabilistic precipitation forecasts from a multimodel convection-allowing ensemble. Mon. Wea. Rev., 140, 3054–3077, doi: 10.1175/mwr-d-11-00356.1.

    Google Scholar 

  • Joos, H., and H. Wernli, 2012: Influence of microphysical processes on the potential vorticity development in a warm conveyor belt: A case-study with the limited-area model COSMO. Quart. J. Roy. Meteor. Soc., 138, 407–418, doi: 10.1002/qj. 934.

    Google Scholar 

  • Kuo, Y.-H., L. S. Cheng, and R. A. Anthes, 1986: Mesoscale analyses of the Sichuan flood catastrophe, 11-15 July 1981. Mon. Wea. Rev., 114, 1984–2003, doi: 10.1175/1520-0493(1986)114<1984:MAOTSF>2.0.CO;2.

    Google Scholar 

  • Lalaurette, F., 2003: Early detection of abnormal weather conditions using a probabilistic extreme forecast index. Quart. J. Roy. Meteor. Soc., 129, 3037–3057, doi: 10.1256/qj.02.152.

    Google Scholar 

  • Lamberson, W. S., T. I. Alcott, and C. Kahler, 2016: The ensemble situational awareness table: A tool to improve forecasts for extreme weather events. Proc. Sixth Conference on Transition of Research to Operations, Amer. Meteor. Soc., New Orleans, LA, Paper ID 817. Available at https://ams. confex.com/ams/96Annual/webprogram/Paper286162.html. Accessed on 1 June 2020.

    Google Scholar 

  • Lei, L., J. S. Sun, N. He, et al., 2017: A study on the mechanism for the vortex system evolution and development during the torrential rain event in North China on 20 July 2016. Acta Meteor. Sinica, 75, 685–699. (in Chinese)

    Google Scholar 

  • Lei, L., N. Xing, X. Zhou, et al., 2020: A study on the warm-sector torrential rainfall during 15−16 July 2018 in Beijing area. Acta Meteor. Sinica, 78, 1–17, doi: 10.11676/qxxb2020.001. (in Chinese)

    Google Scholar 

  • Lei, X. T., and L. S. Chen, 2001: Tropical cyclone landfalling and its interaction with mid-latitude circulation systems. Acta Meteor. Sinica, 59, 602–615, doi: 10.11676/qxxb2001.064. (in Chinese)

    Google Scholar 

  • Li, C.-L., L.-J. Yan, Z.-H. Li, et al., 2016: Analysis of a tornado in outside-region of Typhoon Mujigae in 2015. J. Trop. Meteor., 32, 416–424, doi: 10.16032/j.issn.1004-4965.2016.03.013. (in Chinese)

    Google Scholar 

  • Li, C.-H., Z.-W. Wu, W.-G. Meng, et al., 2017: Analysis of the large-scale circulation associated with the persistent heavy rains induced by monsoon and tropical cyclone during the post-flood season in South China. J. Trop. Meteor., 33, 11–20, doi: 10.16032/j.issn.1004-4965.2017.01.002. (in Chinese)

    Google Scholar 

  • Li, H. Q., X. P. Cui, and D.-L. Zhang, 2017a: On the initiation of an isolated heavy-rain-producing storm near the central urban area of Beijing metropolitan region. Mon. Wea. Rev., 145, 181–197, doi: 10.1175/MWR-D-16-0115.1.

    Google Scholar 

  • Li, H. Q., X. P. Cui, and D.-L. Zhang, 2017b: Sensitivity of the initiation of an isolated thunderstorm over the Beijing metropolitan region to urbanization, terrain morphology and cold outflows. Quart. J. Roy. Meteor. Soc., 143, 3153–3164, doi: 10.1002/qj.3169.

    Google Scholar 

  • Li, J., J. Du, and Y. Liu, 2015: A comparison of initial condition-, multi-physics-and stochastic physics-based ensembles in predicting Beijing “7.21” excessive storm rain event. Acta Meteor. Sinica, 73, 50–71, doi: 10.11676/qxxb2015.008.

    Google Scholar 

  • Li, M. C., and Z. X. Luo, 1988: Effects of moist process on subtropical flow patterns and multiple equilibrium states. Sci. in China Ser. B, 31, 1352–1361.

    Google Scholar 

  • Li, R. C. Y., and W. Zhou, 2015: Multiscale control of summertime persistent heavy precipitation events over South China in association with synoptic, intraseasonal, and low-frequency background. Climate Dyn., 45, 1043–1057, doi: 10.1007/s00382-014-2347-6.

    Google Scholar 

  • Li, T., B. Wang, B. Wu, et al., 2017: Theories on formation of an anomalous anticyclone in western North Pacific during El Niño: A review. J. Meteor. Res., 31, 987–1006, doi: 10.1007/s13351-017-7147-6.

    Google Scholar 

  • Li, X. S., Y. L. Luo, and Z. Y. Guan, 2014: The persistent heavy rainfall over southern China in June 2010: Evolution of syn optic systems and the effects of the Tibetan Plateau heating. J. Meteor. Res., 28, 540–560, doi: 10.1007/s13351-014-3284-3.

    Google Scholar 

  • Li, Y., and L. S. Chen, 2007: Numerical study on impact of the boundary layer fluxes over wetland on sustention and rainfall of landfalling tropical cyclones. Acta Meteor. Sinica, 21, 34-46.

  • Li, Y., J. Z. Wang, L. S. Chen, et al., 2007: Study on wavy distribution of rainfall associated with Typhoon Matsa (2005). Chinese Sci. Bull., 52, 967–971, doi: 10.1007/s11434-007-0129-9.

    Google Scholar 

  • Li, Y., L. S. Chen, C. H. Qian, et al., 2010: Study on formation and development of a mesoscale convergence line in Typhoon Rananim. Acta Meteor. Sinica, 24, 413–425.

    Google Scholar 

  • Li, Y. Q., X. B. Zhao, and B. Deng, 2010: Intensive observation scientific experiment of the Southwest Vortex in the summer of 2010. Plateau Mountain Meteor. Res., 30, 80–84, doi: 10.3969/j.issn.1674-2184.2010.04.014. (in Chinese)

    Google Scholar 

  • Li, Y. Y., C. Z. Ye, and Z. Zhong, 2010: Impacts of land-surface process parameterization on model predictability of two kinds of heavy rainfall events. Chinese J. Atmos. Sci., 34, 407–417, doi: 10.3878/j.issn.1006-9895.2010.02.14. (in Chinese)

    Google Scholar 

  • Li, Z., Z. W. Yan, K. Tu, et al., 2015: Changes of precipitation and extremes and the possible effect of urbanization in the Beijing metropolitan region during 1960-2012 based on homogenized observations. Adv. Atmos. Sci., 32, 1173–1185, doi: 10.1007/s00376-015-4257-x.

    Google Scholar 

  • Li, Z. H., 2019: Statistical characteristics of presummer rainfall over South China and associated synoptic conditions. Master dissertation, Chinese Academy of Meteorological Sciences, Beijing, 56 pp. (in Chinese)

    Google Scholar 

  • Li, Z. H., Y. L. Luo, Y. Du, et al., 2020: Statistical characteristics of pre-summer rainfall over South China and associated synoptic conditions. J. Meteor. Soc. Japan Ser. II, 98, 213–233, doi: 10.2151/jmsj.2020-012.

    Google Scholar 

  • Li, Z. Z., X. P. Zeng, M. H. Cheng, et al., 2000: Study on the contributing factors of the catastropic floods in China in 1998. Meteor. Mon., 26, 14–18, doi: 10.3969/j.issn.1000-0526.2000. 01.003. (in Chinese)

    Google Scholar 

  • Liang, X. D., Y. H. Duan, and Z. L. Chen, 2002: Convection and asymmetric structure of landfalling typhoons. Acta Meteor. Sinica, 60, Suppl., 26–35. (in Chinese)

    Google Scholar 

  • Liao, H. S., Y. C. Wu, L. Chen, et al., 2015: A visual voting framework for weather forecast calibration. Proc. IEEE Scientific Visualization Conference, IEEE, Chicago, 25–32, doi: 10.1109/SciVis.2015.7429488.

    Google Scholar 

  • Lin, R. P., J. Zhu, and F. Zheng, 2016: Decadal shifts of East Asian summer monsoon in a climate model free of explicit GHGs and aerosols. Sci. Rep., 6, 38546, doi: 10.1038/srep38 546.

    Google Scholar 

  • Lin, Z. G., Y. X. Li, K. P. Lin, et al., 2009: A study on maintainence mechanism of a long life-cycle mesoscale convective system. Acta Meteor. Sinica, 67, 640–651, doi: 10.11676/qxxb2009.064. (in Chinese)

    Google Scholar 

  • Liu, A. R., D. M. Guo, B. H. Xin, et al., 1979: The moisture of the “75.7” heavy rain in North China. Acta Meteor. Sinica, 37, 79–82, doi: 10.11676/qxxb1979.021. (in Chinese)

    Google Scholar 

  • Liu, H. B., M. Y. He, B. Wang, et al., 2014: Advances in low-level jet research and future prospects. J. Meteor. Res., 28, 57–75, doi: 10.1007/s13351-014-3166-8.

    Google Scholar 

  • Liu, H. W., and G. P. Li, 2008: The review and prospect of research on the southwest vortex in recent 30 years. Plateau Mountain Meteor. Res., 28, 68–73, doi: 10.3969/j.issn.1674-2184.2008.02.012. (in Chinese)

    Google Scholar 

  • Liu, H.-Z., W.-G. Wang, M.-X. Shao, et al., 2007: A case study of the influence of the western Pacific subtropical high on torrential rainfall in Beijing area. Chinese J. Atmos. Sci., 31, 727–734, doi: 10.3878/j.issn.1006-9895.2007.04.17. (in Chinese)

    Google Scholar 

  • Liu, L., J. Chen, and J. Y. Wang, 2018: A study on medium-range objective weather forecast technology for persistent heavy rainfall events based on T639 ensemble forecast. Acta Meteor. Sinica, 76, 228–240, doi: 10.11676/qxxb2018.002. (in Chinese)

    Google Scholar 

  • Liu, L., J. Chen, L. Cheng, et al., 2013: Study of the ensemblebased forecast of extremely heavy rainfalls in China: Experiments for July 2011 cases. Acta Meteor. Sinica, 71, 853–866, doi: 10.11676/qxxb2013.044. (in Chinese)

    Google Scholar 

  • Liu, L., L. K. Ran, Y. S. Zhou, et al., 2015: Analysis on the instability and trigger mechanism of a torrential rainfall event in Beijing on 21 July 2012. Chinese J. Atmos. Sci., 39, 583–595, doi: 10.3878/j.issn.1006-9895.1407.14144. (in Chinese)

    Google Scholar 

  • Liu, X., Y. L. Luo, Z. Y. Guan, et al., 2018: An extreme rainfall event in coastal South China during SCMREX-2014: Formation and roles of rainband and echo trainings. J. Geophys. Res. Atmos., 123, 9256–9278, doi: 10.1029/2018JD028418.

    Google Scholar 

  • Liu, Y. M., B. J. Hoskins, and M. Blackburn, 2007: Impact of Tibetan orography and heating on the summer flow over Asia. J. Meteor. Soc. Japan Ser. II, 85B, 1–19, doi: 10.2151/jmsj. 85b.1.

    Google Scholar 

  • Liu, Y. M., H. Liu, P. Liu, et al., 1999a: The effect of spatially nonuniform heating on the formation and variation of subtropical high. Part II: Land surface sensible heating and East Pacific subtropical high. Acta Meteor. Sinica, 57, 385–396, doi: 10.11676/qxxb1999.037. (in Chinese)

    Google Scholar 

  • Liu, Y. M., G. X. Wu, H. Liu, et al., 1999b: The effect of spatially nonuniform heating on the formation and variation of subtropical high. Part III: Condensation heating and South Asian high and western pacific subtropical high. Acta Meteor. Sinica, 57, 525–538, doi: 10.11676/qxxb1999.051. (in Chinese)

    Google Scholar 

  • Lorenz, E. N., 1963: Deterministic nonperiodic flow. J. Atmos. Sci., 20, 130–141, doi: 10.1175/1520-0469(1963)020<0130: DNF>2.0.CO;2.

    Google Scholar 

  • Lorenz, E. N., 1969: The predictability of a flow which possesses many scales of motion. Tellus, 21, 289–307, doi: 10.3402/tellusa.v21i3.10086.

    Google Scholar 

  • Lu, E., and Y. H. Ding, 1997: Analysis of summer monsoon activity during the 1991 excessively torrential rain over the Yangtze-Huaihe River Valley. Quart. J. Appl. Meteor., 8, 316–324. (in Chinese)

    Google Scholar 

  • Lu, E., Y. H. Ding, and Y. H. Li, 1994: Isentropic potential vorticity analysis and cold air activity during the period of excessively heavy rain over the Yangtze-Huaihe River basin in 1991. Quart. J. Appl. Meteor., 5, 266–274. (in Chinese)

    Google Scholar 

  • Lu, H.-C., W. Zhong, and D.-L. Zhang, 2007: Current understanding of wave characteristics in tropical storm. Chinese J. Atmos. Sci., 31, 1140–1150, doi: 10.3878/j.issn.1006-9895.2007.06.10. (in Chinese)

    Google Scholar 

  • Lu, R. Y., 2001: Interannual variability of the summertime North Pacific subtropical high and its relation to atmospheric con vection over the warm pool. J. Meteor. Soc. Japan Ser. II, 79, 771–783, doi: 10.2151/jmsj.79.771.

    Google Scholar 

  • Lu, R. Y., and B. W. Dong, 2001: Westward extension of North Pacific subtropical high in summer. J. Meteor. Soc. Japan Ser. II, 79, 1229–1241, doi: 10.2151/jmsj.79.1229.

    Google Scholar 

  • Luo, S. W., 1977: Analysis of the mechanism of dynamic low vortex formation on the eastern side of the Tibetan Plateau. Meteor. Sci. Technol., 54–65, doi: 10.19517/j.1671-6345.1977.s1.005. (in Chinese)

    Google Scholar 

  • Luo, S. W., 1992: A Study on Several Types of Weather Systems over the Tibetan Plateau and Its Adjacent areas. China Meteorological Press, Beijing, 56–96. (in Chinese)

    Google Scholar 

  • Luo, Y., and L. F. Zhang, 2010: A case study of the error growth evolution in a Meiyu front heavy precipitation forecast and analysis of the predictability. Acta Meteor. Sinica, 68, 411–420, doi: 10.11676/qxxb2010.040. (in Chinese)

    Google Scholar 

  • Luo, Y. L., 2017: Advances in understanding the early-summer heavy rainfall over South China. The Global Monsoon System: Research and Forecast, C. P. Chang, H. C. Kuo, N. C. Lau, et al., Eds., 3rd ed. World Scientific, Singapore, 215–226, doi: 10.1142/9789813200913_0017.

    Google Scholar 

  • Luo, Y. L., and Y. R. X. Chen, 2015: Investigation of the predictability and physical mechanisms of an extreme-rainfall-producing mesoscale convective system along the Meiyu front in East China: An ensemble approach. J. Geophys. Res. Atmos., 120, 10593–10618, doi: 10.1002/2015JD023584.

    Google Scholar 

  • Luo, Y. L., H. Wang, R. H. Zhang, et al., 2013: Comparison of rainfall characteristics and convective properties of monsoon precipitation systems over South China and the Yangtze and Huai river basin. J. Climate, 26, 110–132, doi: 10.1175/JCLID-12-00100.1.

    Google Scholar 

  • Luo, Y. L., M. W. Wu, F. M. Ren, et al., 2016: Synoptic situations of extreme hourly precipitation over China. J. Climate, 29, 8703–8719, doi: 10.1175/JCLI-D-16-0057.1.

    Google Scholar 

  • Luo, Y. L., R. D. Xia, and J. C. Chan, 2020: Characteristics, physical mechanisms, and prediction of pre-summer rainfall over South China: Research progress during 2008-2019. J. Meteor. Soc. Japan Ser. II, 98, 19–42, doi: 10.2151/jmsj.2020-002.

    Google Scholar 

  • Luo, Y. L., R. H. Zhang, Q. L. Wan, et al., 2017: The Southern China Monsoon Rainfall Experiment (SCMREX). Bull. Amer. Meteor. Soc., 98, 999–1013, doi: 10.1175/BAMS-D-15-00 235.1.

    Google Scholar 

  • Luo, Y. L., Y. Gong, and D.-L. Zhang, 2014: Initiation and organizational modes of an extreme-rain-producing mesoscale convective system along a Mei-Yu front in East China. Mon. Wea. Rev., 142, 203–221, doi: 10.1175/mwr-d-13-00111.1.

    Google Scholar 

  • Luo, Y. L., Y. J. Wang, H. Y. Wang, et al., 2010: Modeling convective-stratiform precipitation processes on a Mei-Yu front with the Weather Research and Forecasting model: Comparison with observations and sensitivity to cloud microphysics parameterizations. J. Geophys. Res. Atmos., 115, D18117, doi: 10.1029/2010JD013873.

    Google Scholar 

  • Ma, T., Y. M. Liu, G. X. Wu, et al., 2020: Potential vorticity diagnosis on the formation, development and eastward movement of a Tibetan Plateau vortex and it’s influence on the downstream precipitation. Chinese J. Atmos. Sci. doi: 10.3878/j.issn.1006-9895.1904.18275. (in Chinese)

    Google Scholar 

  • Mai, Z., Y. Li, and N. Wei, 2017: Characteristics of landfalling tropical cyclone activities over the Poyang Lake Basin and mechanisms analysis. Chinese J. Atmos. Sci., 41, 385–394, doi: 10.3878/j.issn.1006-9895.1605.16129. (in Chinese)

    Google Scholar 

  • Mansfield, D. A., 1996: The use of potential vorticity as an operational forecast tool. Meteor. Appl., 3, 195–210, doi: 10.1002/met.5060030301.

    Google Scholar 

  • Meng, W. G., and Y. Q. Wang, 2016a: A diagnostic study on heavy rainfall induced by Typhoon Utor (2013) in South China: 1. Rainfall asymmetry at landfall. J. Geophys. Res. Atmos., 121, 12,781-12,802, doi: 10.1002/2015JD024646.

    Google Scholar 

  • Meng, W. G., and Y. Q. Wang, 2016b: A diagnostic study on heavy rainfall induced by landfalling Typhoon Utor (2013) in South China: 2. Postlandfall rainfall. J. Geophys. Res. Atmos., 121, 12,803-12,819, doi: 10.1002/2015JD024647.

    Google Scholar 

  • Meng, W. G., Y. X. Zhang, J. N. Yuan, et al., 2014: Monsoon trough and MCSs interactions during the persistent torrential rainfall event of 15-18 July 2011 along the South China coast. Acta Meteor. Sinica, 72, 508–525, doi: 10.11676/qxxb 2014.034. (in Chinese)

    Google Scholar 

  • Meng, Z. Y., and Y. J. Zhang, 2012: On the squall lines preceding landfalling tropical cyclones in China. Mon. Wea. Rev., 140, 446–470, doi: 10.1175/MWR-D-10-05080.1.

    Google Scholar 

  • Meng, Z. Y., X. J. Tang, J. Yue, et al., 2019: Impact of EnKF surface and rawinsonde data assimilation on the simulation of the extremely heavy rainfall in Beijing on July 21, 2012. Acta Sci. Nat. Univ. Pekin., 55, 237–245, doi: 10.13209/j.0479-8023.2019.004. (in Chinese)

    Google Scholar 

  • Miao, S. G., F. Chen, Q. C. Li, et al., 2011: Impacts of urban processes and urbanization on summer precipitation: A case study of heavy rainfall in Beijing on 1 August 2006. J. Appl. Meteor. Climatol., 50, 806–825, doi: 10.1175/2010JAMC 2513.1.

    Google Scholar 

  • Mu, M., W. S. Duan, and J. F. Chou, 2004: Recent advances in predictability studies in China (1999-2002). Adv. Atmos. Sci., 21, 437–443, doi: 10.1007/bf02915570.

    Google Scholar 

  • Neal, R., D. Fereday, R. Crocker, et al., 2016: A flexible approach to defining weather patterns and their application in weather forecasting over Europe. Meteor. Appl., 23, 389–400, doi: 10.1002/met.1563.

    Google Scholar 

  • Ni, Y. Q., and X. J. Zhou, 2006: Main scientific issues and achievements of State 973 Project on study for formation mechanism and prediction theories of severe weather disasters in China. Adv. Earth Sci., 21, 881–894. (in Chinese)

    Google Scholar 

  • Ni, Y. Q., R. H. Zhang, L. P. Liu, et al., 2013: The Southern China Heavy Rainfall Experiment (SCHeREX). China Meteorological Press, Beijing, 283 pp. (in Chinese)

    Google Scholar 

  • Ninomiya, K., 1984: Characteristics of Baiu front as a predominant subtropical front in the summer Northern Hemisphere. J. Meteor. Soc. Japan Ser. II, 62, 880–894, doi: 10.2151/jmsj 1965.62.6_880.

    Google Scholar 

  • Novak, D. R., C. Bailey, K. F. Brill, et al., 2014: Precipitation and temperature forecast performance at the Weather Prediction Center. Wea. Forecasting, 29, 489–504, doi: 10.1175/WAFD-13-00066.1.

    Google Scholar 

  • Pan, H., and G. X. Chen, 2019: Diurnal variations of precipitation over North China regulated by the mountain-plains solenoid and boundary-layer inertial oscillation. Adv. Atmos. Sci., 36, 863–884, doi: 10.1007/s00376-019-8238-3.

    Google Scholar 

  • Peixoto, J. P., and A. H. Oort, 1992: Physics of Climate. American Institute of Physics Press, New York, 520 pp.

    Google Scholar 

  • Petersen, D., K. F. Brill, C. Bailey, et al., 2014: The evolving role of the forecaster at the Weather Predication Center. World Weather Open Science Conference, Paper ID UAS-PS321.01, World Meteorological Organization, Montreal, Canada. Available at www.wmo.int/pages/prog/arep/wwrp/new/wwosc/documents/WWOSC_Petersen.pdf. Accessed on 1 June 2020.

    Google Scholar 

  • Qian, J.-H., W.-K. Tao, and K.-M. Lau, 2004: Mechanisms for torrential rain associated with the Mei-Yu development during SCSMEX 1998. Mon. Wea. Rev., 132, 3–27, doi: 10.1175/1520-0493(2004)132<0003:mftraw>2.0.co;2.

    Google Scholar 

  • Qian, W. H., and J. Shi, 2017: Tripole precipitation pattern and SST variations linked with extreme zonal activities of the western Pacific subtropical high. Int. J. Climatol., 37, 3018–3035, doi: 10.1002/joc.4897.

    Google Scholar 

  • Qin, D. H., J. Y. Zhang, C. C. Shan, et al., 2015. National Assessment Report on Extreme Weather and Climate Events and Disaster Risk Management and Adaptation in China. Science Press, Beijing, 120 pp. (in Chinese)

    Google Scholar 

  • Ramage, C. S., 1952: Variation of rainfall over South China through the wet season. Bull. Amer. Meteor. Soc., 33, 308–311, doi: 10.1175/1520-0477-33.7.308.

    Google Scholar 

  • Rautenhaus, M., M. Böttinger, S. Siemen, et al., 2018: Visualization in meteorology—A survey of techniques and tools for data analysis tasks. IEEE Trans. Visualizat. Comput. Graph., 24, 3268–3296, doi: 10.1109/TVCG.2017.2779501.

