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Abstract
The failure of non-structural components after an earthquake is among the most expensive earthquake-incurred damage, and 
may also have life-threatening consequences, especially in public buildings with very crowded facilities, because exposition 
is high and the risk increases accordingly. The assessment of existing non-structural components is particularly complex 
because in-depth in situ investigation is necessary to detect the presence of deficiencies or damage. This problem concerns 
interior and exterior partitions made of various materials (e.g., glass and masonry), as well as equipment and facilities in 
construction (building, industry, and infrastructure). Defining the boundary conditions of these components is of paramount 
importance. Indeed, external restraints (i) affect dynamic properties and, thus, the action experienced during an earthquake, 
and (ii) influence the capacity to detach the component before failure from the bearing structure (e.g., an infill wall connected 
to the main structural frame, or equipment connected to secondary structural members such as floors). The authors, there-
fore, conducted environmental vibration tests of an infill wall and refined a finite element model to simulate typical damage 
scenarios to be implemented on the wall. Selected damage scenarios were then artificially realized on the existing infill 
and further ambient vibration tests were performed to measure the accelerations for each of them. Finally, the authors used 
these accelerations to detect the damage by means of established OMA, as well as innovative machine learning techniques. 
The results showed that convolutional variational autoencoders (CVAE), coupled with a one-class support vector machine 
(OC-SVM), identified the anomaly even when the OMA exhibited limited effectiveness. Moreover, the machine learning 
procedure minimizes human interaction during the damage detection process.
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1 Introduction

Information provided by structural health monitoring (SHM) 
systems in building management systems (BMS) can reduce 
losses due to natural, accidental, and man-made disasters 
on buildings and increase the social resilience because they 
improve the decision support system (DSS) that allows suit-
able decisions to be made regarding the maintenance of the 
building, as well as rapid reaction to dangerous situations 

[1]. Indeed, following a disaster, rapid and reliable assess-
ment of damage is necessary for the management and coor-
dination of interventions to secure and/or evacuate build-
ings of potentially injured people. Permanent monitoring 
of structural response and damage-related parameters, 
integrated with a decision-making and alerting system, can 
be highly useful in such circumstances. The SHM system 
allows the near-real-time identification of the most badly 
damaged structures and the definition of a hierarchy to be 
followed in the management of emergency interventions. 
Moreover, in the case of earthquakes, for instance, dam-
age can likely accumulate because of