    Google Scholar 

  • Ren, C. P., and X. P. Cui, 2014: The cloud-microphysical cause of torrential rainfall amplification associated with Bilis (0604). Sci. China Earth Sci., 57, 2100–2111, doi: 10.1007/s11430-014-4884-6. (in Chinese)

    Google Scholar 

  • Ren, X. J., X.-Q. Yang, and X. G. Sun, 2013: Zonal oscillation of western Pacific subtropical high and subseasonal SST variations during Yangtze persistent heavy rainfall events. J. Climate, 26, 8929–8946, doi: 10.1175/JCLI-D-12-00861.1.

    Google Scholar 

  • Sampe, T., and S.-P. Xie, 2010: Large-scale dynamics of the Meiyu-Baiu rainband: Environmental forcing by the westerly jet. J. Climate, 23, 113–134, doi: 10.1175/2009JCLI3128.1.

    Google Scholar 

  • Schwartz, C. S., and R. A. Sobash, 2017: Generating probabilistic forecasts from convection-allowing ensembles using neighborhood approaches: A review and recommendations. Mon. Wea. Rev., 145, 3397–3418, doi: 10.1175/MWR-D-16-0400.1.

    Google Scholar 

  • Shapiro, A., E. Fedorovich, and S. Rahimi, 2016: A unified theory for the Great Plains nocturnal low-level jet. J. Atmos. Sci., 73, 3037–3057, doi: 10.1175/jas-d-15-0307.1.

    Google Scholar 

  • Shen, X. S., J. J. Wang, Z. C. Li, et al., 2020: Research and development of numerical weather prediciton in China. Acta Meteor. Sinica, 78, doi: 10.11676/qxxb2020.030. (in Chinese) (in press)

  • Shen, Y. A., Y. Du, and G. X. Chen, 2020: Ensemble sensitivity analysis of heavy rainfall associated with three MCSs coexisting over southern China. J. Geophys. Res. Atmos., 125, e2019JD031266, doi: 10.1029/2019jd031266.

    Google Scholar 

  • Shi, D. B., W. Q. Zhu, H. Q. Wang, et al., 1996: Cloud top blackbody temperature analysis of infrared satellite image for mesoscale convective system. Acta Meteor. Sinica, 54, 600–611, doi: 10.11676/qxxb1996.062. (in Chinese)

    Google Scholar 

  • Shi, X. H., and M. Wen, 2015: Distribution and variation of persistent heavy rainfall events in China and possible impacts of heating source anomaly over the Qinghai-Xizang Plateau. Plateau Meteor., 34, 611–620. (in Chinese)

    Google Scholar 

  • Si, G. W., 1989: On the large-scale circulation of Mei-Yu system over East Asia. Acta Meteor. Sinica, 47, 312–323, doi: 10.11676/qxxb1989.041. (in Chinese)

    Google Scholar 

  • Sloughter, J. M., A. E. Raftery, T. Gneiting, et al., 2007: Probabilistic quantitative precipitation forecasting using Bayesian model averaging. Mon. Wea. Rev., 135, 3209–3220, doi: 10.1175/MWR3441.1.

    Google Scholar 

  • Stensrud, D. J., 1996: Importance of low-level jets to climate: A review. J. Climate, 9, 1698–1711, doi: 10.1175/1520-0442(1996)009<1698:IOLLJT>2.0.CO;2.

    Google Scholar 

  • Sun, J. C., J. P. Liu, and G. L. Zhou, 1998: Heavy rainfall and floods in 1998. J. China Hydrol., 97–103, doi: 10.19797/j.cnki.1000-0852.1998.s1.031. (in Chinese)

    Google Scholar 

  • Sun, J. H., and S. X. Zhao, 2000: A diagnosis and simulation study of a strong heavy rainfall in South China. Chinese J. Atmos. Sci., 24, 381–392, doi: 10.3878/j.issn.1006-9895.2000.03.10. (in Chinese)

    Google Scholar 

  • Sun, J. H., and F. Q. Zhang, 2012: Impacts of mountain-plains solenoid on diurnal variations of rainfalls along the Mei-Yu front over the East China plains. Mon. Wea. Rev., 140, 379–397, doi: 10.1175/MWR-D-11-00041.1.

    Google Scholar 

  • Sun, J. H., X. L. Zhang, L. L. Qi, et al., 2004: Study of a mesoscale convective system developed along a vortex-related shear line during the China Heavy Rainfall Experiment in 2002. Chinese J. Atmos. Sci., 28, 675–691, doi: 10.3878/j.issn.1006-9895.2004.05.03. (in Chinese)

    Google Scholar 

  • Sun, J. H., X. L. Zhang, J. Wei, et al., 2005: A study on severe heavy rainfall in North China during the 1990s. Climatic Environ. Res., 10, 492–506, doi: 10.3878/j.issn.1006-9585.2005.03.20. (in Chinese)

    Google Scholar 

  • Sun, J. H., L. L. Qi, and S. X. Zhao, 2006: A study on mesoscale convective systems of the severe heavy rainfall in North China by “9608” typhoon. Acta Meteor. Sinica, 64, 57–71, doi: 10.3321/j.issn:0577-6619.2006.01.006. (in Chinese)

    Google Scholar 

  • Sun, J. H., S. X. Zhao, S. M. Fu, et al., 2013: Multi-scale characteristics of record-breaking heavy rainfall over Beijing area on July 21, 2012. Chinese J. Atmos. Sci., 37, 705–718, doi: 10.3878/j.issn.1006-9895.2013.12202. (in Chinese)

    Google Scholar 

  • Sun, J. S., 2005: A study of the basic features and mechanism of boundary layer jet in Beijing area. Chinese J. Atmos. Sci., 29, 445–452, doi: 10.3878/j.issn.1006-9895.2005.03.12. (in Chinese)

    Google Scholar 

  • Sun, J. S., and B. Yang, 2008: Meso-β-scale torrential rain affected by topography and the urban circulation. Chinese J. Atmos. Sci., 32, 1352–1364, doi: 10.3878/j.issn.1006-9895.2008.06.10. (in Chinese)

    Google Scholar 

  • Sun, J. S., H. Wang, L. Wang, et al., 2006: The role of urban boundary layer in local convective torrential rain happening in Beijing on 10 July 2004. Chinese J. Atmos. Sci., 30, 221–234, doi: 10.3878/j.issn.1006-9895.2006.02.05. (in Chinese)

    Google Scholar 

  • Sun, J. S., N. He, G. R. Wang, et al., 2012: Preliminary analysis on synoptic configuration evolvement and mechanism of a torrential rain occurring in Beijing on 21 July 2012. Torr. Rain Disas., 31, 218–225. (in Chinese)

    Google Scholar 

  • Sun, L., X. Y. Zheng, and Q. Wang, 1994: The climatological characteristics of northeast cold vortex in China. Quart. J. Appl. Meteor, 5, 297–303. (in Chinese)

    Google Scholar 

  • Sun, L., G. An, Z. T. Gao, et al., 2002: A composite diagnostic study of heavy rain caused by the northeast cold vortex over Songhuajiang-Nenjiang River Basin in summer of 1998. J. Appl. Meteor. Sci., 13, 156–162, doi: 10.3969/j.issn.1001-7313.2002.02.003. (in Chinese)

    Google Scholar 

  • Sun, S. Q., and G. Q. Zhai, 1980: On the instability of the low level jet and its trigger function for the occurrence of heavy rain-storms. Scientia Atmos. Sinica, 4, 327–337, doi: 10.3878/j.issn.1006-9895.1980.04.05. (in Chinese)

    Google Scholar 

  • Sun, S. Q., and S. X. Zhao, 1980: The relationship between the large scale low jet and heavy rainfalls during mid-summer in North China. Collected Papers of Institute of Atmospheric Physics, Chinese Academy of Sciences, No. 9, Science Press, Beijing, 117–124. (in Chinese)

    Google Scholar 

  • Sun, Y. Q., and F. Q. Zhang, 2016: Intrinsic versus practical limits of atmospheric predictability and the significance of the butterfly effect. J. Atmos. Sci., 73, 1419–1438, doi: 10.1175/JAS-D-15-0142.1.

    Google Scholar 

  • Tan, Z. M., and S. X. Zhao, 2013: On the Structure and Mechanisms of Meso-β-Scale Severe Convective Systems over Southern China. China Meteorological Press, Beijing, 1–327. (in Chinese)

    Google Scholar 

  • Tang, J., K. Dai, Z. P. Zong, et al., 2018: Methods and platform realization of the national QPF master blender. Meteor. Mon., 44, 1020–1032, doi: 10.7519/j.issn.1000-0526.2018.08.004. (in Chinese)

    Google Scholar 

  • Tao, S. Y., 1980: Rainstorms in China. Science Press, Beijing, 225 pp. (in Chinese)

    Google Scholar 

  • Tao, S.-Y., and F.-K. Zhu, 1964: The 100-mb flow patterns in southern Asia in summer and its relation to the advance and retreat of the West Pacific subtropical anticyclone over the far East. Acta Meteor. Sinica, 34, 385–396, doi: 10.11676/qxxb1964.039. (in Chinese)

    Google Scholar 

  • Tao, S.-Y., and Y.-H. Ding, 1981: Observational evidence of the influence of the Qinghai-Xizang (Tibet) Plateau on the occurrence of heavy rain and severe convective storms in China. Bull. Amer. Meteor. Soc., 62, 23–30, doi: 10.1175/1520-0477(1981)062<0023:OEOTIO>2.0.CO;2.

    Google Scholar 

  • Tao, S. Y., and L. X. Chen, 1987: A review of recent research on the East Asian summer monsoon in China. Monsoon Meteorology, C.-P. Chang, and T. N. Krishnamurti, Eds., Oxford University, London, 60–92.

    Google Scholar 

  • Tao, S. Y., Z. S. Wang, F. K. Zhu, et al., 1963: Study on Some Issues of Summer Subtropical Weather System in China. Science Press, Beijing, 145 pp. (in Chinese)

    Google Scholar 

  • Tao, S.-Y., Y.-H. Ding, and X.-P. Zhou, 1979: The present status of the research on rainstorm and severe convective weathers in China. Scientia Atmos. Sinica, 3, 227–238, doi: 10.3878/j.issn.1006-9895.1979.03.05. (in Chinese)

    Google Scholar 

  • Tao, S. Y., Y. Q. Ni, S. X. Zhao, et al., 2001: Study on the Formation Mechanism and Forecast of Chinese Summer Rainfall in 1998. China Meteorological Press, Beijing, 1–184. (in Chinese)

    Google Scholar 

  • Tao, W.-K., J. J. Shi, P.-L. Lin, et al., 2011: High-resolution numerical simulation of the extreme rainfall associated with Typhoon Morakot. Part I: Comparing the impact of microphysics and PBL parameterizations with observations. Terr. Atmos. Ocean Sci., 22, 673–696, doi: 10.3319/TAO.2011.08. 26.01(TM).

    Google Scholar 

  • Tao, Z.-Y., 1980: The structure and formation of the moist jet stream. Acta Meteor. Sinica, 38, 331–340, doi: 10.11676/qxxb1980.039. (in Chinese)

    Google Scholar 

  • Tao, Z. Y., and Y. G. Zheng, 2012: Analysis methods on potential temperature, isentropic potential vorticity, front and tropopause. Meteor. Mon., 38, 17–27. (in Chinese)

    Google Scholar 

  • Tao, Z. Y., B. J. Tian, and W. Huang, 1994: Asymmetry structure and torrential rain of landing Typhoon 9216. J. Trop. Meteor., 10, 69–77, doi: 10.16032/j.issn.1004-4965.1994.01.009. (in Chinese)

    Google Scholar 

  • Thaler, E. R., and P. Nutter, 2009: Moving quasigeostrophic theory into the 21st century. Proc. 23rd Conference on Weather Analysis and Forecasting, Amer. Meteor. Soc., Omaha, NE, Paper ID 8B.3.

    Google Scholar 

  • Tian, S.-C., and Z.-M. Zeng, 1982: A comparison between two cases with and without heavy rain in front of an upper trough in summer over North China. Scientia Atmos. Sinica, 6, 179–186, doi: 10.3878/j.issn.1006-9895.1982.02.09. (in Chinese)

    Google Scholar 

  • Uccellini, L. W., 1980: On the role of upper tropospheric jet streaks and leeside cyclogenesis in the development of lowlevel jets in the Great Plains. Mon. Wea. Rev., 108, 1689–1696, doi: 10.1175/1520-0493(1980)108<1689:otrout>2.0.co; 2.

    Google Scholar 

  • Uccellini, L. W., and D. R. Johnson, 1979: The coupling of upper and lower tropospheric jet streaks and implications for the development of severe convective storms. Mon. Wea. Rev., 107, 682–703, doi: 10.1175/1520-0493(1979)107<0682:TCOUAL> 2.0.CO;2.

    Google Scholar 

  • Uccellini, L. W., R. A. Petersen, P. J. Kocin, et al., 1987: Synergistic interactions between an upper-level jet streak and diabatic processes that influence the development of a low-level jet and a secondary coastal cyclone. Mon. Wea. Rev., 115, 2227–2261, doi: 10.1175/1520-0493(1987)115<2227:SIBAU L>2.0.CO;2.

    Google Scholar 

  • Wan, B. C., Z. Q. Gao, F. Chen, et al., 2017: Impact of Tibetan Plateau surface heating on persistent extreme precipitation events in southeastern China. Mon. Wea. Rev., 145, 3485–3505, doi: 10.1175/MWR-D-17-0061.1.

    Google Scholar 

  • Wang, B., and Z. Z. Ji, 1990: The construction and preliminary test of the explicit complete square conservative difference schemes. Chinese Sci. Bull., 35, 766–768, doi: 10.1360/csb 1990-35-10-766. (in Chinese)

    Google Scholar 

  • Wang, C.-C., G. T.-J. Chen, and R. E. Carbone, 2004: A climatology of warm-season cloud patterns over East Asia based on GMS infrared brightness temperature observations. Mon. Wea. Rev., 132, 1606–1629, doi: 10.1175/1520-0493(2004)132<1606:ACOWCP>2.0.CO;2.

    Google Scholar 

  • Wang, D. H., and S. Yang, 2010: An atmospheric dry intrusion parameter and its application. Acta Meteor. Sinica, 24, 492-500.

  • Wang, D. H., S. X. Zhong, Y. Liu, et al., 2007: Advances in the study of rainstorm in Northeast China. Adv. Earth Sci., 22, 549–560, doi: 10.3321/j.issn:1001-8166.2007.06.001. (in Chinese)

    Google Scholar 

  • Wang, D. H., X. F. Li, W.-K. Tao, et al., 2009: Torrential rainfall processes associated with landfall of severe tropical storm Bilis (2006): A two-dimensional cloud-resolving modeling study. Atmos. Res., 91, 94–104, doi: 10.1016/j.atmosres.2008. 07.005.

    Google Scholar 

  • Wang, H., F. Y. Kong, N. G. Wu, et al., 2019: An investigation into microphysical structure of a squall line in South China observed with a polarimetric radar and a disdrometer. Atmos. Res., 226, 171–180, doi: 10.1016/j.atmosres.2019.04.009.

    Google Scholar 

  • Wang, H., Y. L. Luo, and B. J.-D. Jou, 2014: Initiation, maintenance, and properties of convection in an extreme rainfall event during SCMREX: Observational analysis. J. Geophys. Res. Atmos., 119, 13,206-13,232, doi: 10.1002/2014JD022 339.

    Google Scholar 

  • Wang, J. Z., J. Chen, Z. R. Zhuang, et al., 2018: Characteristics of initial perturbation growth rate in the regional ensemble prediction system of GRAPES. Chinese J. Atmos. Sci., 42, 367–382, doi: 10.3878/j.issn.1006-9895.1708.17141. (in Chinese)

    Google Scholar 

  • Wang, L.-J., S. Lu, Z.-Y. Guan, et al., 2010: Effects of low-latitude monsoon surge on the increase in downpour from tropical storm Bilis. J. Trop. Meteor., 16, 101–108, doi: 10.3969/j.issn.1006-8775.2010.02.001.

    Google Scholar 

  • Wang, M. J., K. Zhao, M. Xue, et al., 2016: Precipitation microphysics characteristics of a Typhoon Matmo (2014) rainband after landfall over eastern China based on polarimetric radar observations. J. Geophys. Res. Atmos., 121, 12,415-12,433, doi: 10.1002/2016JD025307.

    Google Scholar 

  • Wang, P. Y., Z. X. Xu, and Z. T. Pan, 1990: A case study of warm sector rainbands in North China. Adv. Atmos. Sci., 7, 354–365, doi: 10.1007/BF03179767.

    Google Scholar 

  • Wang, Q.-W., and Z.-M. Tan, 2014: Multi-scale topographic control of southwest vortex formation in Tibetan Plateau region in an idealized simulation. J. Geophys. Res. Atmos., 119, 11,543-11,561, doi: 10.1002/2014JD021898.

    Google Scholar 

  • Wang, Y. Q., and Y. T. Zhu, 1992: Analysis and numerical study of the interactions of binary tropical cyclones. Part I: Analysis of physical mechanism. Scientia Atmos. Sinica, 16, 573–582, doi: 10.3878/j.issn.1006-9895.1992.05.08. (in Chinese)

    Google Scholar 

  • Wang, Y. Q., Y. Q. Wang, and H. Fudeyasu, 2009: The role of Typhoon Songda (2004) in producing distantly located heavy rainfall in Japan. Mon. Wea. Rev., 137, 3699–3716, doi: 10.1175/2009mwr2933.1.

    Google Scholar 

  • Wei, N., and Y. Li, 2013: A modeling study of land surface process impacts on inland behavior of Typhoon Rananim (2004). Adv. Atmos. Sci., 30, 367–381, doi: 10.1007/s00376-012-1242-5.

    Google Scholar 

  • Wen, J., K. Zhao, H. Huang, et al., 2017: Evolution of microphysical structure of a subtropical squall line observed by a polarimetric radar and a disdrometer during OPACC in Eastern China. J. Geophys. Res. Atmos., 122, 8033–8050, doi: 10.1002/2016JD026346.

    Google Scholar 

  • Wen, L., K. Zhao, G. F. Zhang, et al., 2016: Statistical characteristics of raindrop size distributions observed in East China during the Asian summer monsoon season using 2-D video disdrometer and micro rain radar data. J. Geophys. Res. Atmos., 121, 2265–2282, doi: 10.1002/2015JD024160.

    Google Scholar 

  • Wernli, H., and M. Sprenger, 2007: Identification and ERA-15 climatology of potential vorticity streamers and cutoffs near the extratropical tropopause. J. Atmos. Sci., 64, 1569–1586, doi: 10.1175/JAS3912.1.

    Google Scholar 

  • Wu, C., L. P. Liu, M. Wei, et al., 2018: Statistics-based optimization of the polarimetric radar hydrometeor classification algorithm and its application for a squall line in South China. Adv. Atmos. Sci., 35, 296–316, doi: 10.1007/s00376-017-6241-0.

    Google Scholar 

  • Wu, G.-X., 1984: The nonlinear response of the atmosphere to large-scale mechanical and thermal forcing. J. Atmos. Sci., 41, 2456–2476, doi: 10.1175/1520-0469(1984)041<2456:TNROT A>2.0.CO;2.

    Google Scholar 

  • Wu, G.-X., and S.-J. Chen, 1985: The effect of mechanical forcing on the formation of a mesoscale vortex. Quart. J. Roy. Meteor. Soc., 111, 1049–1070, doi: 10.1002/qj.49711147009.

    Google Scholar 

  • Wu, G. X., Y. M. Liu, and P. Liu, 1999: The effect of spatially nonuniform heating on the formation and variation of subtropical high. I: Scale analysis. Acta Meteor. Sinica, 57, 257–263, doi: 10.11676/qxxb1999.025. (in Chinese)

    Google Scholar 

  • Wu, G. X., J. F. Chou, Y. M. Liu, et al., 2002: Dynamics of Subtropical High Formation and Variation. Science Press, Beijing, 1–294. (in Chinese)

    Google Scholar 

  • Wu, G. X., Y. M. Liu, J. J. Yu, et al., 2008: Modulation of land-sea distribution on air-sea interaction and formation of subtropical anticyclones. Chinese J. Atmos. Sci., 32, 720–740, doi: 10.3878/j.issn.1006-9895.2008.04.03. (in Chinese)

    Google Scholar 

  • Wu, G. X., Y. J. Zheng, and Y. M. Liu, 2013: Dynamical and thermal problems in vortex development and movement. Part II: Generalized slantwise vorticity development. Acta Meteor. Sinica, 27, 15–25, doi: 10.1007/s13351-013-0102-2.

    Google Scholar 

  • Wu, L. G., and C. Wang, 2015: Has the western Pacific subtropical high extended westward since the late 1970s? J. Climate, 28, 5406–5413, doi: 10.1175/JCLI-D-14-00618.1.

    Google Scholar 

  • Wu, M. W., and Y. L. Luo, 2016: Mesoscale observational analysis of lifting mechanism of a warm-sector convective system producing the maximal daily precipitation in China mainland during pre-summer rainy season of 2015. J. Meteor. Res., 30, 719–736, doi: 10.1007/s13351-016-6089-8.

    Google Scholar 

  • Wu, M. W., C.-C. Wu, T.-H. Yen, et al., 2017: Synoptic analysis of extreme hourly precipitation in Taiwan during 2003-12. Mon. Wea. Rev., 145, 5123–5140, doi: 10.1175/MWR-D-17-0230.1.

    Google Scholar 

  • Wu, M. W., Y. L. Luo, F. Chen, et al., 2019: Observed link of extreme hourly precipitation changes to urbanization over coastal South China. J. Appl. Meteor. Climatol., 58, 1799–1819, doi: 10.1175/JAMC-D-18-0284.1.

    Google Scholar 

  • Wu, S.-S., J.-Y. Liang, and C.-H. Li, 2003: Relationship between the intensity of South China Sea summer monsoon and the precipitation in raining seasons in China. J. Trop. Meteor., 19, 25–36, doi: 10.3969/j.issn.1004-4965.2003.z1.003. (in Chinese)

    Google Scholar 

  • Wu, X., J.-F. Fei, X.-G. Huang, et al., 2011: Statistical classification and characteristics analysis of binary tropical cyclones over the western North Pacific Ocean. J. Trop. Meteor., 17, 335–344, doi: 10.3969/j.issn.1006-8775.2011.04.003.

    Google Scholar 

  • Wu, Z.-Q., H.-M. Xu, D.-H. Wang, et al., 2012: Analysis of a heavy rain process on June 19-20, 2010 in southern China by using a multi-mode mesoscale super-ensemble forecasting system. J. Trop. Meteor., 28, 653–663, doi: 10.3969/j.issn.1004-4965.2012.05.005. (in Chinese)

    Google Scholar 

  • Xia, R. D., and D.-L. Zhang, 2019: An observational analysis of three extreme rainfall episodes of 19-20 July 2016 along the Taihang Mountains in North China. Mon. Wea. Rev., 147, 4199–4220, doi: 10.1175/MWR-D-18-0402.1.

    Google Scholar 

  • Xie, Z. W., and C. Bueh, 2012: Low frequency characteristics of Northeast China cold vortex and its background circulation pattern. Acta Meteor. Sinica, 70, 704–716, doi: 10.11676/qxxb2012.057. (in Chinese)

    Google Scholar 

  • Xu, C. L., J. J. Wang, and L. P. Huang, 2017: Evaluation on QPF of GRAPES-Meso4.0 model at convection-permitting resolu tion. Acta Meteor. Sinica, 75, 851–876, doi: 10.11676/qxxb2017.068. (in Chinese)

    Google Scholar 

  • Xu, H. X., X. D. Xu, B. Chen, et al., 2013: The structure change and energy moisture transport physical image in the development and decay processes of binary typhoon vortices. Acta Meteor. Sinica, 71, 825–838, doi: 10.11676/qxxb2013.069. (in Chinese)

    Google Scholar 

  • Xu, H. X., X. D. Xu, S. J. Zhang, et al., 2014: Long-range moisture alteration of a typhoon and its impact on Beijing extreme rainfall. Chinese J. Atmos. Sci., 38, 537–550, doi: 10.3878/j. issn.1006-9895.2013.13173. (in Chinese)

    Google Scholar 

  • Xu, W. X., E. J. Zipser, and C. T. Liu, 2009: Rainfall characteristics and convective properties of Meiyu precipitation systems over South China, Taiwan, and the South China Sea. Part I: TRMM observations. Mon. Wea. Rev., 137, 4261–4275, doi: 10.1175/2009MWR2982.1.

    Google Scholar 

  • Xu, X.-D., S.-J. Zhang, L.-S. Chen, et al., 2004: Dynamic characteristics of typhoon vortex spiral wave and its translation: A diagnostic analyses. Chinese J. Geophys., 47, 33–41, doi: 10.3321/j.issn:0001-5733.2004.01.006. (in Chinese)

    Google Scholar 

  • Xu, X. D., C. Lu, H. X. Xu, et al., 2011: A possible mechanism responsible for exceptional rainfall over Taiwan from Typhoon Morakot. Atmos. Sci. Lett., 12, 294–299, doi: 10.1002/asl.338.

    Google Scholar 

  • Xu, Z. Z., J. Chen, Y. Wang, et al., 2019: Sensitivity experiments of a stochastically perturbed parameterizations (SPP) scheme for mesoscale precipitation ensemble prediction. Acta Meteor. Sinica, 77, 849–868, doi: 10.11676/qxxb2019.039. (in Chinese)

    Google Scholar 

  • Xue, J. S., 1999: Research on the Summer Heavy Rain over South China in 1994. China Meteorological Press, Beijing, 1–185. (in Chinese)

    Google Scholar 

  • Xue, J. S., and D. H. Chen, 2008: Scientific Design and Application of GRAPES Numerical Prediction System. Science Press, Beijing, 383 pp. (in Chinese)

    Google Scholar 

  • Xue, M., 2016: Preface to the special issue on the “Observation, Prediction and Analysis of Severe Convection of China” (OPACC) National “973” project. Adv. Atmos. Sci., 33, 1099–1101, doi: 10.1007/s00376-016-0002-3.

    Google Scholar 

  • Xue, M., X. Luo, K. F. Zhu, et al., 2018: The controlling role of boundary layer inertial oscillations in Meiyu frontal precipitation and its diurnal cycles over China. J. Geophys. Res. Atmos., 123, 5090–5115, doi: 10.1029/2018JD028368.

    Google Scholar 

  • Yang, B., J. S. Sun, X. Mao, et al., 2016: Multi-scale characteristics of atmospheric circulation related to short-time strong rainfall events in Beijing. Acta Meteor. Sinica, 74, 919–934, doi: 10.11676/qxxb2016.072. (in Chinese)

    Google Scholar 

  • Yang, J., Q. Bao, B. Wang, et al., 2014: Distinct quasi-biweekly features of the subtropical East Asian monsoon during early and late summers. Climate Dyn., 42, 1469–1486, doi: 10.1007/s00382-013-1728-6.

    Google Scholar 

  • Yang, S., and S.-T. Gao, 2006: Modified Richardson number in non-uniform saturated moist flow. Chinese Phys. Lett., 23, 3003–3006, doi: 10.1088/0256-307X/23/11/033.

    Google Scholar 

  • Q. Yang, S., S. T. Gao, and D. H. Wang, 2007: Diagnostic analyses of the ageostrophic vector in the non-uniformly saturated, frictionless, and moist adiabatic flow. J. Geophys. Res. Atmos., 112, D09114, doi: 10.1029/2006JD008142.

    Google Scholar 

  • Yang, S., S. T. Gao, and C. G. Lu, 2014: A generalized frontogenesis function and its application. Adv. Atmos. Sci., 31, 1065–1078, doi: 10.1007/s00376-014-3228-y.

    Google Scholar 

  • Yang, S., S. T. Gao, and C. G. Lu, 2015: Investigation of the Mei-Yu front using a new deformation frontogenesis function. Adv. Atmos. Sci., 32, 635–647, doi: 10.1007/s00376-014-4147-7.

    Google Scholar 

  • Yang, S., W. Zhang, B. Chen, et al., 2019a: Remote moisture sources for 6-hour summer precipitation over the southeastern Tibetan Plateau and its effects on precipitation intensity. Atmos. Res., 236, 104803, doi: 10.1016/j.atmosres.2019.104803.

    Google Scholar 

  • Yang, S., X. B. Tang, S. X. Zhong, et al., 2019b: Convective bursts episode of the rapidly intensified Typhoon Mujigae (2015) A. dv A. tmos S. ci. 3, 6 5, 41-556 d, oi1: 0.1007/s00376-019-8142-x.

    Google Scholar 

  • Yang, T., Y. H. Duan, J. Xu, et al., 2018: Simulation of the urbanization impact on precipitation of landfalling tropical cyclone Nida (2016). J. Appl. Meteor. Sci., 29, 410–422, doi: 10.11898/1001-7313.20180403. (in Chinese)

    Google Scholar 

  • Yao, C., S. S. Lou, and J. Y. Ye, 2019: Mesoscale analysis and numerical simulation of a typhoon rainstrom event affected by cold air. Torr. Rain Disas., 38, 204–211, doi: 10.3969/j. issn.1004-9045.2019.03.002. (in Chinese)

    Google Scholar 

  • Ye, D. Z., and B. Z. Zhu, 1958: Some Basic Problems of Atmospheric Circulation. Science Press, Beijing, 159 pp. (in Chinese)

    Google Scholar 

  • Ye, D. Z., and Z. C. Gu, 1955: Effects of the Tibetan Plateau on East Asian atmospheric circulation and China weather. Chinese Sci. Bull., 6, 29–33. (in Chinese)

    Google Scholar 

  • Ye, D. Z., and M. C. Li, 1964: The adaptation of wind field and pressure field in small and medium scale motion. Acta Meteor. Sinica, 34, 409–424, doi: 10.11676/qxxb1964.041. (in Chinese)

    Google Scholar 

  • Ye, D. Z., and Y. X. Gao, 1979: Meteorology of the Tibetan Plateau. Science Press, Beijing, 115–121. (in Chinese)

    Google Scholar 

  • Ye, D. Z., Y. X. Gao, and K. N. Liu, 1952: On the advance and retreat of the jet stream in southern Asia and southwest of the United States from 1945 to 1946. Acta Meteor. Sinica, 23, 1–32. (in Chinese)

    Google Scholar 

  • Ye, D. Z., S. Y. Tao, and M. C. Li, 1958: The abrupt change of circulation over Northern Hemisphere during June and October. Acta Meteor. Sinica, 29, 249–263. (in Chinese)

    Google Scholar 

  • Ye, D.-Z., Y.-X. Gao, and Q. Chen, 1977: On some features of the summer atmospheric circulation over the Tsinghai-Tibetan plateau and its neighbourhood. Chinese J. Atmos. Sci., 1, 289–299, doi: 10.3878/j.issn.1006-9895.1977.04.06. (in Chinese)

    Google Scholar 

  • Ye, T.-S., R. Zhi, J.-H. Zhao, et al., 2014: The two annual northward jumps of the West Pacific Subtropical High and their relationship with summer rainfall in Eastern China under global warming. Chinese Phys. B, 23, 069203, doi: 10.1088/1674-1056/23/6/069203.

  • Ye, Y., and G. P. Li, 2016: Statistics characteristics and the abnormal development of flow pattern of the Southwest Vortex in recent 61 summer half years. Plateau Meteor., 35, 946–954. (in Chinese)

    Google Scholar 

  • Yeh, T. C., 1957: On the formation of quasi-geostrophic motion in the atmosphere. J. Meteor. Soc. Japan Ser. II, 35A, 130–134, doi: 10.2151/jmsj1923.35A.0_130.

    Google Scholar 

  • Yin, J., and S. S. Liang, 2010: Influence of urbanization on regional precipitation in Shanghai City. Hydrology, 30, 66–72, doi: 10.3969/j.issn.1000-0852.2010.02.015. (in Chinese)

    Google Scholar 

  • Yin, J. F., D.-L. Zhang, Y. L. Luo, et al., 2020: On the extreme rainfall event of 7 May 2017 over the coastal city of Guangzhou. Part I: Impacts of urbanization and orography. Mon. Wea. Rev., 148, 955–979, doi: 10.1175/MWR-D-19-0212.1.

    Google Scholar 

  • Yin, S. Q., D. L. Chen, and Y. Xie, 2009: Diurnal variations of precipitation during the warm season over China. Int. J. Climatol., 29, 1154–1170, doi: 10.1002/joc.1758.

    Google Scholar 

  • Yin, S. Q., W. J. Li, D. L. Chen, et al., 2011: Diurnal variations of summer precipitation in the Beijing area and the possible effect of topography and urbanization. Adv. Atmos. Sci., 28, 725–734, doi: 10.1007/s00376-010-9240-y.

    Google Scholar 

  • You, J. Y., 1965: The mesoscale systems in heavy rainfall zone. Acta Meteor. Sinica, 35, 293–304, doi: 10.11676/qxxb1965. 033. (in Chinese)

    Google Scholar 

  • Yu, R. C., J. Li, H. M. Chen, et al., 2014: Progress in studies of the precipitation diurnal variation over contiguous China. J. Meteor. Res., 28, 877–902, doi: 10.1007/s13351-014-3272-7.

    Google Scholar 

  • Yu, R. C., T. J. Zhou, A. Y. Xiong, et al., 2007: Diurnal variations of summer precipitation over contiguous China. Geophys. Res. Lett., 34, L01704, doi: 10.1029/2006GL028129.

    Google Scholar 

  • Yu, R. C., Y. Zhang, J. J. Wang, et al., 2019: Recent progress in numerical atmospheric modeling in China. Adv. Atmos. Sci., 36, 938–960, doi: 10.1007/s00376-019-8203-1.

    Google Scholar 

  • Yu, Z. F., H. Yu, and S.-T. Gao, 2010: Terrain impact on the precipitation of landfalling Typhoon Talim. J. Trop. Meteor., 16, 115–124, doi: 10.3969/j.issn.1006-8775.2010.02.003.

    Google Scholar 

  • Yu, Z. F., Y. Q. Wang, H. M. Xu, et al., 2017: On the relationship between intensity and rainfall distribution in tropical cyclones making landfall over China. J. Appl. Meteor. Climatol., 56, 2883–2901, doi: 10.1175/JAMC-D-16-0334.1.

    Google Scholar 

  • Yuan, C. X., J. Q. Liu, J.-J. Luo, et al., 2019: Influences of tropical Indian and Pacific oceans on the interannual variations of precipitation in the early and late rainy seasons in South China. J. Climate, 32, 3681–3694, doi: 10.1175/JCLI-D-18-0588.1.

    Google Scholar 

  • Yuan, F., K. Wei, W. Chen, et al., 2010: Temporal variations of the frontal and monsoon storm rainfall during the first rainy season in South China. Atmos. Ocean. Sci. Lett., 3, 243–247, doi: 10.1080/16742834.2010.11446876.

    Google Scholar 

  • Yuan, W. H., R. C. Yu, H. M. Chen, et al., 2010: Subseasonal characteristics of diurnal variation in summer monsoon rainfall over central eastern China. J. Climate, 23, 6684–6695, doi: 10.1175/2010JCLI3805.1.

    Google Scholar 

  • Yuan, W. H., R. C. Yu, M. H. Zhang, et al., 2012: Regimes of diurnal variation of summer rainfall over subtropical East Asia. J. Climate, 25, 3307–3320, doi: 10.1175/JCLI-D-11-00288.1.

    Google Scholar 

  • Yuan, X. X., 1981: Meteorological analysis of the formation of southwest wind low-level jets in the South of China. Acta Meteor. Sinica, 39, 245–251, doi: 10.11676/qxxb1981.027. (in Chinese)

    Google Scholar 

  • Yue, C. J., Y. Q. Tang, W. Gu, et al., 2019: Study of urban barrier effect on local typhoon precipitation. Meteor. Mon., 45, 1611–1620, doi: 10.7519/j.issn.1000-0526.2019.11.011. (in Chinese)

    Google Scholar 

  • Zadra, A., G. Brunet, and J. Derome, 2002: An empirical normal mode diagnostic algorithm applied to NCEP reanalyses. J. Atmos. Sci., 59, 2811–2829, doi: 10.1175/1520-0469(2002)059<2811:AENMDA>2.0.CO;2.

    Google Scholar 

  • Zeng, Q. C., 1963a: Adaptation and development processes in the atmosphere (I)—Physical analysis and linear theory. Acta Meteor. Sinica, 33, 163–174, doi: 10.11676/qxxb1963.017. (in Chinese)

    Google Scholar 

  • Zeng, Q. C., 1963b: Characteristic parameters and dynamic equations of atmospheric motion. Acta Meteor. Sinica, 33, 472–483, doi: 10.11676/qxxb1963.050. (in Chinese)

    Google Scholar 

  • Zeng, Q.-C., 1979a: The advance in atmospheric dynamics and numerical weather prediction in China. Scientia Atmos. Sinica, 3, 256–269, doi: 10.3878/j.issn.1006-9895.1979.03.08. (in Chinese)

    Google Scholar 

  • Zeng, Q. C., 1979b: Mathematical and Physical Basis of Numerical Weather Prediction, Volume I. Science Press, Beijing, 543 pp. (in Chinese)

    Google Scholar 

  • Zeng, Q. C., and Z. Z. Ji, 1981: On the computational stability of evolution equations. Math. Numer. Sinica, 3, 79–86. (in Chinese)

    Google Scholar 

  • Zeng, W. X., G. X. Chen, Y. Du, et al., 2019: Diurnal variations of low-level winds and precipitation response to large-scale circulations during a heavy rainfall event. Mon. Wea. Rev., 147, 3981–4004, doi: 10.1175/MWR-D-19-0131.1.

    Google Scholar 

  • Zhai, G. Q., H. J. Ding, S. Q. Sun, et al., 1999: Physical characteristics of heavy rainfall associated with strong low level jet. Chinese J. Atmos. Sci., 23, 112–118, doi: 10.3878/j.issn.1006-9895.1999.01.13. (in Chinese)

    Google Scholar 

  • Zhang, D.-L., Y. H. Lin, P. Zhao, et al., 2013: The Beijing extreme rainfall of 21 July 2012: “Right results” but for wrong reasons. Geophys. Res. Lett., 40, 1426–1431, doi: 10.1002/grl. 50304.

    Google Scholar 

  • Zhang, F. Q., Y. Q. Sun, L. Magnusson, et al., 2019: What is the predictability limit of midlatitude weather? J. Atmos. Sci., 76, 1077–1091, doi: 10.1175/JAS-D-18-0269.1.

    Google Scholar 

  • Zhang, H., and P. M. Zhai, 2011: Temporal and spatial characteristics of extreme hourly precipitation over Eastern China in the warm season. Adv. Atmos. Sci., 25, 1177–1183, doi: 10.1007/s00376-011-0020-0.

    Google Scholar 

  • Zhang, H. B., J. Chen, X. F. Zhi, et al., 2015: Study on multi-scale blending initial condition perturbations for a regional ensemble prediction system. Adv. Atmos. Sci., 32, 1143–1155, doi: 10.1007/s00376-015-4232-6.

    Google Scholar 

  • Zhang, M. R., and Z. Y. Meng, 2019: Warm-sector heavy rainfall in Southern China and its WRF simulation evaluation: A lowlevel-jet perspective. Mon. Wea. Rev., 147, 4461–4480, doi: 10.1175/MWR-D-19-0110.1.

    Google Scholar 

  • Zhang, R. H., Y. Q. Ni, L. P. Liu, et al., 2011: South China Heavy Rainfall Experiments (SCHeREX). J. Meteor. Soc. Japan Ser. II, 89A, 153–166, doi: 10.2151/jmsj.2011-A10.

    Google Scholar 

  • Zhang, S. J., L. S. Chen, and Y. Li, 2012: Statistical analysis and numerical simulation of Poyang Lake’s influence on tropical cyclones. J. Trop. Meteor., 18, 249–262.

    Google Scholar 

  • Zhang, X. B., 2018: Application of a convection-permitting ensemble prediction system to quantitative precipitation forecasts over Southern China: Preliminary results during SCMREX. Quart. J. Roy. Meteor. Soc., 144, 2842–2862, doi: 10. 1002/qj.3411.

    Google Scholar 

  • Zhang, X. B., 2019: Multiscale characteristics of different-source perturbations and their interactions for convection-permitting ensemble forecasting during SCMREX. Mon. Wea. Rev., 147, 291–310, doi: 10.1175/MWR-D-18-0218.1.

    Google Scholar 

  • Zhang, X. B., Y. L. Luo, Q. L. Wan, et al., 2016: Impact of assimilating wind profiling radar observations on convection-permitting quantitative precipitation forecasts during SCMREX. Wea. Forecasting, 31, 1271–1292, doi: 10.1175/WAF-D-15-0156.1.

    Google Scholar 

  • Zhang, X. L., S. Y. Tao, and S. L. Zhang, 2004: Three types of heavy rainstorms associated with the Meiyu front. Chinese J. Atmos. Sci., 28, 187–205, doi: 10.3878/j.issn.1006-9895.2004. 02.03. (in Chinese)

    Google Scholar 

  • Zhang, Y., J. Li, R. C. Yu, et al., 2019: A layer-averaged nonhydrostatic dynamical framework on an unstructured mesh for global and regional atmospheric modeling: Model description, baseline evaluation, and sensitivity exploration. J. Adv. Model. Earth Syst., 11, 1685–1714, doi: 10.1029/2018MS 001539.

    Google Scholar 

  • Zhang, Y. C., J. H. Sun, G. K. Xu, et al., 2013: Analysis on the structure of two mesoscale convective vortices over Yangtze-Huaihe River basin. Climatic Environ. Res., 18, 271–287, doi: 10.3878/j.issn.1006-9585.2012.11162. (in Chinese)

    Google Scholar 

  • Zhang, Y. C., F. Zhang, and J. H. Sun, 2014a: Comparison of the diurnal variations of warm-season precipitation for East Asia vs. North America downstream of the Tibetan Plateau vs. the Rocky Mountains. Atmos. Chem. Phys., 14, 10,741-10,759, doi: 10.5194/acp-14-10741-2014.

    Google Scholar 

  • Zhang, Y. C., J. H. Sun, and S. M. Fu, 2014b: Impacts of diurnal variation of mountain-plain solenoid circulations on precipitation and vortices East of the Tibetan Plateau during the Mei-Yu season. Adv. Atmos. Sci., 31, 139–153, doi: 10.1007/s00376-013-2052-0.

    Google Scholar 

  • Zhang, Y. C., J. H. Sun, and S. M. Fu, 2017: Main energy paths and energy cascade processes of the two types of persistent heavy rainfall events over the Yangtze River-Huaihe River Basin. Adv. Atmos. Sci., 34, 129–143, doi: 10.1007/s00376-016-6117-8.

    Google Scholar 

  • Zhang, Y. C., F. Zhang, C. A. Davis, et al., 2018: Diurnal evolution and structure of long-lived mesoscale convective vortices along the Mei-Yu front over the East China Plains. J. Atmos. Sci., 75, 1005–1025, doi: 10.1175/JAS-D-17-0197.1.

    Google Scholar 

  • Zhang, Y. H., M. Xue, K. F. Zhu, et al., 2019: What is the main cause of diurnal variation and nocturnal peak of summer precipitation in Sichuan Basin, China? The key role of boundary layer low-level jet inertial oscillations J. Geophys. Res. Atmos., 124, 2643–2664, doi: 10.1029/2018JD029834.

    Google Scholar 

  • Zhang, Y. T., M. Y. Jiao, J. Chen, et al., 2016: Probabilistic forecasting of extreme precipitation experiment based on Bayesian theory. Meteor. Mon., 42, 799–808, doi: 10.7519/j.issn. 1000-0526.2016.07.003. (in Chinese)

    Google Scholar 

  • Zhang, Y.-Z., S.-G. Miao, Y.-J. Dai, et al., 2013: Numerical simulation of characteristics of summer clear day boundary layer in Beijing and the impact of urban underlying surface on sea breeze. Chinese J. Geophys., 56, 2558–2573. (in Chinese)

    Google Scholar 

  • Zhao, P., J. Sun, and X. J. Zhou, 2003: Mechanism of formation of low level jets in the South China Sea during spring and summer of 1998. Chinese Sci. Bull., 48, 1265–1270, doi: 10.1007/BF03183949. (in Chinese)

    Google Scholar 

  • Zhao, S.-X., and S.-M. Fu, 2007: An analysis on the Southwest Vortex and its environment fields during heavy rainfall in eastern Sichuan province and Chongqing in September 2004. Chinese J. Atmos. Sci., 31, 1059–1075, doi: 10.3878/j.issn. 1006-9895.2007.06.03. (in Chinese)

    Google Scholar 

  • Zhao, S. X., and J. H. Sun, 2007: Study on cut-off low-pressure systems with floods over Northeast Asia. Meteor. Atmos. Phys., 96, 159–180, doi: 10.1007/s00703-006-0226-3.

    Google Scholar 

  • Zhao, S. X., S. H. Liu, and M. Y. Liu, 1980: Mesoscale analysis of strong convective weather system caused by cold vortex over Beijing during summer. Collected Papers of Institute of Atmospheric Physics, Chinese Academy of Sciences, No. 9, Science Press, Beijing, 151–160. (in Chinese)

    Google Scholar 

  • Zhao, S. X., Z. Y. Tao, J. H. Sun, et al., 2004: Analysis and Research on the Mechanism for Meiyu Frontal Rainstorms in the Yangtze River Valley. China Meteorological Press, Beijing, 281–282. (in Chinese)

    Google Scholar 

  • Zhao, Y., X. P. Cui, and S. T. Gao, 2011: A study of structure of mesoscale systems producing a heavy rainfall event in North China. Chinese J. Atmos. Sci., 35, 945–962, doi: 10.3878/j.issn.1006-9895.2011.05.14. (in Chinese)

    Google Scholar 

  • Zhao, Y. C., 2012: Numerical investigation of a localized extremely heavy rainfall event in complex topographic area during midsummer. Atmos. Res., 113, 22–39, doi: 10.1016/j.atmosres. 2012.04.018.

    Google Scholar 

  • Zhao, Y.-C., and Y.-H. Wang, 2009: A review of studies on torrential rain during pre-summer flood season in South China since the 1980’s. Torr. Rain Disas., 28, 193–202, doi: 10.3969/j.issn.1004-9045.2009.03.001. (in Chinese)

    Google Scholar 

  • Zheng, X. Y., T. Z. Zhang, and R. H. Bai, 1992: Heavy Rainfall in Northeast China. China Meteorological Press, Beijing, 1–299. (in Chinese)

    Google Scholar 

  • Zheng, Y. G., J. Chen, G. Q. Ge, et al., 2007: Typical structure, diversity and multi-scale characteristics of Meiyu front. Acta Meteor. Sinica, 65, 760–772, doi: 10.11676/qxxb2007.072. (in Chinese)

    Google Scholar 

  • Zheng, Y. G., M. Xue, B. Li, et al., 2016: Spatial characteristics of extreme rainfall over China with hourly through 24-hour accumulation periods based on national-level hourly rain gauge data. Adv. Atmos. Sci., 33, 1218–1232, doi: 10.1007/s00376-016-6128-5.

    Google Scholar 

  • Zheng, Y. J., G. X. Wu, and Y. M. Liu, 2013: Dynamical and thermal problems in vortex development and movement. Part I: A PV-Q view. Acta Meteor. Sinica, 27, 1–14, doi: 10. 1007/s13351-013-0101-3.

    Google Scholar 

  • Zhong, L. Z., R. Mu, D. L. Zhang, et al., 2015: An observational analysis of warm-sector rainfall characteristics associated with the 21 July 2012 Beijing extreme rainfall event. J. Geophys. Res. Atmos., 120, 3274–3291, doi: 10.1002/2014JD022 686.

    Google Scholar 

  • Zhong, S.-X., D.-H. Wang, R.-H. Zhang, et al., 2011: Analyses on the structure characteristic and formation mechanism of the rainstorm related to a cold vortex system over Northeast China. Plateau Meteor., 30, 951–960. (in Chinese)

    Google Scholar 

  • Zhong, Y. M., M. Xu, and Y. Wang, 2008: Thermal structure characteristics of the extratropical transition of tropical cyclone Chaba (0417). J. Appl. Meteor. Sci., 19, 588–594, doi: 10.3969/j.issn.1001-7313.2008.05.010. (in Chinese)

    Google Scholar 

  • Zhou, F. F., and X. P. Cui, 2015: The adjoint sensitivity of heavy rainfall to initial conditions in debris flow areas in China. Atmos. Sci. Lett., 16, 485–491, doi: 10.1002/asl.586.

    Google Scholar 

  • Zhou, T. J., R. C. Yu, H. M. Chen, et al., 2008: Summer precipitation frequency, intensity, and diurnal cycle over China: A comparison of satellite data with rain gauge observations. J. Climate, 21, 3997–4010, doi: 10.1175/2008JCLI2028.1.

    Google Scholar 

  • Zhou, T. J., R. C. Yu, J. Zhang, et al., 2009: Why the western Pacific subtropical high has extended westward since the late 1970s? J. Climate, 22, 2199–2215, doi: 10.1175/2008JCLI 2527.1.

    Google Scholar 

  • Zhou, X. G., X. M. Wang, and Z. Y. Tao, 2013: Review and discussion of some basic problems of the quasi-geostrophic theory. Meteor. Mon., 39, 401–409, doi: 10.7519/j.issn.1000-0526.2013.04.001. (in Chinese)

    Google Scholar 

  • Zhou, X. G., X. M. Wang, and Z. Y. Tao, 2014: Review and discussion of isentropic thinking and isentropic potential vorticity thinking. Meteor. Mon., 40, 521–529, doi: 10.7519/j.issn. 1000-0526.2014.05.001. (in Chinese)

    Google Scholar 

  • Zhou, X. J., J. S. Xue, Z. Y. Tao, et al., 2003: Heavy Rainfall Experiment in South China during Pre-Summer Rainy Season (HUAMEX), 1998. China Meteorological Press, Beijing, 220 pp. (in Chinese)

    Google Scholar 

  • Zhu, P. J., Y. G. Zheng, C. X. Zhang, et al., 2005: A study of the extratropical transformation of Typhoon Winnie (1997). Adv. Atmos. Sci., 22, 730–740, doi: 10.1007/BF02918716.

    Google Scholar 

  • Zhu, Q. G., 1975: The low-level jet and heavy rainfall. Meteor. Sci. Technol., 21, 12–18, doi: 10.19517/j.1671-6345.1975.08. 004. (in Chinese)

    Google Scholar 

  • Zhu, Y. J., and Y. Luo, 2015: Precipitation calibration based on the frequency-matching method. Wea. Forecasting, 30, 1109–1124, doi: 10.1175/WAF-D-13-00049.1.

    Google Scholar 

  • Zhuang, X. R., J. Z. Min, T. J. Wu, et al., 2017: Development mechanism of multi-scale perturbation based on different perturbation methods in convection-allowing ensemble prediction. Plateau Meteor., 36, 811–825. (in Chinese)

    Google Scholar 

  • Bai, L. Q., Z. Y. Meng, L. Huang, et al., 2017: An integrated damage, visual, and radar analysis of the 2015 Foshan, Guangdong, EF3 tornado in China produced by the landfalling Typhoon Mujigae (2015). Bull. Amer. Meteor. Soc., 98, 2619–2640, doi: 10.1175/BAMS-D-16-0015.1.

    Google Scholar 

  • Bai, R. H., and Y. Jin, 1992: Study on Rainstorms in Heilongjiang Province. China Meteorological Press, Beijing, 1–217. (in Chinese)

    Google Scholar 

  • Bao, X. H., F. Q. Zhang, and J. H. Sun, 2011: Diurnal variations of warm-season precipitation east of the Tibetan Plateau over China. Mon. Wea. Rev., 139, 2790–2810, doi: 10.1175/MWRD-11-00006.1.

    Google Scholar 

  • Bao, X. H., Y. L. Luo, J. X. Sun, et al., 2017: Assimilating Doppler radar observations with an ensemble Kalman filter for convection-permitting prediction of convective development in a heavy rainfall event during the pre-summer rainy season of South China. Sci. China Earth Sci., 60, 1866–1885, doi: 10.1007/s11430-017-9076-9.

    Google Scholar 

  • Bei, N. F., and F. Q. Zhang, 2007: Impacts of initial condition errors on mesoscale predictability of heavy precipitation along the Mei-Yu front of China. Quart. J. Roy. Meteor. Soc., 133, 83–99, doi: 10.1002/qj.20.

    Google Scholar 

  • Bentzien, S., and P. Friederichs, 2012: Generating and calibrating probabilistic quantitative precipitation forecasts from the high-resolution NWP model COSMO-DE. Wea. Forecasting, 27, 988–1002, doi: 10.1175/WAF-D-11-00101.1.

    Google Scholar 

  • Bi, B. G., K. Dai, Y. Wang, et al., 2016: Advances in techniques of quantitative precipitation forecast. J. Appl. Meteor. Sci., 27, 534–549, doi: 10.11898/1001-7313.20160503. (in Chinese)

    Google Scholar 

  • Bian, Q. H., Z. Y. Ding, M. Y. Wu, et al., 2005: Statistical analysis of typhoon heavy rainfall in North China. Meteor. Mon., 31, 61–65, doi: 10.3969/j.issn.1000-0526.2005.03.014. (in Chinese)

    Google Scholar 

  • Bikos, D., T. L. Daniel, J. Otkin, et al., 2012: Synthetic satellite imagery for real-time high-resolution model evaluation. Wea. Forecasting, 27, 784–795, doi: 10.1175/WAF-D-11-00130.1.

    Google Scholar 

  • Blackadar, A. K., 1957: Boundary layer wind maxima and their significance for the growth of nocturnal inversions. Bull. Amer. Meteor. Soc., 38, 283–290, doi: 10.1175/1520-0477-38.5.283.

    Google Scholar 

  • Brennan, M. J., G. M. Lackmann, and K. M. Mahoney, 2008: Potential vorticity (PV) thinking in operations: The utility of nonconservation. Wea. Forecasting, 23, 168–182, doi: 10.1175/2007WAF2006044.1.

    Google Scholar 

  • Cai, Z. Y., and X. P. Zhou, 1982: Some views on the heavy rain forecast. J. Guangxi Meteor., (2), 1–7. (in Chinese)

    Google Scholar 

  • Chang, C.-P., S. C. Hou, H. C. Kuo, et al., 1998: The development of an intense East Asian summer monsoon disturbance with strong vertical coupling. Mon. Wea. Rev., 126, 2692–2712, doi: 10.1175/1520-0493(1998)126<2692:TDOAIE>2.0.CO;2.

    Google Scholar 

  • Chen, C. P., H. Z. Feng, and J. Chen, 2010: Application of Sichuan heavy rainfall ensemble prediction probability products based on Bayesian method. Meteor. Mon., 36, 32–39. (in Chinese)

    Google Scholar 

  • Chen, D. H., J. S. Xue, X. S. Yang, et al., 2008: New generation of multi-scale NWP system (GRAPES): General scientific design. Chinese Sci. Bull., 53, 3433–3445, doi: 10.1007/s11434-008-0494-z.

    Google Scholar 

  • Chen, G.-C., T.-L. Shen, and D. He, 2006: Simulation of topographic effect of hilly region to the south of Yangtze River and Yunnan-Guizhou Plateau on the Southweat Vortex during a heavy rain process. Plateau Meteor., 25, 277–284, doi: 10.3321/j.issn:1000-0534.2006.02.014. (in Chinese)

    Google Scholar 

  • Chen, G. J., F. Y. Wei, and X. J. Zhou, 2014: Intraseasonal oscillation of the South China Sea summer monsoon and its influence on regionally persistent heavy rain over southern China. J. Meteor. Res., 28, 213–229, doi: 10.1007/s13351-014-3063-1.

    Google Scholar 

  • Chen, G. T.-J., and C.-C. Yu, 1988: Study of low-level jet and extremely heavy rainfall over northern Taiwan in the Mei-Yu season. Mon. Wea. Rev., 116, 884–891, doi: 10.1175/1520-0493(1988)116<0884:SOLLJA>2.0.CO;2.

    Google Scholar 

  • Chen, G. X., R. Y. Lan, W. X. Zeng, et al., 2018: Diurnal variations of rainfall in surface and satellite observations at the monsoon coast (South China). J. Climate, 31, 1703–1724, doi: 10.1175/JCLI-D-17-0373.1.

    Google Scholar 

  • Chen, H., and D.-L. Zhang, 2013: On the rapid intensification of Hurricane Wilma (2005). Part II: Convective bursts and the upper-level warm core. J. Atmos. Sci., 70, 146–162, doi: 10. 1175/JAS-D-12-062.1.

    Google Scholar 

  • Chen, H. M., R. C. Yu, J. Li, et al., 2010: Why nocturnal long-duration rainfall presents an eastward-delayed diurnal phase of rainfall down the Yangtze River valley. J. Climate, 23, 905–917, doi: 10.1175/2009JCLI3187.1.

    Google Scholar 

  • Chen, J., and J. S. Xue, 2009: Heavy rainfall ensemble prediction: Initial condition perturbation vs multi-physics perturbation. Acta Meteor. Sinica, 23, 53–67.

    Google Scholar 

  • Chen, J., D. H. Chen, and H. Yan, 2002: A brief review on the development of ensemble prediction system. J. Appl. Meteor. Sci., 13, 497–507, doi: 10.3969/j.issn.1001-7313.2002.04.013. (in Chinese)

    Google Scholar 

  • Chen, J., J. S. Xue, and H. Yan, 2003: The impact of physics parameterization schemes on mesoscale heavy rainfall simulation. Acta Meteor. Sinica, 61, 203–218, doi: 10.11676/qxxb2003.019. (in Chinese)

    Google Scholar 

  • Chen, J., J.-S. Xue, and H. Yan, 2005a: A new initial perturbation method of ensemble mesoscale heavy rain prediction. Chinese J. Atmos. Sci., 29, 717–726, doi: 10.3878/j.issn.1006-9895.2005.05.05. (in Chinese)

    Google Scholar 

  • Chen, J., J. S. Xue, and H. Yan, 2005b: The uncertainty of mesoscale numerical prediction of heavy rain in South China and the ensemble simulations. Acta Meteor. Sinica, 19, 1–18.

    Google Scholar 

  • Chen, J., M. Y. Jiao, J. D. Gong, et al., 2006: The impact of diabatic physics on the uncertainty of heavy rainfall ensemble simulations in Beijing. J. Appl. Meteor. Sci., 17, 18–27, doi: 10.3969/j.issn.1001-7313.2006.z1.003. (in Chinese)

    Google Scholar 

  • Chen, J., Y. G. Zheng, X. L. Zhang, et al., 2013: Analysis of the climatological distribution and diurnal variations of the short duration heavy rain and its relation with diurnal variations of the MCSs over China during the warm season. Acta Meteor. Sinica, 71, 367–382, doi: 10.11676/qxxb2013.035. (in Chinese)

    Google Scholar 

  • Chen, J., F. Ping, X. C. Wang, et al., 2017: Topographic influence of Taiwan Island on Typhoon “Matmo”. Chinese J. Atmos. Sci., 41, 1037–1058, doi: 10.3878/j.issn.1006-9895.1701.16249. (in Chinese)

    Google Scholar 

  • Chen, L. S., and Y. L. Xu, 2017: Review of typhoon very heavy rainfall in China. Meteor. Environ. Sci., 40, 3–10, doi: 10. 16765/j.cnki.1673-7148.2017.01.001. (in Chinese)

    Google Scholar 

  • Chen, L. S., Y. Li, and Z. Q. Cheng, 2010: An overview of research and forecasting on rainfall associated with landfalling tropical cyclones. Adv. Atmos. Sci., 27, 967–976, doi: 10.1007/s00376-010-8171-y.

    Google Scholar 

  • Chen, L. S., Z. Y. Meng, and C. H. Cong, 2017: An overview on the research of typhoon rainfall distribution. J. Marine Meteor., 37, 1–7, doi: 10.19513/j.cnki.issn2096-3599.2017.04.001. (in Chinese)

    Google Scholar 

  • Chen, M., Z. Y. Tao, Y. G. Zheng, et al., 2007: The Front-related vertical circulation occurring in the pre-flooding season in South China and its interaction with MCS. Acta Meteor. Sinica, 65, 785–791, doi: 10.11676/qxxb2007.074. (in Chinese)

    Google Scholar 

  • Chen, M. X., Y. C. Wang, X. Xiao, et al., 2013: Initiation and propagation mechanism for the Beijing extreme heavy rainstorm clusters on 21 July 2012. Acta Meteor. Sinica, 71, 569–592, doi: 10.11676/qxxb2013.053. (in Chinese)

    Google Scholar 

  • Chen, S.-J., Y.-H. Kuo, W. Wang, et al., 1998: A modeling case study of heavy rainstorms along the Mei-Yu front. Mon. Wea. Rev., 126, 2330–2351, doi: 10.1175/1520-0493(1998)126<2330:AMCSOH>2.0.CO;2.

    Google Scholar 

  • Chen, X. C., K. Zhao, and M. Xue, 2014: Spatial and temporal characteristics of warm season convection over the Pearl River Delta region, China, based on 3 years of operational radar data. J. Geophys. Res. Atmos., 119, 12,447-12,465, doi: 10.1002/2014JD021965.

    Google Scholar 

  • Chen, X. C., F. Q. Zhang, and K. Zhao, 2016: Diurnal variations of the land-sea breeze and its related precipitation over South China. J. Atmos. Sci., 73, 4793–4815, doi: 10.1175/jas-d-16-0106.1.

    Google Scholar 

  • Chen, X. C., F. Q. Zhang, and K. Zhao, 2017: Influence of monsoonal wind speed and moisture content on intensity and diurnal variations of the Mei-Yu season coastal rainfall over South China. J. Atmos. Sci., 74, 2835–2856, doi: 10.1175/JAS-D-17-0081.1.

    Google Scholar 

  • Chen, Y., and P. M. Zhai, 2015: Synoptic-scale precursors of the East Asia/Pacific teleconnection pattern responsible for persistent extreme precipitation in the Yangtze River Valley. Quart. J. Roy. Meteor. Soc., 141, 1389–1403, doi: 10.1002/qj.2448.

    Google Scholar 

  • Chen, Y.-L., X. A. Chen, and Y.-X. Zhang, 1994: A diagnostic study of the low-level jet during TAMEX IOP 5. Mon. Wea. Rev., 122, 2257–2284, doi: 10.1175/1520-0493(1994)122<2257:ADSOTL>2.0.CO;2.

    Google Scholar 

  • Chen, Y. R. X., and Y. L. Luo, 2018: Analysis of paths and sources of moisture for the South China rainfall during the presummer rainy season of 1979-2014. J. Meteor. Res., 32, 744–757, doi: 10.1007/s13351-018-8069-7.

    Google Scholar 

  • Chen, Y. S., G. Brunet, and M. K. Yau, 2003: Spiral bands in a simulated hurricane. Part II: Wave activity diagnostics. J. Atmos. Sci., 60, 1239–1256, doi: 10.1175/1520-0469(2003)60<1239:SBIASH>2.0.CO;2.

    Google Scholar 

  • Chen, Z. M., W. B. Min, and C. G. Cui, 2004: New advances in Southwest China Vortex research. Plateau Meteor., 23, 1–5, doi: 10.3321/j.issn:1000-0534.2004.z1.001. (in Chinese)

    Google Scholar 

  • Cheng, Z. Q., L. S. Chen, and Y. Li, 2012: Interaction between landfalling tropical cyclone and summer monsoon with influences on torrential rain. J. Appl. Meteor. Sci., 23, 660–671, doi: 10.3969/j.issn.1001-7313.2012.06.003. (in Chinese)

    Google Scholar 

  • Chou, J. F., 2002: The Nonlinearity and Complexity in Atmospheric Sciences. China Meteorological Press, Beijing, 149 pp. (in Chinese)

    Google Scholar 

  • Chou, L. C., C.-P. Chang, and R. T. Williams, 1990: A numerical simulation of the Mei-Yu front and the associated low level jet. Mon. Wea. Rev., 118, 1408–1428, doi: 10.1175/1520-0493(1990)118<1408:ansotm>2.0.co;2.

    Google Scholar 

  • Clark, A. J., I. L. Jirak, S. R. Dembek, et al., 2018: The Community Leveraged Unified Ensemble (CLUE) in the 2016 NOAA/Hazardous Weather Testbed Spring Forecasting Experiment. Bull. Amer. Meteor. Soc., 99, 1433–1448, doi: 10.1175/BAMS-D-16-0309.1.

    Google Scholar 

  • Cong, C. H., L. S. Chen, X. T. Lei, et al., 2012: A study on the mechanism of the tropical cyclone remote precipitation. Acta Meteor. Sinica, 70, 717–727, doi: 10.11676/qxxb2012.058. (in Chinese)

    Google Scholar 

  • Cong, C. H., X. T. Lei, and P. Y. Chen, 2016: A comparative study on two processes of typhoon remote rainfall over Shandong Province. Period. Ocean Univ. China, 46, 21–31, doi: 10.16441/j.cnki.hdxb.20160034. (in Chinese)

    Google Scholar 

  • Cui, X.-P., S.-T. Gao, Z.-P. Zong, et al., 2005: Physical mechanism of formation of the bimodal structure in the Meiyu front system. China Phys. Lett., 22, 3218–3220, doi: 10.1088/0256-307X/22/12/066.

    Google Scholar 

  • Dai, K., B. G. Bi, and Y. J. Zhu, 2018a: Investigation of the medium-range forecast errors for the extreme rainfall event in North China during July 19-20, 2016. Chinese Sci. Bull., 63, 340–355, doi: 10.1360/N972017-00889. (in Chinese)

    Google Scholar 

  • Dai, K., Y. J. Zhu, and B. G. Bi, 2018b: The review of statistical post-process technologies for quantitative precipitation forecast of ensemble prediction system. Acta Meteor. Sinica, 76, 493–510, doi: 10.11676/qxxb2018.015. (in Chinese)

    Google Scholar 

  • Deng, G., J. D. Gong, L. T. Deng, et al., 2010: Development of mesoscale ensemble prediction system at National Meteorological Center. J. Appl. Meteor. Sci., 21, 513–523, doi: 10.3969/j.issn.1001-7313.2010.05.001. (in Chinese)

    Google Scholar 

  • Ding, Y. H., 1993: A Study of Sustained Heavy Rainfall in the Yangtze-Huai River Valleys in 1991. China Meteorological Press, Beijing, 1–253. (in Chinese)

    Google Scholar 

  • Ding, Y. H., 1994: Monsoons Over China. Dordrecht, Kluwer Academic, 419 pp.

    Google Scholar 

  • Ding, Y. H., 2005: Advanced Meteorology. China Meteorological Press, Beijing, 585 pp. (in Chinese)

    Google Scholar 

  • Ding, Y. H., 2015: On the study of the unprecedented heavy rainfall in Henan Province during 4-8 August 1975: Review and assessment. Acta Meteor. Sinica, 73, 411–424, doi: 10.11676/qxxb2015.067. (in Chinese)

    Google Scholar 

  • Ding, Y. H., 2019: The major advances and development of the theory on heavy rains in China. Torr. Rain Disas., 38, 395–406. (in Chinese)

    Google Scholar 

  • Ding, Y. H., and J. C. L. Chan, 2005: The East Asian summer monsoon: An overview. Meteor. Atmos. Phys., 89, 117–142, doi: 10.1007/s00703-005-0125-z.

    Google Scholar 

  • Ding, Y.-H., Z.-Y. Cai, and J.-S. Li, 1978: A case study on the excessively severe rainstrom in Henan Province in early August 1975. Scientia Atmos. Sinica, 2, 276–289, doi: 10.3878/j.issn.1006-9895.1978.04.02. (in Chinese)

    Google Scholar 

  • Ding, Z.-Y., X.-Q. Zhang, J.-H. He, et al., 2001: The study of storm rainfall caused by interaction between the non-zonal high level jet streak and the far distant typhoon. J. Trop. Meteor., 17, 144–154, doi: 10.3969/j.issn.1004-4965.2001.02. 006. (in Chinese)

    Google Scholar 

  • Dong, G. H., Q. Y. He, Y. W. Liu, et al., 2011: The role of sea breeze front in local storm of Bohai coast. Meteor. Mon., 37, 1100-1107. (in Chinese)

  • Dong, G. H., Y. W. Liu, M. N. Sun, et al., 2013: Effect of urban heat island and sea breeze front superimposition on a local heavy rainfall event. Meteor. Mon., 39, 1422–1430, doi: 10. 7519/j.issn.1000-0526.2013.11.005. (in Chinese)

    Google Scholar 

  • Dong, M. Y., L. S. Chen, Y. Li, et al., 2010: Rainfall reinforcement associated with landfalling tropical cyclones. J. Atmos. Sci., 67, 3541–3558, doi: 10.1175/2010jas3268.1.

    Google Scholar 

  • Dorninger, M., E. Gilleland, B. Casati, et al., 2018: The setup of the MesoVICT Project. Bull. Amer. Meteor. Soc., 99, 1887–1906, doi: 10.1175/BAMS-D-17-0164.1.

    Google Scholar 

  • Dou, J. J., Y. C. Wang, R. Bornstein, et al., 2015: Observed spatial characteristics of Beijing urban climate impacts on summer thunderstorms. J. Appl. Meteor. Climatol., 54, 94–105, doi: 10.1175/JAMC-D-13-0355.1.

    Google Scholar 

  • Du, J., and J. Li, 2014: Application of ensemble methodology to heavy-rain research and prediction. Adv. Meteor. Sci. Technol., 4, 6–20. (in Chinese)

    Google Scholar 

  • Du, Y., and R. Rotunno, 2014: A simple analytical model of the nocturnal low-level jet over the Great Plains of the United States. J. Atmos. Sci., 71, 3674–3683, doi: 10.1175/jas-d-14-0060.1.

    Google Scholar 

  • Du, Y., and G. X. Chen, 2018: Heavy rainfall associated with double low-level jets over southern China. Part I: Ensemblebased analysis. Mon. Wea. Rev., 146, 3827–3844, doi: 10.1175/MWR-D-18-0101.1.

    Google Scholar 

  • Du, Y., and R. Rotunno, 2018: Diurnal cycle of rainfall and winds near the south coast of China. J. Atmos. Sci., 75, 2065–2082, doi: 10.1175/JAS-D-17-0397.1.

    Google Scholar 

  • Du, Y., and G. X. Chen, 2019a: Heavy rainfall associated with double low-level jets over southern China. Part II: Convection initiation. Mon. Wea. Rev., 147, 543–565, doi: 10.1175/MWR-D-18-0102.1.

    Google Scholar 

  • Du, Y., and G. X. Chen, 2019b: Climatology of low-level jets and their impact on rainfall over southern China during the earlysummer rainy season. J. Climate, 32, 8813–8833, doi: 10.1175/JCLI-D-19-0306.1.

    Google Scholar 

  • Du, Y., Q. H. Zhang, Y. Yue, et al., 2012: Characteristics of lowlevel jets in Shanghai during the 2008-2009 warm seasons as inferred from wind profiler radar data. J. Meteor. Soc. Japan Ser. II, 90, 891–903, doi: 10.2151/jmsj.2012-603.

    Google Scholar 

  • Du, Y., Q. H. Zhang, Y.-L. Chen, et al., 2014: Numerical simulations of spatial distributions and diurnal variations of lowlevel jets in China during early summer. J. Climate, 27, 5747–5767, doi: 10.1175/JCLI-D-13-00571.1.

    Google Scholar 

  • Du, Y., R. Rotunno, and Q. H. Zhang, 2015: Analysis of WRFsimulated diurnal boundary layer winds in Eastern China using a simple 1D model. J. Atmos. Sci., 72, 714–727, doi: 10.1175/JAS-D-14-0186.1.

    Google Scholar 

  • Duan, W. S., Y. Wang, Z. H. Huo, et al., 2019: Ensemble forecast methods for numerical weather forecast and climate prediction: Thinking and prospect. Climatic Environ. Res., 24, 396–406. (in Chinese)

    Google Scholar 

  • Duan, Y. H., J. D. Gong, J. Du, et al., 2012: An overview of the Beijing 2008 Olympics Research and Development Project (B08RDP). Bull. Amer. Meteor. Soc., 93, 381–403, doi: 10.1175/bams-d-11-00115.1.

    Google Scholar 

  • Ebert, E. E., and W. A. Jr. Gallus, 2009: Toward better understanding of the contiguous rain area (CRA) method for spatial forecast verification. Wea. Forecasting, 24, 1401–1415, doi: 10.1175/2009WAF2222252.1.

    Google Scholar 

  • Ebert, E. E., U. Damrath, W. Wergen, et al., 2003: The WGNE assessment of short-term quantitative precipitation forecasts. Bull. Amer. Meteor. Soc., 84, 481–492.

    Google Scholar 

  • Faculty of Meteorology, Department of Geophysics, Peking University, 1977: An essay on the interaction between the weather-bearing systems of the westerlies and the intertropical convergence zone. Scientia Atmos. Sinica, 1, 132–137, doi: 10.3878/j.issn.1006-9895.1977.02.07. (in Chinese)

    Google Scholar 

  • Feng, X. B., 2019: The evolution of rainfall distribution and environmental impact on landfalling tropical cyclones over China. Master Dissertation, Nanjing University, Nanjing, 58 pp. (in Chinese)

    Google Scholar 

  • Fu, S. M., and J. H. Sun, 2012: Circulation and eddy kinetic energy budget analyses on the evolution of a Northeast China cold vortex (NCCV) in May 2010. J. Meteor. Soc. Japan Ser. II, 90, 553–573, doi: 10.2151/jmsj.2012-408.

    Google Scholar 

  • Fu, S. M., J. H. Sun, S. X. Zhao, et al., 2011a: A study of the impacts of the eastward propagation of convective cloud systems over the Tibetan Plateau on the rainfall of the Yangtze-Huai River basin. Acta Meteor. Sinica, 69, 581–600, doi: 10.11676/qxxb2011.051. (in Chinese)

    Google Scholar 

  • Fu, S. M., J. H. Sun, S. X. Zhao, et al., 2011b: The energy budget of a southwest vortex with heavy rainfall over South China. Adv. Atmos. Sci., 28, 709–724, doi: 10.1007/s00376-010-0026-z.

    Google Scholar 

  • Fu, S. M., F. Yu, D. H. Wang, et al., 2013: A comparison of two kinds of eastward-moving mesoscale vortices during the Meiyu period of 2010. Sci. China Earth Sci., 56, 282–300, doi: 10.1007/s11430-012-4420-5.

    Google Scholar 

  • Fu, S.-M., W.-L. Li, and J. Ling, 2015: On the evolution of a longlived mesoscale vortex over the Yangtze River Basin: Geometric features and interactions among systems of different scales. J. Geophys. Res. Atmos., 120, 11,889-11,917, doi: 10.1002/2015JD023700.

    Google Scholar 

  • Fu, S.-M., J.-H. Sun, J. Ling, et al., 2016a: Scale interactions in sustaining persistent torrential rainfall events during the Meiyu season. J. Geophys. Res. Atmos., 121, 12,856-12,876, doi: 10.1002/2016JD025446.

    Google Scholar 

  • Fu, S. M., H. J. Wang, J. H. Sun, et al., 2016b: Energy budgets on the interactions between the mean and eddy flows during a persistent heavy rainfall event over the Yangtze River valley in summer 2010. J. Meteor. Res., 30, 513–527, doi: 10. 1007/s13351-016-5121-3.

    Google Scholar 

  • Fu, S.-M., J.-P. Zhang, J.-H. Sun, et al., 2016c: Composite analysis of long-lived mesoscale vortices over the middle reaches of the Yangtze River valley: Octant features and evolution mechanisms. J. Climate, 29, 761–781, doi: 10.1175/JCLI-D-15-0175.1.

    Google Scholar 

  • Fu, S.-M., R.-X. Liu, and J.-H. Sun, 2018: On the scale interactions that dominate the maintenance of a persistent heavy rainfall event: A piecewise energy analysis. J. Atmos. Sci., 75, 907–925, doi: 10.1175/JAS-D-17-0294.1.

    Google Scholar 

  • Fu, S.-M., Z. Mai, J.-H. Sun, et al., 2019: Impacts of convective activity over the Tibetan Plateau on plateau vortex, southwest vortex, and downstream precipitation. J. Atmos. Sci., 76, 3803–3830, doi: 10.1175/JAS-D-18-0331.1.

    Google Scholar 

  • Fujiyoshi, Y., Y. H. Ding, and Y. Zhang, 2006: Outline of GAME/HUBEX. Final Report of GAME/HUBEX, Y. Fujiyoshi and Y. H. Ding ed., GAME Project Office Publication Series, No. 43, 1–6.

    Google Scholar 

  • Gao, K., and Y. M. Xu, 2001: A simulation study of structure of mesovortexes along the Meiyu front during 22-30 June 1999. Chinese J. Atmos. Sci., 25, 740–756, doi: 10.3878/j.issn.1006-9895.2001.06.02. (in Chinese)

    Google Scholar 

  • Gao, S. T., and S. Q. Sun, 1984: The forming of subsynoptic scale low-level jet stream. Scientia Atmos. Sinica, 8, 178–188, doi: 10.3878/j.issn.1006-9895.1984.02.08. (in Chinese)

    Google Scholar 

  • Gao, S. T., Y. S. Zhou, and L. K. Ran, 2018: A review on the formation mechanisms and forecast methods for torrential rain in China. Chinese J. Atmos. Sci., 42, 833–846, doi: 10.3878/j.issn.1006-9895.1802.17277. (in Chinese)

    Google Scholar 

  • Gilbert, K. K., J. P. Craven, D. R. Novak, et al., 2015: An introduction to the national blend of global models project. Proc. Special Symposium on Model Postprocessing and Downscaling, Amer. Meteor. Soc., Phoenix, AZ, Paper ID 3.1.

    Google Scholar 

  • Gilleland, E., D. A. Ahijevych, B. G. Brown, et al., 2010: Verifying forecasts spatially. Bull. Amer. Meteor. Soc., 91, 1365–1373, doi: 10.1175/2010BAMS2819.1.

    Google Scholar 

  • Gu, W., L. Wang, Z.-Z. Hu, et al., 2018: Interannual variations of the first rainy season precipitation over South China. J. Climate, 31, 623–640, doi: 10.1175/JCLI-D-17-0284.1.

    Google Scholar 

  • Guan, W. N., H. B. Hu, X. J. Ren, et al., 2019: Subseasonal zonal variability of the western Pacific subtropical high in summer: Climate impacts and underlying mechanisms. Climate Dyn., 53, 3325–3344, doi: 10.1007/s00382-019-04705-4.

    Google Scholar 

  • Hamill, T. M., E. Engle, D. Myrick, et al., 2017: The U.S. national blend of models for statistical postprocessing of probability of precipitation and deterministic precipitation amount. Mon. Wea. Rev., 145, 3441–3463, doi: 10.1175/MWR-D-16-0331.1.

    Google Scholar 

  • Hamill, T. M., J. S. Whitaker, and S. L. Mullen, 2006: Reforecasts: An important dataset for improving weather predictions. Bull. Amer. Meteor. Soc., 87, 33–46, doi: 10.1175/BAMS-87-1-33.

    Google Scholar 

  • Han, Y. H., M. Y. Jiao, J. Chen, et al., 2013: Study on the method of rainfall ensemble probability forecast based on Bayesian theory and its preliminary experiments. Meteor. Mon., 39, 1–10. (in Chinese)

    Google Scholar 

  • He, G. B., 2012: Review of the southwest vortex research. Meteor. Mon., 38, 155–163. (in Chinese)

    Google Scholar 

  • He, J. Z., and R. S. Wu, 1989: Numerical study on the low level jet in the planetary boundary layer. Acta Meteor. Sinica, 47, 443–449, doi: 10.11676/qxxb1989.059. (in Chinese)

    Google Scholar 

  • He, L. F., A. H. Xu, and T. Chen, 2009: Cold air activities and topographic forcing in severe torrential rainfall in a landing typhoon depression (Tailim). Meteor. Sci. Technol., 37, 385–391, doi: 10.3969/j.issn.1671-6345.2009.04.001. (in Chinese)

    Google Scholar 

  • He, Q. Y., Y. Y. Xie, G. H. Dong, et al., 2011: The role of sea-land breeze circulation in local convective torrential rain happening in Tianjin on 26 September 2009. Meteor. Mon., 37, 291–297. (in Chinese)

    Google Scholar 

  • He, Z. W., Q. H. Zhang, K. Zhao, et al., 2018: Initiation and evolution of elevated convection in a nocturnal squall line along the Meiyu front. J. Geophys. Res. Atmos., 123, 7292–7310, doi: 10.1029/2018JD028511.

    Google Scholar 

  • Hence, D. A., and R. A. Jr. Houze, 2012: Vertical structure of tropical cyclones with concentric eyewalls as seen by the TRMM Precipitation Radar. J. Atmos. Sci., 69, 1021–1036, doi: 10.1175/JAS-D-11-0119.1.

    Google Scholar 

  • Holton, J. R., 1967: The diurnal boundary layer wind oscillation above sloping terrain. Tellus, 19, 199–205, doi: 10.3402/tellusa. v19i2.9766.

    Google Scholar 

  • Hong, W., and X. J. Ren, 2013: Persistent heavy rainfall over South China during May-August: Subseasonal anomalies of circulation and sea surface temperature. Acta Meteor. Sinica, 27, 769–787, doi: 10.1007/s13351-013-0607-8.

    Google Scholar 

  • Hoskins, B. J., 1996: On the existence and strength of the summer subtropical anticyclones. Bull. Amer. Meteor. Soc., 77, 1287-1292.

  • Hoskins, B. J., M. E. McIntyre, and A. W. Robertson, 1985: On the use and significance of isentropic potential vorticity maps. Quart. J. Roy. Meteor. Soc., 111, 877–946, doi: 10.1002/qj. 49711147002.

    Google Scholar 

  • Hsieh, Y.-P., 1956: A preliminary survey of certain rain-bearing systems over China in spring and summer. Acta Meteor. Sinica, 27, 1–23, doi: 10.11676/qxxb1956.001. (in Chinese)

    Google Scholar 

  • Hu, K. X., R. Y. Lu, and D. H. Wang, 2010: Seasonal climatology of cut-off lows and associated precipitation patterns over Northeast China. Meteor. Atmos. Phys., 106, 37–48, doi: 10.1007/s00703-009-0049-0.

    Google Scholar 

  • Hua, C., and Q.-J. Liu, 2011: Numerical simulation of cloud microphysical features of landfall Typhoon Krosa. J. Trop. Meteor., 27, 626–638, doi: 10.3969/j.issn.1004-4965.2011.05.003. (in Chinese)

    Google Scholar 

  • Huang, F. J., and H. Y. Xiao, 1989: The meso-scale characteristics of southwest vortex heavy rainfall. Meteor. Mon., 15, 3–9. (in Chinese)

    Google Scholar 

  • Huang, L., and Y. L. Luo, 2017: Evaluation of quantitative precipitation forecasts by TIGGE ensembles for South China during the presummer rainy season. J. Geophys. Res. Atmos., 122, 8494–8516, doi: 10.1002/2017JD026512.

    Google Scholar 

  • Huang, L., Y. L. Luo, and D.-L. Zhang, 2018: The relationship between anomalous presummer extreme rainfall over South China and synoptic disturbances. J. Geophys. Res. Atmos., 123, 3395–3413, doi: 10.1002/2017JD028106.

    Google Scholar 

  • Huang, S.-S., 1978: Some aspects of the studies on the activities of the subtropical high and its predictions. Scientia Atmos. Sinica, 2, 159–168, doi: 10.3878/j.issn.1006-9895.1978.02.09. (in Chinese)

    Google Scholar 

  • Huang, S.-S., 1981: A diagnostic analysis of the formation and variation of the low-level jet during heavy-rain processes. Scientia Atmos. Sinica, 5, 123–135, doi: 10.3878/j.issn.1006-9895.1981.02.02. (in Chinese)

    Google Scholar 

  • Huang, S. S., 1986: Heavy Rainfall over Southern China in the Pre-Summer Rainy Season. Guangdong Science and Technology Press, Guangzhou, 244 pp. (in Chinese)

    Google Scholar 

  • Huang, Y. J., Y. B. Liu, Y. W. Liu, et al., 2019: Mechanisms for a record-breaking rainfall in the coastal metropolitan city of Guangzhou, China: Observation analysis and nested very large eddy simulation with the WRF model. J. Geophys. Res. Atmos., 124, 1370–1391, doi: 10.1029/2018JD029668.

    Google Scholar 

  • Huang, Z., D. Zhang, and L. X. Lin, 2005: Synoptic analysis of heavy rain related to monsoon trough in the latter flood season of Guangdong. Meteor. Mon., 31, 19–24, doi: 10.3969/j.issn.1000-0526.2005.09.004. (in Chinese)

    Google Scholar 

  • IPCC, 2013. Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press, Cambridge, 1535 pp.

    Google Scholar 

  • Ji, C.-X., G.-Y. Xue, F. Zhao, et al., 2007: The numerical simulation of orographic effect on the rain and structure of Typhoon Rananim during landfall. Chinese J. Atmos. Sci., 31, 233–244, doi: 10.3878/j.issn.1006-9895.2007.02.05. (in Chinese)

    Google Scholar 

  • Jiang, J. X., and X. K. Xiang, 1998: Mesoscale analysis of causes for “96.8” extreme torrential rain of Hebei Province. Quart. J. Appl. Meteor, 9, 304–313. (in Chinese)

    Google Scholar 

  • Jiang, J. Y., J. X. Jiang, Y. L. Bu, et al., 2007: Heavy rainfall associated with monsoon depression in South China: Structure analysis. Acta Meteor. Sinica, 65, 537–549, doi: 10.11676/qxxb2007.050. (in Chinese)

    Google Scholar 

  • Jiang, S.-C., T. Zhang, M.-S. Zhou, et al., 1981: The heavy rainstorms in North China induced by a landed northward moving and decaying typhoon—Heavy rainstorms of semi-tropical system attributes. Acta Meteor. Sinica, 39, 18–27, doi: 10.11676/qxxb1981.003. (in Chinese)

    Google Scholar 

  • Jiang, X. L., Y. L. Luo, D.-L. Zhang, et al., 2020: Urbanization enhanced summertime extreme hourly precipitation over the Yangtze River Delta. J. Climate, 33, 5809–5826, doi: 10.1175/JCLI-D-19-0884.1.

    Google Scholar 

  • Jiang, X. Y., and W. D. Liu, 2007: Numerical simulations of impacts of urbanization on heavy rainfall in Beijing using different land-use data. Acta Meteor. Sinica, 21, 245–255.

    Google Scholar 

  • Jiang, Z. N., D.-L. Zhang, R. D. Xia, et al., 2017: Diurnal variations of presummer rainfall over southern China. J. Climate, 30, 755–773, doi: 10.1175/JCLI-D-15-0666.1.

    Google Scholar 

  • Jin, X., T. W. Wu, and L. Li, 2012: The quasi-stationary feature of nocturnal precipitation in the Sichuan Basin and the role of the Tibetan Plateau. Climate Dyn., 41, 977–994, doi: 10.1007/s00382-012-1521-y.

    Google Scholar 

  • Johnson, A., and X. G. Wang, 2012: Verification and calibration of neighborhood and object-based probabilistic precipitation forecasts from a multimodel convection-allowing ensemble. Mon. Wea. Rev., 140, 3054–3077, doi: 10.1175/mwr-d-11-00356.1.

    Google Scholar 

  • Joos, H., and H. Wernli, 2012: Influence of microphysical processes on the potential vorticity development in a warm conveyor belt: A case-study with the limited-area model COSMO. Quart. J. Roy. Meteor. Soc., 138, 407–418, doi: 10.1002/qj. 934.

    Google Scholar 

  • Kuo, Y.-H., L. S. Cheng, and R. A. Anthes, 1986: Mesoscale analyses of the Sichuan flood catastrophe, 11-15 July 1981. Mon. Wea. Rev., 114, 1984–2003, doi: 10.1175/1520-0493(1986)114<1984:MAOTSF>2.0.CO;2.

    Google Scholar 

  • Lalaurette, F., 2003: Early detection of abnormal weather conditions using a probabilistic extreme forecast index. Quart. J. Roy. Meteor. Soc., 129, 3037–3057, doi: 10.1256/qj.02.152.

    Google Scholar 

  • Lamberson, W. S., T. I. Alcott, and C. Kahler, 2016: The ensemble situational awareness table: A tool to improve forecasts for extreme weather events. Proc. Sixth Conference on Transition of Research to Operations, Amer. Meteor. Soc., New Orleans, LA, Paper ID 817. Available at https://ams. confex.com/ams/96Annual/webprogram/Paper286162.html. Accessed on 1 June 2020.

    Google Scholar 

  • Lei, L., J. S. Sun, N. He, et al., 2017: A study on the mechanism for the vortex system evolution and development during the torrential rain event in North China on 20 July 2016. Acta Meteor. Sinica, 75, 685–699. (in Chinese)

    Google Scholar 

  • Lei, L., N. Xing, X. Zhou, et al., 2020: A study on the warm-sector torrential rainfall during 15−16 July 2018 in Beijing area. Acta Meteor. Sinica, 78, 1–17, doi: 10.11676/qxxb2020.001. (in Chinese)

    Google Scholar 

  • Lei, X. T., and L. S. Chen, 2001: Tropical cyclone landfalling and its interaction with mid-latitude circulation systems. Acta Meteor. Sinica, 59, 602–615, doi: 10.11676/qxxb2001.064. (in Chinese)

    Google Scholar 

  • Li, C.-L., L.-J. Yan, Z.-H. Li, et al., 2016: Analysis of a tornado in outside-region of Typhoon Mujigae in 2015. J. Trop. Meteor., 32, 416–424, doi: 10.16032/j.issn.1004-4965.2016.03.013. (in Chinese)

    Google Scholar 

  • Li, C.-H., Z.-W. Wu, W.-G. Meng, et al., 2017: Analysis of the large-scale circulation associated with the persistent heavy rains induced by monsoon and tropical cyclone during the post-flood season in South China. J. Trop. Meteor., 33, 11–20, doi: 10.16032/j.issn.1004-4965.2017.01.002. (in Chinese)

    Google Scholar 

  • Li, H. Q., X. P. Cui, and D.-L. Zhang, 2017a: On the initiation of an isolated heavy-rain-producing storm near the central urban area of Beijing metropolitan region. Mon. Wea. Rev., 145, 181–197, doi: 10.1175/MWR-D-16-0115.1.

    Google Scholar 

  • Li, H. Q., X. P. Cui, and D.-L. Zhang, 2017b: Sensitivity of the initiation of an isolated thunderstorm over the Beijing metropolitan region to urbanization, terrain morphology and cold outflows. Quart. J. Roy. Meteor. Soc., 143, 3153–3164, doi: 10.1002/qj.3169.

    Google Scholar 

  • Li, J., J. Du, and Y. Liu, 2015: A comparison of initial condition-, multi-physics-and stochastic physics-based ensembles in predicting Beijing “7.21” excessive storm rain event. Acta Meteor. Sinica, 73, 50–71, doi: 10.11676/qxxb2015.008.

    Google Scholar 

  • Li, M. C., and Z. X. Luo, 1988: Effects of moist process on subtropical flow patterns and multiple equilibrium states. Sci. in China Ser. B, 31, 1352–1361.

    Google Scholar 

  • Li, R. C. Y., and W. Zhou, 2015: Multiscale control of summertime persistent heavy precipitation events over South China in association with synoptic, intraseasonal, and low-frequency background. Climate Dyn., 45, 1043–1057, doi: 10.1007/s00382-014-2347-6.

    Google Scholar 

  • Li, T., B. Wang, B. Wu, et al., 2017: Theories on formation of an anomalous anticyclone in western North Pacific during El Niño: A review. J. Meteor. Res., 31, 987–1006, doi: 10.1007/s13351-017-7147-6.

    Google Scholar 

  • Li, X. S., Y. L. Luo, and Z. Y. Guan, 2014: The persistent heavy rainfall over southern China in June 2010: Evolution of syn optic systems and the effects of the Tibetan Plateau heating. J. Meteor. Res., 28, 540–560, doi: 10.1007/s13351-014-3284-3.

    Google Scholar 

  • Li, Y., and L. S. Chen, 2007: Numerical study on impact of the boundary layer fluxes over wetland on sustention and rainfall of landfalling tropical cyclones. Acta Meteor. Sinica, 21, 34-46.

  • Li, Y., J. Z. Wang, L. S. Chen, et al., 2007: Study on wavy distribution of rainfall associated with Typhoon Matsa (2005). Chinese Sci. Bull., 52, 967–971, doi: 10.1007/s11434-007-0129-9.

    Google Scholar 

  • Li, Y., L. S. Chen, C. H. Qian, et al., 2010: Study on formation and development of a mesoscale convergence line in Typhoon Rananim. Acta Meteor. Sinica, 24, 413–425.

    Google Scholar 

  • Li, Y. Q., X. B. Zhao, and B. Deng, 2010: Intensive observation scientific experiment of the Southwest Vortex in the summer of 2010. Plateau Mountain Meteor. Res., 30, 80–84, doi: 10.3969/j.issn.1674-2184.2010.04.014. (in Chinese)

    Google Scholar 

  • Li, Y. Y., C. Z. Ye, and Z. Zhong, 2010: Impacts of land-surface process parameterization on model predictability of two kinds of heavy rainfall events. Chinese J. Atmos. Sci., 34, 407–417, doi: 10.3878/j.issn.1006-9895.2010.02.14. (in Chinese)

    Google Scholar 

  • Li, Z., Z. W. Yan, K. Tu, et al., 2015: Changes of precipitation and extremes and the possible effect of urbanization in the Beijing metropolitan region during 1960-2012 based on homogenized observations. Adv. Atmos. Sci., 32, 1173–1185, doi: 10.1007/s00376-015-4257-x.

    Google Scholar 

  • Li, Z. H., 2019: Statistical characteristics of presummer rainfall over South China and associated synoptic conditions. Master dissertation, Chinese Academy of Meteorological Sciences, Beijing, 56 pp. (in Chinese)

    Google Scholar 

  • Li, Z. H., Y. L. Luo, Y. Du, et al., 2020: Statistical characteristics of pre-summer rainfall over South China and associated synoptic conditions. J. Meteor. Soc. Japan Ser. II, 98, 213–233, doi: 10.2151/jmsj.2020-012.

    Google Scholar 

  • Li, Z. Z., X. P. Zeng, M. H. Cheng, et al., 2000: Study on the contributing factors of the catastropic floods in China in 1998. Meteor. Mon., 26, 14–18, doi: 10.3969/j.issn.1000-0526.2000. 01.003. (in Chinese)

    Google Scholar 

  • Liang, X. D., Y. H. Duan, and Z. L. Chen, 2002: Convection and asymmetric structure of landfalling typhoons. Acta Meteor. Sinica, 60, Suppl., 26–35. (in Chinese)

    Google Scholar 

  • Liao, H. S., Y. C. Wu, L. Chen, et al., 2015: A visual voting framework for weather forecast calibration. Proc. IEEE Scientific Visualization Conference, IEEE, Chicago, 25–32, doi: 10.1109/SciVis.2015.7429488.

    Google Scholar 

  • Lin, R. P., J. Zhu, and F. Zheng, 2016: Decadal shifts of East Asian summer monsoon in a climate model free of explicit GHGs and aerosols. Sci. Rep., 6, 38546, doi: 10.1038/srep38 546.

    Google Scholar 

  • Lin, Z. G., Y. X. Li, K. P. Lin, et al., 2009: A study on maintainence mechanism of a long life-cycle mesoscale convective system. Acta Meteor. Sinica, 67, 640–651, doi: 10.11676/qxxb2009.064. (in Chinese)

    Google Scholar 

  • Liu, A. R., D. M. Guo, B. H. Xin, et al., 1979: The moisture of the “75.7” heavy rain in North China. Acta Meteor. Sinica, 37, 79–82, doi: 10.11676/qxxb1979.021. (in Chinese)

    Google Scholar 

  • Liu, H. B., M. Y. He, B. Wang, et al., 2014: Advances in low-level jet research and future prospects. J. Meteor. Res., 28, 57–75, doi: 10.1007/s13351-014-3166-8.

    Google Scholar 

  • Liu, H. W., and G. P. Li, 2008: The review and prospect of research on the southwest vortex in recent 30 years. Plateau Mountain Meteor. Res., 28, 68–73, doi: 10.3969/j.issn.1674-2184.2008.02.012. (in Chinese)

    Google Scholar 

  • Liu, H.-Z., W.-G. Wang, M.-X. Shao, et al., 2007: A case study of the influence of the western Pacific subtropical high on torrential rainfall in Beijing area. Chinese J. Atmos. Sci., 31, 727–734, doi: 10.3878/j.issn.1006-9895.2007.04.17. (in Chinese)

    Google Scholar 

  • Liu, L., J. Chen, and J. Y. Wang, 2018: A study on medium-range objective weather forecast technology for persistent heavy rainfall events based on T639 ensemble forecast. Acta Meteor. Sinica, 76, 228–240, doi: 10.11676/qxxb2018.002. (in Chinese)

    Google Scholar 

  • Liu, L., J. Chen, L. Cheng, et al., 2013: Study of the ensemblebased forecast of extremely heavy rainfalls in China: Experiments for July 2011 cases. Acta Meteor. Sinica, 71, 853–866, doi: 10.11676/qxxb2013.044. (in Chinese)

    Google Scholar 

  • Liu, L., L. K. Ran, Y. S. Zhou, et al., 2015: Analysis on the instability and trigger mechanism of a torrential rainfall event in Beijing on 21 July 2012. Chinese J. Atmos. Sci., 39, 583–595, doi: 10.3878/j.issn.1006-9895.1407.14144. (in Chinese)

    Google Scholar 

  • Liu, X., Y. L. Luo, Z. Y. Guan, et al., 2018: An extreme rainfall event in coastal South China during SCMREX-2014: Formation and roles of rainband and echo trainings. J. Geophys. Res. Atmos., 123, 9256–9278, doi: 10.1029/2018JD028418.

    Google Scholar 

  • Liu, Y. M., B. J. Hoskins, and M. Blackburn, 2007: Impact of Tibetan orography and heating on the summer flow over Asia. J. Meteor. Soc. Japan Ser. II, 85B, 1–19, doi: 10.2151/jmsj. 85b.1.

    Google Scholar 

  • Liu, Y. M., H. Liu, P. Liu, et al., 1999a: The effect of spatially nonuniform heating on the formation and variation of subtropical high. Part II: Land surface sensible heating and East Pacific subtropical high. Acta Meteor. Sinica, 57, 385–396, doi: 10.11676/qxxb1999.037. (in Chinese)

    Google Scholar 

  • Liu, Y. M., G. X. Wu, H. Liu, et al., 1999b: The effect of spatially nonuniform heating on the formation and variation of subtropical high. Part III: Condensation heating and South Asian high and western pacific subtropical high. Acta Meteor. Sinica, 57, 525–538, doi: 10.11676/qxxb1999.051. (in Chinese)

    Google Scholar 

  • Lorenz, E. N., 1963: Deterministic nonperiodic flow. J. Atmos. Sci., 20, 130–141, doi: 10.1175/1520-0469(1963)020<0130: DNF>2.0.CO;2.

    Google Scholar 

  • Lorenz, E. N., 1969: The predictability of a flow which possesses many scales of motion. Tellus, 21, 289–307, doi: 10.3402/tellusa.v21i3.10086.

    Google Scholar 

  • Lu, E., and Y. H. Ding, 1997: Analysis of summer monsoon activity during the 1991 excessively torrential rain over the Yangtze-Huaihe River Valley. Quart. J. Appl. Meteor., 8, 316–324. (in Chinese)

    Google Scholar 

  • Lu, E., Y. H. Ding, and Y. H. Li, 1994: Isentropic potential vorticity analysis and cold air activity during the period of excessively heavy rain over the Yangtze-Huaihe River basin in 1991. Quart. J. Appl. Meteor., 5, 266–274. (in Chinese)

    Google Scholar 

  • Lu, H.-C., W. Zhong, and D.-L. Zhang, 2007: Current understanding of wave characteristics in tropical storm. Chinese J. Atmos. Sci., 31, 1140–1150, doi: 10.3878/j.issn.1006-9895.2007.06.10. (in Chinese)

    Google Scholar 

  • Lu, R. Y., 2001: Interannual variability of the summertime North Pacific subtropical high and its relation to atmospheric con vection over the warm pool. J. Meteor. Soc. Japan Ser. II, 79, 771–783, doi: 10.2151/jmsj.79.771.

    Google Scholar 

  • Lu, R. Y., and B. W. Dong, 2001: Westward extension of North Pacific subtropical high in summer. J. Meteor. Soc. Japan Ser. II, 79, 1229–1241, doi: 10.2151/jmsj.79.1229.

    Google Scholar 

  • Luo, S. W., 1977: Analysis of the mechanism of dynamic low vortex formation on the eastern side of the Tibetan Plateau. Meteor. Sci. Technol., 54–65, doi: 10.19517/j.1671-6345.1977.s1.005. (in Chinese)

    Google Scholar 

  • Luo, S. W., 1992: A Study on Several Types of Weather Systems over the Tibetan Plateau and Its Adjacent areas. China Meteorological Press, Beijing, 56–96. (in Chinese)

    Google Scholar 

  • Luo, Y., and L. F. Zhang, 2010: A case study of the error growth evolution in a Meiyu front heavy precipitation forecast and analysis of the predictability. Acta Meteor. Sinica, 68, 411–420, doi: 10.11676/qxxb2010.040. (in Chinese)

    Google Scholar 

  • Luo, Y. L., 2017: Advances in understanding the early-summer heavy rainfall over South China. The Global Monsoon System: Research and Forecast, C. P. Chang, H. C. Kuo, N. C. Lau, et al., Eds., 3rd ed. World Scientific, Singapore, 215–226, doi: 10.1142/9789813200913_0017.

    Google Scholar 

  • Luo, Y. L., and Y. R. X. Chen, 2015: Investigation of the predictability and physical mechanisms of an extreme-rainfall-producing mesoscale convective system along the Meiyu front in East China: An ensemble approach. J. Geophys. Res. Atmos., 120, 10593–10618, doi: 10.1002/2015JD023584.

    Google Scholar 

  • Luo, Y. L., H. Wang, R. H. Zhang, et al., 2013: Comparison of rainfall characteristics and convective properties of monsoon precipitation systems over South China and the Yangtze and Huai river basin. J. Climate, 26, 110–132, doi: 10.1175/JCLID-12-00100.1.

    Google Scholar 

  • Luo, Y. L., M. W. Wu, F. M. Ren, et al., 2016: Synoptic situations of extreme hourly precipitation over China. J. Climate, 29, 8703–8719, doi: 10.1175/JCLI-D-16-0057.1.

    Google Scholar 

  • Luo, Y. L., R. D. Xia, and J. C. Chan, 2020: Characteristics, physical mechanisms, and prediction of pre-summer rainfall over South China: Research progress during 2008-2019. J. Meteor. Soc. Japan Ser. II, 98, 19–42, doi: 10.2151/jmsj.2020-002.

    Google Scholar 

  • Luo, Y. L., R. H. Zhang, Q. L. Wan, et al., 2017: The Southern China Monsoon Rainfall Experiment (SCMREX). Bull. Amer. Meteor. Soc., 98, 999–1013, doi: 10.1175/BAMS-D-15-00 235.1.

    Google Scholar 

  • Luo, Y. L., Y. Gong, and D.-L. Zhang, 2014: Initiation and organizational modes of an extreme-rain-producing mesoscale convective system along a Mei-Yu front in East China. Mon. Wea. Rev., 142, 203–221, doi: 10.1175/mwr-d-13-00111.1.

    Google Scholar 

  • Luo, Y. L., Y. J. Wang, H. Y. Wang, et al., 2010: Modeling convective-stratiform precipitation processes on a Mei-Yu front with the Weather Research and Forecasting model: Comparison with observations and sensitivity to cloud microphysics parameterizations. J. Geophys. Res. Atmos., 115, D18117, doi: 10.1029/2010JD013873.

    Google Scholar 

  • Ma, T., Y. M. Liu, G. X. Wu, et al., 2020: Potential vorticity diagnosis on the formation, development and eastward movement of a Tibetan Plateau vortex and it’s influence on the downstream precipitation. Chinese J. Atmos. Sci. doi: 10.3878/j.issn.1006-9895.1904.18275. (in Chinese)

    Google Scholar 

  • Mai, Z., Y. Li, and N. Wei, 2017: Characteristics of landfalling tropical cyclone activities over the Poyang Lake Basin and mechanisms analysis. Chinese J. Atmos. Sci., 41, 385–394, doi: 10.3878/j.issn.1006-9895.1605.16129. (in Chinese)

    Google Scholar 

  • Mansfield, D. A., 1996: The use of potential vorticity as an operational forecast tool. Meteor. Appl., 3, 195–210, doi: 10.1002/met.5060030301.

    Google Scholar 

  • Meng, W. G., and Y. Q. Wang, 2016a: A diagnostic study on heavy rainfall induced by Typhoon Utor (2013) in South China: 1. Rainfall asymmetry at landfall. J. Geophys. Res. Atmos., 121, 12,781-12,802, doi: 10.1002/2015JD024646.

    Google Scholar 

  • Meng, W. G., and Y. Q. Wang, 2016b: A diagnostic study on heavy rainfall induced by landfalling Typhoon Utor (2013) in South China: 2. Postlandfall rainfall. J. Geophys. Res. Atmos., 121, 12,803-12,819, doi: 10.1002/2015JD024647.

    Google Scholar 

  • Meng, W. G., Y. X. Zhang, J. N. Yuan, et al., 2014: Monsoon trough and MCSs interactions during the persistent torrential rainfall event of 15-18 July 2011 along the South China coast. Acta Meteor. Sinica, 72, 508–525, doi: 10.11676/qxxb 2014.034. (in Chinese)

    Google Scholar 

  • Meng, Z. Y., and Y. J. Zhang, 2012: On the squall lines preceding landfalling tropical cyclones in China. Mon. Wea. Rev., 140, 446–470, doi: 10.1175/MWR-D-10-05080.1.

    Google Scholar 

  • Meng, Z. Y., X. J. Tang, J. Yue, et al., 2019: Impact of EnKF surface and rawinsonde data assimilation on the simulation of the extremely heavy rainfall in Beijing on July 21, 2012. Acta Sci. Nat. Univ. Pekin., 55, 237–245, doi: 10.13209/j.0479-8023.2019.004. (in Chinese)

    Google Scholar 

  • Miao, S. G., F. Chen, Q. C. Li, et al., 2011: Impacts of urban processes and urbanization on summer precipitation: A case study of heavy rainfall in Beijing on 1 August 2006. J. Appl. Meteor. Climatol., 50, 806–825, doi: 10.1175/2010JAMC 2513.1.

    Google Scholar 

  • Mu, M., W. S. Duan, and J. F. Chou, 2004: Recent advances in predictability studies in China (1999-2002). Adv. Atmos. Sci., 21, 437–443, doi: 10.1007/bf02915570.

    Google Scholar 

  • Neal, R., D. Fereday, R. Crocker, et al., 2016: A flexible approach to defining weather patterns and their application in weather forecasting over Europe. Meteor. Appl., 23, 389–400, doi: 10.1002/met.1563.

    Google Scholar 

  • Ni, Y. Q., and X. J. Zhou, 2006: Main scientific issues and achievements of State 973 Project on study for formation mechanism and prediction theories of severe weather disasters in China. Adv. Earth Sci., 21, 881–894. (in Chinese)

    Google Scholar 

  • Ni, Y. Q., R. H. Zhang, L. P. Liu, et al., 2013: The Southern China Heavy Rainfall Experiment (SCHeREX). China Meteorological Press, Beijing, 283 pp. (in Chinese)

    Google Scholar 

  • Ninomiya, K., 1984: Characteristics of Baiu front as a predominant subtropical front in the summer Northern Hemisphere. J. Meteor. Soc. Japan Ser. II, 62, 880–894, doi: 10.2151/jmsj 1965.62.6_880.

    Google Scholar 

  • Novak, D. R., C. Bailey, K. F. Brill, et al., 2014: Precipitation and temperature forecast performance at the Weather Prediction Center. Wea. Forecasting, 29, 489–504, doi: 10.1175/WAFD-13-00066.1.

    Google Scholar 

  • Pan, H., and G. X. Chen, 2019: Diurnal variations of precipitation over North China regulated by the mountain-plains solenoid and boundary-layer inertial oscillation. Adv. Atmos. Sci., 36, 863–884, doi: 10.1007/s00376-019-8238-3.

    Google Scholar 

  • Peixoto, J. P., and A. H. Oort, 1992: Physics of Climate. American Institute of Physics Press, New York, 520 pp.

    Google Scholar 

  • Petersen, D., K. F. Brill, C. Bailey, et al., 2014: The evolving role of the forecaster at the Weather Predication Center. World Weather Open Science Conference, Paper ID UAS-PS321.01, World Meteorological Organization, Montreal, Canada. Available at www.wmo.int/pages/prog/arep/wwrp/new/wwosc/documents/WWOSC_Petersen.pdf. Accessed on 1 June 2020.

    Google Scholar 

  • Qian, J.-H., W.-K. Tao, and K.-M. Lau, 2004: Mechanisms for torrential rain associated with the Mei-Yu development during SCSMEX 1998. Mon. Wea. Rev., 132, 3–27, doi: 10.1175/1520-0493(2004)132<0003:mftraw>2.0.co;2.

    Google Scholar 

  • Qian, W. H., and J. Shi, 2017: Tripole precipitation pattern and SST variations linked with extreme zonal activities of the western Pacific subtropical high. Int. J. Climatol., 37, 3018–3035, doi: 10.1002/joc.4897.

    Google Scholar 

  • Qin, D. H., J. Y. Zhang, C. C. Shan, et al., 2015. National Assessment Report on Extreme Weather and Climate Events and Disaster Risk Management and Adaptation in China. Science Press, Beijing, 120 pp. (in Chinese)

    Google Scholar 

  • Ramage, C. S., 1952: Variation of rainfall over South China through the wet season. Bull. Amer. Meteor. Soc., 33, 308–311, doi: 10.1175/1520-0477-33.7.308.

    Google Scholar 

  • Rautenhaus, M., M. Böttinger, S. Siemen, et al., 2018: Visualization in meteorology—A survey of techniques and tools for data analysis tasks. IEEE Trans. Visualizat. Comput. Graph., 24, 3268–3296, doi: 10.1109/TVCG.2017.2779501.

    Google Scholar 

  • Ren, C. P., and X. P. Cui, 2014: The cloud-microphysical cause of torrential rainfall amplification associated with Bilis (0604). Sci. China Earth Sci., 57, 2100–2111, doi: 10.1007/s11430-014-4884-6. (in Chinese)

    Google Scholar 

  • Ren, X. J., X.-Q. Yang, and X. G. Sun, 2013: Zonal oscillation of western Pacific subtropical high and subseasonal SST variations during Yangtze persistent heavy rainfall events. J. Climate, 26, 8929–8946, doi: 10.1175/JCLI-D-12-00861.1.

    Google Scholar 

  • Sampe, T., and S.-P. Xie, 2010: Large-scale dynamics of the Meiyu-Baiu rainband: Environmental forcing by the westerly jet. J. Climate, 23, 113–134, doi: 10.1175/2009JCLI3128.1.

    Google Scholar 

  • Schwartz, C. S., and R. A. Sobash, 2017: Generating probabilistic forecasts from convection-allowing ensembles using neighborhood approaches: A review and recommendations. Mon. Wea. Rev., 145, 3397–3418, doi: 10.1175/MWR-D-16-0400.1.

    Google Scholar 

  • Shapiro, A., E. Fedorovich, and S. Rahimi, 2016: A unified theory for the Great Plains nocturnal low-level jet. J. Atmos. Sci., 73, 3037–3057, doi: 10.1175/jas-d-15-0307.1.

    Google Scholar 

  • Shen, X. S., J. J. Wang, Z. C. Li, et al., 2020: Research and development of numerical weather prediciton in China. Acta Meteor. Sinica, 78, doi: 10.11676/qxxb2020.030. (in Chinese) (in press)

  • Shen, Y. A., Y. Du, and G. X. Chen, 2020: Ensemble sensitivity analysis of heavy rainfall associated with three MCSs coexisting over southern China. J. Geophys. Res. Atmos., 125, e2019JD031266, doi: 10.1029/2019jd031266.

    Google Scholar 

  • Shi, D. B., W. Q. Zhu, H. Q. Wang, et al., 1996: Cloud top blackbody temperature analysis of infrared satellite image for mesoscale convective system. Acta Meteor. Sinica, 54, 600–611, doi: 10.11676/qxxb1996.062. (in Chinese)

    Google Scholar 

  • Shi, X. H., and M. Wen, 2015: Distribution and variation of persistent heavy rainfall events in China and possible impacts of heating source anomaly over the Qinghai-Xizang Plateau. Plateau Meteor., 34, 611–620. (in Chinese)

    Google Scholar 

  • Si, G. W., 1989: On the large-scale circulation of Mei-Yu system over East Asia. Acta Meteor. Sinica, 47, 312–323, doi: 10.11676/qxxb1989.041. (in Chinese)

    Google Scholar 

  • Sloughter, J. M., A. E. Raftery, T. Gneiting, et al., 2007: Probabilistic quantitative precipitation forecasting using Bayesian model averaging. Mon. Wea. Rev., 135, 3209–3220, doi: 10.1175/MWR3441.1.

    Google Scholar 

  • Stensrud, D. J., 1996: Importance of low-level jets to climate: A review. J. Climate, 9, 1698–1711, doi: 10.1175/1520-0442(1996)009<1698:IOLLJT>2.0.CO;2.

    Google Scholar 

  • Sun, J. C., J. P. Liu, and G. L. Zhou, 1998: Heavy rainfall and floods in 1998. J. China Hydrol., 97–103, doi: 10.19797/j.cnki.1000-0852.1998.s1.031. (in Chinese)

    Google Scholar 

  • Sun, J. H., and S. X. Zhao, 2000: A diagnosis and simulation study of a strong heavy rainfall in South China. Chinese J. Atmos. Sci., 24, 381–392, doi: 10.3878/j.issn.1006-9895.2000.03.10. (in Chinese)

    Google Scholar 

  • Sun, J. H., and F. Q. Zhang, 2012: Impacts of mountain-plains solenoid on diurnal variations of rainfalls along the Mei-Yu front over the East China plains. Mon. Wea. Rev., 140, 379–397, doi: 10.1175/MWR-D-11-00041.1.

    Google Scholar 

  • Sun, J. H., X. L. Zhang, L. L. Qi, et al., 2004: Study of a mesoscale convective system developed along a vortex-related shear line during the China Heavy Rainfall Experiment in 2002. Chinese J. Atmos. Sci., 28, 675–691, doi: 10.3878/j.issn.1006-9895.2004.05.03. (in Chinese)

    Google Scholar 

  • Sun, J. H., X. L. Zhang, J. Wei, et al., 2005: A study on severe heavy rainfall in North China during the 1990s. Climatic Environ. Res., 10, 492–506, doi: 10.3878/j.issn.1006-9585.2005.03.20. (in Chinese)

    Google Scholar 

  • Sun, J. H., L. L. Qi, and S. X. Zhao, 2006: A study on mesoscale convective systems of the severe heavy rainfall in North China by “9608” typhoon. Acta Meteor. Sinica, 64, 57–71, doi: 10.3321/j.issn:0577-6619.2006.01.006. (in Chinese)

    Google Scholar 

  • Sun, J. H., S. X. Zhao, S. M. Fu, et al., 2013: Multi-scale characteristics of record-breaking heavy rainfall over Beijing area on July 21, 2012. Chinese J. Atmos. Sci., 37, 705–718, doi: 10.3878/j.issn.1006-9895.2013.12202. (in Chinese)

    Google Scholar 

  • Sun, J. S., 2005: A study of the basic features and mechanism of boundary layer jet in Beijing area. Chinese J. Atmos. Sci., 29, 445–452, doi: 10.3878/j.issn.1006-9895.2005.03.12. (in Chinese)

    Google Scholar 

  • Sun, J. S., and B. Yang, 2008: Meso-β-scale torrential rain affected by topography and the urban circulation. Chinese J. Atmos. Sci., 32, 1352–1364, doi: 10.3878/j.issn.1006-9895.2008.06.10. (in Chinese)

    Google Scholar 

  • Sun, J. S., H. Wang, L. Wang, et al., 2006: The role of urban boundary layer in local convective torrential rain happening in Beijing on 10 July 2004. Chinese J. Atmos. Sci., 30, 221–234, doi: 10.3878/j.issn.1006-9895.2006.02.05. (in Chinese)

    Google Scholar 

  • Sun, J. S., N. He, G. R. Wang, et al., 2012: Preliminary analysis on synoptic configuration evolvement and mechanism of a torrential rain occurring in Beijing on 21 July 2012. Torr. Rain Disas., 31, 218–225. (in Chinese)

    Google Scholar 

  • Sun, L., X. Y. Zheng, and Q. Wang, 1994: The climatological characteristics of northeast cold vortex in China. Quart. J. Appl. Meteor, 5, 297–303. (in Chinese)

    Google Scholar 

  • Sun, L., G. An, Z. T. Gao, et al., 2002: A composite diagnostic study of heavy rain caused by the northeast cold vortex over Songhuajiang-Nenjiang River Basin in summer of 1998. J. Appl. Meteor. Sci., 13, 156–162, doi: 10.3969/j.issn.1001-7313.2002.02.003. (in Chinese)

    Google Scholar 

  • Sun, S. Q., and G. Q. Zhai, 1980: On the instability of the low level jet and its trigger function for the occurrence of heavy rain-storms. Scientia Atmos. Sinica, 4, 327–337, doi: 10.3878/j.issn.1006-9895.1980.04.05. (in Chinese)

    Google Scholar 

  • Sun, S. Q., and S. X. Zhao, 1980: The relationship between the large scale low jet and heavy rainfalls during mid-summer in North China. Collected Papers of Institute of Atmospheric Physics, Chinese Academy of Sciences, No. 9, Science Press, Beijing, 117–124. (in Chinese)

    Google Scholar 

  • Sun, Y. Q., and F. Q. Zhang, 2016: Intrinsic versus practical limits of atmospheric predictability and the significance of the butterfly effect. J. Atmos. Sci., 73, 1419–1438, doi: 10.1175/JAS-D-15-0142.1.

    Google Scholar 

  • Tan, Z. M., and S. X. Zhao, 2013: On the Structure and Mechanisms of Meso-β-Scale Severe Convective Systems over Southern China. China Meteorological Press, Beijing, 1–327. (in Chinese)

    Google Scholar 

  • Tang, J., K. Dai, Z. P. Zong, et al., 2018: Methods and platform realization of the national QPF master blender. Meteor. Mon., 44, 1020–1032, doi: 10.7519/j.issn.1000-0526.2018.08.004. (in Chinese)

    Google Scholar 

  • Tao, S. Y., 1980: Rainstorms in China. Science Press, Beijing, 225 pp. (in Chinese)

    Google Scholar 

  • Tao, S.-Y., and F.-K. Zhu, 1964: The 100-mb flow patterns in southern Asia in summer and its relation to the advance and retreat of the West Pacific subtropical anticyclone over the far East. Acta Meteor. Sinica, 34, 385–396, doi: 10.11676/qxxb1964.039. (in Chinese)

    Google Scholar 

  • Tao, S.-Y., and Y.-H. Ding, 1981: Observational evidence of the influence of the Qinghai-Xizang (Tibet) Plateau on the occurrence of heavy rain and severe convective storms in China. Bull. Amer. Meteor. Soc., 62, 23–30, doi: 10.1175/1520-0477(1981)062<0023:OEOTIO>2.0.CO;2.

    Google Scholar 

  • Tao, S. Y., and L. X. Chen, 1987: A review of recent research on the East Asian summer monsoon in China. Monsoon Meteorology, C.-P. Chang, and T. N. Krishnamurti, Eds., Oxford University, London, 60–92.

    Google Scholar 

  • Tao, S. Y., Z. S. Wang, F. K. Zhu, et al., 1963: Study on Some Issues of Summer Subtropical Weather System in China. Science Press, Beijing, 145 pp. (in Chinese)

    Google Scholar 

  • Tao, S.-Y., Y.-H. Ding, and X.-P. Zhou, 1979: The present status of the research on rainstorm and severe convective weathers in China. Scientia Atmos. Sinica, 3, 227–238, doi: 10.3878/j.issn.1006-9895.1979.03.05. (in Chinese)

    Google Scholar 

  • Tao, S. Y., Y. Q. Ni, S. X. Zhao, et al., 2001: Study on the Formation Mechanism and Forecast of Chinese Summer Rainfall in 1998. China Meteorological Press, Beijing, 1–184. (in Chinese)

    Google Scholar 

  • Tao, W.-K., J. J. Shi, P.-L. Lin, et al., 2011: High-resolution numerical simulation of the extreme rainfall associated with Typhoon Morakot. Part I: Comparing the impact of microphysics and PBL parameterizations with observations. Terr. Atmos. Ocean Sci., 22, 673–696, doi: 10.3319/TAO.2011.08. 26.01(TM).

    Google Scholar 

  • Tao, Z.-Y., 1980: The structure and formation of the moist jet stream. Acta Meteor. Sinica, 38, 331–340, doi: 10.11676/qxxb1980.039. (in Chinese)

    Google Scholar 

  • Tao, Z. Y., and Y. G. Zheng, 2012: Analysis methods on potential temperature, isentropic potential vorticity, front and tropopause. Meteor. Mon., 38, 17–27. (in Chinese)

    Google Scholar 

  • Tao, Z. Y., B. J. Tian, and W. Huang, 1994: Asymmetry structure and torrential rain of landing Typhoon 9216. J. Trop. Meteor., 10, 69–77, doi: 10.16032/j.issn.1004-4965.1994.01.009. (in Chinese)

    Google Scholar 

  • Thaler, E. R., and P. Nutter, 2009: Moving quasigeostrophic theory into the 21st century. Proc. 23rd Conference on Weather Analysis and Forecasting, Amer. Meteor. Soc., Omaha, NE, Paper ID 8B.3.

    Google Scholar 

  • Tian, S.-C., and Z.-M. Zeng, 1982: A comparison between two cases with and without heavy rain in front of an upper trough in summer over North China. Scientia Atmos. Sinica, 6, 179–186, doi: 10.3878/j.issn.1006-9895.1982.02.09. (in Chinese)

    Google Scholar 

  • Uccellini, L. W., 1980: On the role of upper tropospheric jet streaks and leeside cyclogenesis in the development of lowlevel jets in the Great Plains. Mon. Wea. Rev., 108, 1689–1696, doi: 10.1175/1520-0493(1980)108<1689:otrout>2.0.co; 2.

    Google Scholar 

  • Uccellini, L. W., and D. R. Johnson, 1979: The coupling of upper and lower tropospheric jet streaks and implications for the development of severe convective storms. Mon. Wea. Rev., 107, 682–703, doi: 10.1175/1520-0493(1979)107<0682:TCOUAL> 2.0.CO;2.

    Google Scholar 

  • Uccellini, L. W., R. A. Petersen, P. J. Kocin, et al., 1987: Synergistic interactions between an upper-level jet streak and diabatic processes that influence the development of a low-level jet and a secondary coastal cyclone. Mon. Wea. Rev., 115, 2227–2261, doi: 10.1175/1520-0493(1987)115<2227:SIBAU L>2.0.CO;2.

    Google Scholar 

  • Wan, B. C., Z. Q. Gao, F. Chen, et al., 2017: Impact of Tibetan Plateau surface heating on persistent extreme precipitation events in southeastern China. Mon. Wea. Rev., 145, 3485–3505, doi: 10.1175/MWR-D-17-0061.1.

    Google Scholar 

  • Wang, B., and Z. Z. Ji, 1990: The construction and preliminary test of the explicit complete square conservative difference schemes. Chinese Sci. Bull., 35, 766–768, doi: 10.1360/csb 1990-35-10-766. (in Chinese)

    Google Scholar 

  • Wang, C.-C., G. T.-J. Chen, and R. E. Carbone, 2004: A climatology of warm-season cloud patterns over East Asia based on GMS infrared brightness temperature observations. Mon. Wea. Rev., 132, 1606–1629, doi: 10.1175/1520-0493(2004)132<1606:ACOWCP>2.0.CO;2.

    Google Scholar 

  • Wang, D. H., and S. Yang, 2010: An atmospheric dry intrusion parameter and its application. Acta Meteor. Sinica, 24, 492-500.

  • Wang, D. H., S. X. Zhong, Y. Liu, et al., 2007: Advances in the study of rainstorm in Northeast China. Adv. Earth Sci., 22, 549–560, doi: 10.3321/j.issn:1001-8166.2007.06.001. (in Chinese)

    Google Scholar 

  • Wang, D. H., X. F. Li, W.-K. Tao, et al., 2009: Torrential rainfall processes associated with landfall of severe tropical storm Bilis (2006): A two-dimensional cloud-resolving modeling study. Atmos. Res., 91, 94–104, doi: 10.1016/j.atmosres.2008. 07.005.

    Google Scholar 

  • Wang, H., F. Y. Kong, N. G. Wu, et al., 2019: An investigation into microphysical structure of a squall line in South China observed with a polarimetric radar and a disdrometer. Atmos. Res., 226, 171–180, doi: 10.1016/j.atmosres.2019.04.009.

    Google Scholar 

  • Wang, H., Y. L. Luo, and B. J.-D. Jou, 2014: Initiation, maintenance, and properties of convection in an extreme rainfall event during SCMREX: Observational analysis. J. Geophys. Res. Atmos., 119, 13,206-13,232, doi: 10.1002/2014JD022 339.

    Google Scholar 

  • Wang, J. Z., J. Chen, Z. R. Zhuang, et al., 2018: Characteristics of initial perturbation growth rate in the regional ensemble prediction system of GRAPES. Chinese J. Atmos. Sci., 42, 367–382, doi: 10.3878/j.issn.1006-9895.1708.17141. (in Chinese)

    Google Scholar 

  • Wang, L.-J., S. Lu, Z.-Y. Guan, et al., 2010: Effects of low-latitude monsoon surge on the increase in downpour from tropical storm Bilis. J. Trop. Meteor., 16, 101–108, doi: 10.3969/j.issn.1006-8775.2010.02.001.

    Google Scholar 

  • Wang, M. J., K. Zhao, M. Xue, et al., 2016: Precipitation microphysics characteristics of a Typhoon Matmo (2014) rainband after landfall over eastern China based on polarimetric radar observations. J. Geophys. Res. Atmos., 121, 12,415-12,433, doi: 10.1002/2016JD025307.

    Google Scholar 

  • Wang, P. Y., Z. X. Xu, and Z. T. Pan, 1990: A case study of warm sector rainbands in North China. Adv. Atmos. Sci., 7, 354–365, doi: 10.1007/BF03179767.

    Google Scholar 

  • Wang, Q.-W., and Z.-M. Tan, 2014: Multi-scale topographic control of southwest vortex formation in Tibetan Plateau region in an idealized simulation. J. Geophys. Res. Atmos., 119, 11,543-11,561, doi: 10.1002/2014JD021898.

    Google Scholar 

  • Wang, Y. Q., and Y. T. Zhu, 1992: Analysis and numerical study of the interactions of binary tropical cyclones. Part I: Analysis of physical mechanism. Scientia Atmos. Sinica, 16, 573–582, doi: 10.3878/j.issn.1006-9895.1992.05.08. (in Chinese)

    Google Scholar 

  • Wang, Y. Q., Y. Q. Wang, and H. Fudeyasu, 2009: The role of Typhoon Songda (2004) in producing distantly located heavy rainfall in Japan. Mon. Wea. Rev., 137, 3699–3716, doi: 10.1175/2009mwr2933.1.

    Google Scholar 

  • Wei, N., and Y. Li, 2013: A modeling study of land surface process impacts on inland behavior of Typhoon Rananim (2004). Adv. Atmos. Sci., 30, 367–381, doi: 10.1007/s00376-012-1242-5.

    Google Scholar 

  • Wen, J., K. Zhao, H. Huang, et al., 2017: Evolution of microphysical structure of a subtropical squall line observed by a polarimetric radar and a disdrometer during OPACC in Eastern China. J. Geophys. Res. Atmos., 122, 8033–8050, doi: 10.1002/2016JD026346.

    Google Scholar 

  • Wen, L., K. Zhao, G. F. Zhang, et al., 2016: Statistical characteristics of raindrop size distributions observed in East China during the Asian summer monsoon season using 2-D video disdrometer and micro rain radar data. J. Geophys. Res. Atmos., 121, 2265–2282, doi: 10.1002/2015JD024160.

    Google Scholar 

  • Wernli, H., and M. Sprenger, 2007: Identification and ERA-15 climatology of potential vorticity streamers and cutoffs near the extratropical tropopause. J. Atmos. Sci., 64, 1569–1586, doi: 10.1175/JAS3912.1.

    Google Scholar 

  • Wu, C., L. P. Liu, M. Wei, et al., 2018: Statistics-based optimization of the polarimetric radar hydrometeor classification algorithm and its application for a squall line in South China. Adv. Atmos. Sci., 35, 296–316, doi: 10.1007/s00376-017-6241-0.

    Google Scholar 

  • Wu, G.-X., 1984: The nonlinear response of the atmosphere to large-scale mechanical and thermal forcing. J. Atmos. Sci., 41, 2456–2476, doi: 10.1175/1520-0469(1984)041<2456:TNROT A>2.0.CO;2.

    Google Scholar 

  • Wu, G.-X., and S.-J. Chen, 1985: The effect of mechanical forcing on the formation of a mesoscale vortex. Quart. J. Roy. Meteor. Soc., 111, 1049–1070, doi: 10.1002/qj.49711147009.

    Google Scholar 

  • Wu, G. X., Y. M. Liu, and P. Liu, 1999: The effect of spatially nonuniform heating on the formation and variation of subtropical high. I: Scale analysis. Acta Meteor. Sinica, 57, 257–263, doi: 10.11676/qxxb1999.025. (in Chinese)

    Google Scholar 

  • Wu, G. X., J. F. Chou, Y. M. Liu, et al., 2002: Dynamics of Subtropical High Formation and Variation. Science Press, Beijing, 1–294. (in Chinese)

    Google Scholar 

  • Wu, G. X., Y. M. Liu, J. J. Yu, et al., 2008: Modulation of land-sea distribution on air-sea interaction and formation of subtropical anticyclones. Chinese J. Atmos. Sci., 32, 720–740, doi: 10.3878/j.issn.1006-9895.2008.04.03. (in Chinese)

    Google Scholar 

  • Wu, G. X., Y. J. Zheng, and Y. M. Liu, 2013: Dynamical and thermal problems in vortex development and movement. Part II: Generalized slantwise vorticity development. Acta Meteor. Sinica, 27, 15–25, doi: 10.1007/s13351-013-0102-2.

    Google Scholar 

  • Wu, L. G., and C. Wang, 2015: Has the western Pacific subtropical high extended westward since the late 1970s? J. Climate, 28, 5406–5413, doi: 10.1175/JCLI-D-14-00618.1.

    Google Scholar 

  • Wu, M. W., and Y. L. Luo, 2016: Mesoscale observational analysis of lifting mechanism of a warm-sector convective system producing the maximal daily precipitation in China mainland during pre-summer rainy season of 2015. J. Meteor. Res., 30, 719–736, doi: 10.1007/s13351-016-6089-8.

    Google Scholar 

  • Wu, M. W., C.-C. Wu, T.-H. Yen, et al., 2017: Synoptic analysis of extreme hourly precipitation in Taiwan during 2003-12. Mon. Wea. Rev., 145, 5123–5140, doi: 10.1175/MWR-D-17-0230.1.

    Google Scholar 

  • Wu, M. W., Y. L. Luo, F. Chen, et al., 2019: Observed link of extreme hourly precipitation changes to urbanization over coastal South China. J. Appl. Meteor. Climatol., 58, 1799–1819, doi: 10.1175/JAMC-D-18-0284.1.

    Google Scholar 

  • Wu, S.-S., J.-Y. Liang, and C.-H. Li, 2003: Relationship between the intensity of South China Sea summer monsoon and the precipitation in raining seasons in China. J. Trop. Meteor., 19, 25–36, doi: 10.3969/j.issn.1004-4965.2003.z1.003. (in Chinese)

    Google Scholar 

  • Wu, X., J.-F. Fei, X.-G. Huang, et al., 2011: Statistical classification and characteristics analysis of binary tropical cyclones over the western North Pacific Ocean. J. Trop. Meteor., 17, 335–344, doi: 10.3969/j.issn.1006-8775.2011.04.003.

    Google Scholar 

  • Wu, Z.-Q., H.-M. Xu, D.-H. Wang, et al., 2012: Analysis of a heavy rain process on June 19-20, 2010 in southern China by using a multi-mode mesoscale super-ensemble forecasting system. J. Trop. Meteor., 28, 653–663, doi: 10.3969/j.issn.1004-4965.2012.05.005. (in Chinese)

    Google Scholar 

  • Xia, R. D., and D.-L. Zhang, 2019: An observational analysis of three extreme rainfall episodes of 19-20 July 2016 along the Taihang Mountains in North China. Mon. Wea. Rev., 147, 4199–4220, doi: 10.1175/MWR-D-18-0402.1.

    Google Scholar 

  • Xie, Z. W., and C. Bueh, 2012: Low frequency characteristics of Northeast China cold vortex and its background circulation pattern. Acta Meteor. Sinica, 70, 704–716, doi: 10.11676/qxxb2012.057. (in Chinese)

    Google Scholar 

  • Xu, C. L., J. J. Wang, and L. P. Huang, 2017: Evaluation on QPF of GRAPES-Meso4.0 model at convection-permitting resolu tion. Acta Meteor. Sinica, 75, 851–876, doi: 10.11676/qxxb2017.068. (in Chinese)

    Google Scholar 

  • Xu, H. X., X. D. Xu, B. Chen, et al., 2013: The structure change and energy moisture transport physical image in the development and decay processes of binary typhoon vortices. Acta Meteor. Sinica, 71, 825–838, doi: 10.11676/qxxb2013.069. (in Chinese)

    Google Scholar 

  • Xu, H. X., X. D. Xu, S. J. Zhang, et al., 2014: Long-range moisture alteration of a typhoon and its impact on Beijing extreme rainfall. Chinese J. Atmos. Sci., 38, 537–550, doi: 10.3878/j. issn.1006-9895.2013.13173. (in Chinese)

    Google Scholar 

  • Xu, W. X., E. J. Zipser, and C. T. Liu, 2009: Rainfall characteristics and convective properties of Meiyu precipitation systems over South China, Taiwan, and the South China Sea. Part I: TRMM observations. Mon. Wea. Rev., 137, 4261–4275, doi: 10.1175/2009MWR2982.1.

    Google Scholar 

  • Xu, X.-D., S.-J. Zhang, L.-S. Chen, et al., 2004: Dynamic characteristics of typhoon vortex spiral wave and its translation: A diagnostic analyses. Chinese J. Geophys., 47, 33–41, doi: 10.3321/j.issn:0001-5733.2004.01.006. (in Chinese)

    Google Scholar 

  • Xu, X. D., C. Lu, H. X. Xu, et al., 2011: A possible mechanism responsible for exceptional rainfall over Taiwan from Typhoon Morakot. Atmos. Sci. Lett., 12, 294–299, doi: 10.1002/asl.338.

    Google Scholar 

  • Xu, Z. Z., J. Chen, Y. Wang, et al., 2019: Sensitivity experiments of a stochastically perturbed parameterizations (SPP) scheme for mesoscale precipitation ensemble prediction. Acta Meteor. Sinica, 77, 849–868, doi: 10.11676/qxxb2019.039. (in Chinese)

    Google Scholar 

  • Xue, J. S., 1999: Research on the Summer Heavy Rain over South China in 1994. China Meteorological Press, Beijing, 1–185. (in Chinese)

    Google Scholar 

  • Xue, J. S., and D. H. Chen, 2008: Scientific Design and Application of GRAPES Numerical Prediction System. Science Press, Beijing, 383 pp. (in Chinese)

    Google Scholar 

  • Xue, M., 2016: Preface to the special issue on the “Observation, Prediction and Analysis of Severe Convection of China” (OPACC) National “973” project. Adv. Atmos. Sci., 33, 1099–1101, doi: 10.1007/s00376-016-0002-3.

    Google Scholar 

  • Xue, M., X. Luo, K. F. Zhu, et al., 2018: The controlling role of boundary layer inertial oscillations in Meiyu frontal precipitation and its diurnal cycles over China. J. Geophys. Res. Atmos., 123, 5090–5115, doi: 10.1029/2018JD028368.

    Google Scholar 

  • Yang, B., J. S. Sun, X. Mao, et al., 2016: Multi-scale characteristics of atmospheric circulation related to short-time strong rainfall events in Beijing. Acta Meteor. Sinica, 74, 919–934, doi: 10.11676/qxxb2016.072. (in Chinese)

    Google Scholar 

  • Yang, J., Q. Bao, B. Wang, et al., 2014: Distinct quasi-biweekly features of the subtropical East Asian monsoon during early and late summers. Climate Dyn., 42, 1469–1486, doi: 10.1007/s00382-013-1728-6.

    Google Scholar 

  • Yang, S., and S.-T. Gao, 2006: Modified Richardson number in non-uniform saturated moist flow. Chinese Phys. Lett., 23, 3003–3006, doi: 10.1088/0256-307X/23/11/033.

    Google Scholar 

  • Q. Yang, S., S. T. Gao, and D. H. Wang, 2007: Diagnostic analyses of the ageostrophic vector in the non-uniformly saturated, frictionless, and moist adiabatic flow. J. Geophys. Res. Atmos., 112, D09114, doi: 10.1029/2006JD008142.

    Google Scholar 

  • Yang, S., S. T. Gao, and C. G. Lu, 2014: A generalized frontogenesis function and its application. Adv. Atmos. Sci., 31, 1065–1078, doi: 10.1007/s00376-014-3228-y.

    Google Scholar 

  • Yang, S., S. T. Gao, and C. G. Lu, 2015: Investigation of the Mei-Yu front using a new deformation frontogenesis function. Adv. Atmos. Sci., 32, 635–647, doi: 10.1007/s00376-014-4147-7.

    Google Scholar 

  • Yang, S., W. Zhang, B. Chen, et al., 2019a: Remote moisture sources for 6-hour summer precipitation over the southeastern Tibetan Plateau and its effects on precipitation intensity. Atmos. Res., 236, 104803, doi: 10.1016/j.atmosres.2019.104803.

    Google Scholar 

  • Yang, S., X. B. Tang, S. X. Zhong, et al., 2019b: Convective bursts episode of the rapidly intensified Typhoon Mujigae (2015) A. dv A. tmos S. ci. 3, 6 5, 41-556 d, oi1: 0.1007/s00376-019-8142-x.

    Google Scholar 

  • Yang, T., Y. H. Duan, J. Xu, et al., 2018: Simulation of the urbanization impact on precipitation of landfalling tropical cyclone Nida (2016). J. Appl. Meteor. Sci., 29, 410–422, doi: 10.11898/1001-7313.20180403. (in Chinese)

    Google Scholar 

  • Yao, C., S. S. Lou, and J. Y. Ye, 2019: Mesoscale analysis and numerical simulation of a typhoon rainstrom event affected by cold air. Torr. Rain Disas., 38, 204–211, doi: 10.3969/j. issn.1004-9045.2019.03.002. (in Chinese)

    Google Scholar 

  • Ye, D. Z., and B. Z. Zhu, 1958: Some Basic Problems of Atmospheric Circulation. Science Press, Beijing, 159 pp. (in Chinese)

    Google Scholar 

  • Ye, D. Z., and Z. C. Gu, 1955: Effects of the Tibetan Plateau on East Asian atmospheric circulation and China weather. Chinese Sci. Bull., 6, 29–33. (in Chinese)

    Google Scholar 

  • Ye, D. Z., and M. C. Li, 1964: The adaptation of wind field and pressure field in small and medium scale motion. Acta Meteor. Sinica, 34, 409–424, doi: 10.11676/qxxb1964.041. (in Chinese)

    Google Scholar 

  • Ye, D. Z., and Y. X. Gao, 1979: Meteorology of the Tibetan Plateau. Science Press, Beijing, 115–121. (in Chinese)

    Google Scholar 

  • Ye, D. Z., Y. X. Gao, and K. N. Liu, 1952: On the advance and retreat of the jet stream in southern Asia and southwest of the United States from 1945 to 1946. Acta Meteor. Sinica, 23, 1–32. (in Chinese)

    Google Scholar 

  • Ye, D. Z., S. Y. Tao, and M. C. Li, 1958: The abrupt change of circulation over Northern Hemisphere during June and October. Acta Meteor. Sinica, 29, 249–263. (in Chinese)

    Google Scholar 

  • Ye, D.-Z., Y.-X. Gao, and Q. Chen, 1977: On some features of the summer atmospheric circulation over the Tsinghai-Tibetan plateau and its neighbourhood. Chinese J. Atmos. Sci., 1, 289–299, doi: 10.3878/j.issn.1006-9895.1977.04.06. (in Chinese)

    Google Scholar 

  • Ye, T.-S., R. Zhi, J.-H. Zhao, et al., 2014: The two annual northward jumps of the West Pacific Subtropical High and their relationship with summer rainfall in Eastern China under global warming. Chinese Phys. B, 23, 069203, doi: 10.1088/1674-1056/23/6/069203.

  • Ye, Y., and G. P. Li, 2016: Statistics characteristics and the abnormal development of flow pattern of the Southwest Vortex in recent 61 summer half years. Plateau Meteor., 35, 946–954. (in Chinese)

    Google Scholar 

  • Yeh, T. C., 1957: On the formation of quasi-geostrophic motion in the atmosphere. J. Meteor. Soc. Japan Ser. II, 35A, 130–134, doi: 10.2151/jmsj1923.35A.0_130.

    Google Scholar 

  • Yin, J., and S. S. Liang, 2010: Influence of urbanization on regional precipitation in Shanghai City. Hydrology, 30, 66–72, doi: 10.3969/j.issn.1000-0852.2010.02.015. (in Chinese)

    Google Scholar 

  • Yin, J. F., D.-L. Zhang, Y. L. Luo, et al., 2020: On the extreme rainfall event of 7 May 2017 over the coastal city of Guangzhou. Part I: Impacts of urbanization and orography. Mon. Wea. Rev., 148, 955–979, doi: 10.1175/MWR-D-19-0212.1.

    Google Scholar 

  • Yin, S. Q., D. L. Chen, and Y. Xie, 2009: Diurnal variations of precipitation during the warm season over China. Int. J. Climatol., 29, 1154–1170, doi: 10.1002/joc.1758.

    Google Scholar 

  • Yin, S. Q., W. J. Li, D. L. Chen, et al., 2011: Diurnal variations of summer precipitation in the Beijing area and the possible effect of topography and urbanization. Adv. Atmos. Sci., 28, 725–734, doi: 10.1007/s00376-010-9240-y.

    Google Scholar 

  • You, J. Y., 1965: The mesoscale systems in heavy rainfall zone. Acta Meteor. Sinica, 35, 293–304, doi: 10.11676/qxxb1965. 033. (in Chinese)

    Google Scholar 

  • Yu, R. C., J. Li, H. M. Chen, et al., 2014: Progress in studies of the precipitation diurnal variation over contiguous China. J. Meteor. Res., 28, 877–902, doi: 10.1007/s13351-014-3272-7.

    Google Scholar 

  • Yu, R. C., T. J. Zhou, A. Y. Xiong, et al., 2007: Diurnal variations of summer precipitation over contiguous China. Geophys. Res. Lett., 34, L01704, doi: 10.1029/2006GL028129.

    Google Scholar 

  • Yu, R. C., Y. Zhang, J. J. Wang, et al., 2019: Recent progress in numerical atmospheric modeling in China. Adv. Atmos. Sci., 36, 938–960, doi: 10.1007/s00376-019-8203-1.

    Google Scholar 

  • Yu, Z. F., H. Yu, and S.-T. Gao, 2010: Terrain impact on the precipitation of landfalling Typhoon Talim. J. Trop. Meteor., 16, 115–124, doi: 10.3969/j.issn.1006-8775.2010.02.003.

    Google Scholar 

  • Yu, Z. F., Y. Q. Wang, H. M. Xu, et al., 2017: On the relationship between intensity and rainfall distribution in tropical cyclones making landfall over China. J. Appl. Meteor. Climatol., 56, 2883–2901, doi: 10.1175/JAMC-D-16-0334.1.

    Google Scholar 

  • Yuan, C. X., J. Q. Liu, J.-J. Luo, et al., 2019: Influences of tropical Indian and Pacific oceans on the interannual variations of precipitation in the early and late rainy seasons in South China. J. Climate, 32, 3681–3694, doi: 10.1175/JCLI-D-18-0588.1.

    Google Scholar 

  • Yuan, F., K. Wei, W. Chen, et al., 2010: Temporal variations of the frontal and monsoon storm rainfall during the first rainy season in South China. Atmos. Ocean. Sci. Lett., 3, 243–247, doi: 10.1080/16742834.2010.11446876.

    Google Scholar 

  • Yuan, W. H., R. C. Yu, H. M. Chen, et al., 2010: Subseasonal characteristics of diurnal variation in summer monsoon rainfall over central eastern China. J. Climate, 23, 6684–6695, doi: 10.1175/2010JCLI3805.1.

    Google Scholar 

  • Yuan, W. H., R. C. Yu, M. H. Zhang, et al., 2012: Regimes of diurnal variation of summer rainfall over subtropical East Asia. J. Climate, 25, 3307–3320, doi: 10.1175/JCLI-D-11-00288.1.

    Google Scholar 

  • Yuan, X. X., 1981: Meteorological analysis of the formation of southwest wind low-level jets in the South of China. Acta Meteor. Sinica, 39, 245–251, doi: 10.11676/qxxb1981.027. (in Chinese)

    Google Scholar 

  • Yue, C. J., Y. Q. Tang, W. Gu, et al., 2019: Study of urban barrier effect on local typhoon precipitation. Meteor. Mon., 45, 1611–1620, doi: 10.7519/j.issn.1000-0526.2019.11.011. (in Chinese)

    Google Scholar 

  • Zadra, A., G. Brunet, and J. Derome, 2002: An empirical normal mode diagnostic algorithm applied to NCEP reanalyses. J. Atmos. Sci., 59, 2811–2829, doi: 10.1175/1520-0469(2002)059<2811:AENMDA>2.0.CO;2.

    Google Scholar 

  • Zeng, Q. C., 1963a: Adaptation and development processes in the atmosphere (I)—Physical analysis and linear theory. Acta Meteor. Sinica, 33, 163–174, doi: 10.11676/qxxb1963.017. (in Chinese)

    Google Scholar 

  • Zeng, Q. C., 1963b: Characteristic parameters and dynamic equations of atmospheric motion. Acta Meteor. Sinica, 33, 472–483, doi: 10.11676/qxxb1963.050. (in Chinese)

    Google Scholar 

  • Zeng, Q.-C., 1979a: The advance in atmospheric dynamics and numerical weather prediction in China. Scientia Atmos. Sinica, 3, 256–269, doi: 10.3878/j.issn.1006-9895.1979.03.08. (in Chinese)

    Google Scholar 

  • Zeng, Q. C., 1979b: Mathematical and Physical Basis of Numerical Weather Prediction, Volume I. Science Press, Beijing, 543 pp. (in Chinese)

    Google Scholar 

  • Zeng, Q. C., and Z. Z. Ji, 1981: On the computational stability of evolution equations. Math. Numer. Sinica, 3, 79–86. (in Chinese)

    Google Scholar 

  • Zeng, W. X., G. X. Chen, Y. Du, et al., 2019: Diurnal variations of low-level winds and precipitation response to large-scale circulations during a heavy rainfall event. Mon. Wea. Rev., 147, 3981–4004, doi: 10.1175/MWR-D-19-0131.1.

    Google Scholar 

  • Zhai, G. Q., H. J. Ding, S. Q. Sun, et al., 1999: Physical characteristics of heavy rainfall associated with strong low level jet. Chinese J. Atmos. Sci., 23, 112–118, doi: 10.3878/j.issn.1006-9895.1999.01.13. (in Chinese)

    Google Scholar 

  • Zhang, D.-L., Y. H. Lin, P. Zhao, et al., 2013: The Beijing extreme rainfall of 21 July 2012: “Right results” but for wrong reasons. Geophys. Res. Lett., 40, 1426–1431, doi: 10.1002/grl. 50304.

    Google Scholar 

  • Zhang, F. Q., Y. Q. Sun, L. Magnusson, et al., 2019: What is the predictability limit of midlatitude weather? J. Atmos. Sci., 76, 1077–1091, doi: 10.1175/JAS-D-18-0269.1.

    Google Scholar 

  • Zhang, H., and P. M. Zhai, 2011: Temporal and spatial characteristics of extreme hourly precipitation over Eastern China in the warm season. Adv. Atmos. Sci., 25, 1177–1183, doi: 10.1007/s00376-011-0020-0.

    Google Scholar 

  • Zhang, H. B., J. Chen, X. F. Zhi, et al., 2015: Study on multi-scale blending initial condition perturbations for a regional ensemble prediction system. Adv. Atmos. Sci., 32, 1143–1155, doi: 10.1007/s00376-015-4232-6.

    Google Scholar 

  • Zhang, M. R., and Z. Y. Meng, 2019: Warm-sector heavy rainfall in Southern China and its WRF simulation evaluation: A lowlevel-jet perspective. Mon. Wea. Rev., 147, 4461–4480, doi: 10.1175/MWR-D-19-0110.1.

    Google Scholar 

  • Zhang, R. H., Y. Q. Ni, L. P. Liu, et al., 2011: South China Heavy Rainfall Experiments (SCHeREX). J. Meteor. Soc. Japan Ser. II, 89A, 153–166, doi: 10.2151/jmsj.2011-A10.

    Google Scholar 

  • Zhang, S. J., L. S. Chen, and Y. Li, 2012: Statistical analysis and numerical simulation of Poyang Lake’s influence on tropical cyclones. J. Trop. Meteor., 18, 249–262.

    Google Scholar 

  • Zhang, X. B., 2018: Application of a convection-permitting ensemble prediction system to quantitative precipitation forecasts over Southern China: Preliminary results during SCMREX. Quart. J. Roy. Meteor. Soc., 144, 2842–2862, doi: 10. 1002/qj.3411.

    Google Scholar 

  • Zhang, X. B., 2019: Multiscale characteristics of different-source perturbations and their interactions for convection-permitting ensemble forecasting during SCMREX. Mon. Wea. Rev., 147, 291–310, doi: 10.1175/MWR-D-18-0218.1.

    Google Scholar 

  • Zhang, X. B., Y. L. Luo, Q. L. Wan, et al., 2016: Impact of assimilating wind profiling radar observations on convection-permitting quantitative precipitation forecasts during SCMREX. Wea. Forecasting, 31, 1271–1292, doi: 10.1175/WAF-D-15-0156.1.

    Google Scholar 

  • Zhang, X. L., S. Y. Tao, and S. L. Zhang, 2004: Three types of heavy rainstorms associated with the Meiyu front. Chinese J. Atmos. Sci., 28, 187–205, doi: 10.3878/j.issn.1006-9895.2004. 02.03. (in Chinese)

    Google Scholar 

  • Zhang, Y., J. Li, R. C. Yu, et al., 2019: A layer-averaged nonhydrostatic dynamical framework on an unstructured mesh for global and regional atmospheric modeling: Model description, baseline evaluation, and sensitivity exploration. J. Adv. Model. Earth Syst., 11, 1685–1714, doi: 10.1029/2018MS 001539.

    Google Scholar 

  • Zhang, Y. C., J. H. Sun, G. K. Xu, et al., 2013: Analysis on the structure of two mesoscale convective vortices over Yangtze-Huaihe River basin. Climatic Environ. Res., 18, 271–287, doi: 10.3878/j.issn.1006-9585.2012.11162. (in Chinese)

    Google Scholar 

  • Zhang, Y. C., F. Zhang, and J. H. Sun, 2014a: Comparison of the diurnal variations of warm-season precipitation for East Asia vs. North America downstream of the Tibetan Plateau vs. the Rocky Mountains. Atmos. Chem. Phys., 14, 10,741-10,759, doi: 10.5194/acp-14-10741-2014.

    Google Scholar 

  • Zhang, Y. C., J. H. Sun, and S. M. Fu, 2014b: Impacts of diurnal variation of mountain-plain solenoid circulations on precipitation and vortices East of the Tibetan Plateau during the Mei-Yu season. Adv. Atmos. Sci., 31, 139–153, doi: 10.1007/s00376-013-2052-0.

    Google Scholar 

  • Zhang, Y. C., J. H. Sun, and S. M. Fu, 2017: Main energy paths and energy cascade processes of the two types of persistent heavy rainfall events over the Yangtze River-Huaihe River Basin. Adv. Atmos. Sci., 34, 129–143, doi: 10.1007/s00376-016-6117-8.

    Google Scholar 

  • Zhang, Y. C., F. Zhang, C. A. Davis, et al., 2018: Diurnal evolution and structure of long-lived mesoscale convective vortices along the Mei-Yu front over the East China Plains. J. Atmos. Sci., 75, 1005–1025, doi: 10.1175/JAS-D-17-0197.1.

    Google Scholar 

  • Zhang, Y. H., M. Xue, K. F. Zhu, et al., 2019: What is the main cause of diurnal variation and nocturnal peak of summer precipitation in Sichuan Basin, China? The key role of boundary layer low-level jet inertial oscillations J. Geophys. Res. Atmos., 124, 2643–2664, doi: 10.1029/2018JD029834.

    Google Scholar 

  • Zhang, Y. T., M. Y. Jiao, J. Chen, et al., 2016: Probabilistic forecasting of extreme precipitation experiment based on Bayesian theory. Meteor. Mon., 42, 799–808, doi: 10.7519/j.issn. 1000-0526.2016.07.003. (in Chinese)

    Google Scholar 

  • Zhang, Y.-Z., S.-G. Miao, Y.-J. Dai, et al., 2013: Numerical simulation of characteristics of summer clear day boundary layer in Beijing and the impact of urban underlying surface on sea breeze. Chinese J. Geophys., 56, 2558–2573. (in Chinese)

    Google Scholar 

  • Zhao, P., J. Sun, and X. J. Zhou, 2003: Mechanism of formation of low level jets in the South China Sea during spring and summer of 1998. Chinese Sci. Bull., 48, 1265–1270, doi: 10.1007/BF03183949. (in Chinese)

    Google Scholar 

  • Zhao, S.-X., and S.-M. Fu, 2007: An analysis on the Southwest Vortex and its environment fields during heavy rainfall in eastern Sichuan province and Chongqing in September 2004. Chinese J. Atmos. Sci., 31, 1059–1075, doi: 10.3878/j.issn. 1006-9895.2007.06.03. (in Chinese)

    Google Scholar 

  • Zhao, S. X., and J. H. Sun, 2007: Study on cut-off low-pressure systems with floods over Northeast Asia. Meteor. Atmos. Phys., 96, 159–180, doi: 10.1007/s00703-006-0226-3.

    Google Scholar 

  • Zhao, S. X., S. H. Liu, and M. Y. Liu, 1980: Mesoscale analysis of strong convective weather system caused by cold vortex over Beijing during summer. Collected Papers of Institute of Atmospheric Physics, Chinese Academy of Sciences, No. 9, Science Press, Beijing, 151–160. (in Chinese)

    Google Scholar 

  • Zhao, S. X., Z. Y. Tao, J. H. Sun, et al., 2004: Analysis and Research on the Mechanism for Meiyu Frontal Rainstorms in the Yangtze River Valley. China Meteorological Press, Beijing, 281–282. (in Chinese)

    Google Scholar 

  • Zhao, Y., X. P. Cui, and S. T. Gao, 2011: A study of structure of mesoscale systems producing a heavy rainfall event in North China. Chinese J. Atmos. Sci., 35, 945–962, doi: 10.3878/j.issn.1006-9895.2011.05.14. (in Chinese)

    Google Scholar 

  • Zhao, Y. C., 2012: Numerical investigation of a localized extremely heavy rainfall event in complex topographic area during midsummer. Atmos. Res., 113, 22–39, doi: 10.1016/j.atmosres. 2012.04.018.

    Google Scholar 

  • Zhao, Y.-C., and Y.-H. Wang, 2009: A review of studies on torrential rain during pre-summer flood season in South China since the 1980’s. Torr. Rain Disas., 28, 193–202, doi: 10.3969/j.issn.1004-9045.2009.03.001. (in Chinese)

    Google Scholar 

  • Zheng, X. Y., T. Z. Zhang, and R. H. Bai, 1992: Heavy Rainfall in Northeast China. China Meteorological Press, Beijing, 1–299. (in Chinese)

    Google Scholar 

  • Zheng, Y. G., J. Chen, G. Q. Ge, et al., 2007: Typical structure, diversity and multi-scale characteristics of Meiyu front. Acta Meteor. Sinica, 65, 760–772, doi: 10.11676/qxxb2007.072. (in Chinese)

    Google Scholar 

  • Zheng, Y. G., M. Xue, B. Li, et al., 2016: Spatial characteristics of extreme rainfall over China with hourly through 24-hour accumulation periods based on national-level hourly rain gauge data. Adv. Atmos. Sci., 33, 1218–1232, doi: 10.1007/s00376-016-6128-5.

    Google Scholar 

  • Zheng, Y. J., G. X. Wu, and Y. M. Liu, 2013: Dynamical and thermal problems in vortex development and movement. Part I: A PV-Q view. Acta Meteor. Sinica, 27, 1–14, doi: 10. 1007/s13351-013-0101-3.

    Google Scholar 

  • Zhong, L. Z., R. Mu, D. L. Zhang, et al., 2015: An observational analysis of warm-sector rainfall characteristics associated with the 21 July 2012 Beijing extreme rainfall event. J. Geophys. Res. Atmos., 120, 3274–3291, doi: 10.1002/2014JD022 686.

    Google Scholar 

  • Zhong, S.-X., D.-H. Wang, R.-H. Zhang, et al., 2011: Analyses on the structure characteristic and formation mechanism of the rainstorm related to a cold vortex system over Northeast China. Plateau Meteor., 30, 951–960. (in Chinese)

    Google Scholar 

  • Zhong, Y. M., M. Xu, and Y. Wang, 2008: Thermal structure characteristics of the extratropical transition of tropical cyclone Chaba (0417). J. Appl. Meteor. Sci., 19, 588–594, doi: 10.3969/j.issn.1001-7313.2008.05.010. (in Chinese)

    Google Scholar 

  • Zhou, F. F., and X. P. Cui, 2015: The adjoint sensitivity of heavy rainfall to initial conditions in debris flow areas in China. Atmos. Sci. Lett., 16, 485–491, doi: 10.1002/asl.586.

    Google Scholar 

  • Zhou, T. J., R. C. Yu, H. M. Chen, et al., 2008: Summer precipitation frequency, intensity, and diurnal cycle over China: A comparison of satellite data with rain gauge observations. J. Climate, 21, 3997–4010, doi: 10.1175/2008JCLI2028.1.

    Google Scholar 

  • Zhou, T. J., R. C. Yu, J. Zhang, et al., 2009: Why the western Pacific subtropical high has extended westward since the late 1970s? J. Climate, 22, 2199–2215, doi: 10.1175/2008JCLI 2527.1.

    Google Scholar 

  • Zhou, X. G., X. M. Wang, and Z. Y. Tao, 2013: Review and discussion of some basic problems of the quasi-geostrophic theory. Meteor. Mon., 39, 401–409, doi: 10.7519/j.issn.1000-0526.2013.04.001. (in Chinese)

    Google Scholar 

  • Zhou, X. G., X. M. Wang, and Z. Y. Tao, 2014: Review and discussion of isentropic thinking and isentropic potential vorticity thinking. Meteor. Mon., 40, 521–529, doi: 10.7519/j.issn. 1000-0526.2014.05.001. (in Chinese)

    Google Scholar 

  • Zhou, X. J., J. S. Xue, Z. Y. Tao, et al., 2003: Heavy Rainfall Experiment in South China during Pre-Summer Rainy Season (HUAMEX), 1998. China Meteorological Press, Beijing, 220 pp. (in Chinese)

    Google Scholar 

  • Zhu, P. J., Y. G. Zheng, C. X. Zhang, et al., 2005: A study of the extratropical transformation of Typhoon Winnie (1997). Adv. Atmos. Sci., 22, 730–740, doi: 10.1007/BF02918716.

    Google Scholar 

  • Zhu, Q. G., 1975: The low-level jet and heavy rainfall. Meteor. Sci. Technol., 21, 12–18, doi: 10.19517/j.1671-6345.1975.08. 004. (in Chinese)

    Google Scholar 

  • Zhu, Y. J., and Y. Luo, 2015: Precipitation calibration based on the frequency-matching method. Wea. Forecasting, 30, 1109–1124, doi: 10.1175/WAF-D-13-00049.1.

    Google Scholar 

  • Zhuang, X. R., J. Z. Min, T. J. Wu, et al., 2017: Development mechanism of multi-scale perturbation based on different perturbation methods in convection-allowing ensemble prediction. Plateau Meteor., 36, 811–825. (in Chinese)

    Google Scholar 

Download references

Acknowledgments

We would like to thank the three anonymous reviewers for their helpful comments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yali Luo.

Additional information

Supported by the National Key Research and Development Program of China (2018YFC1507400) and National Natural Science Foundation of China (41775050).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Luo, Y., Sun, J., Li, Y. et al. Science and Prediction of Heavy Rainfall over China: Research Progress since the Reform and Opening-Up of New China. J Meteorol Res 34, 427–459 (2020). https://doi.org/10.1007/s13351-020-0006-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13351-020-0006-x

Keywords

Navigation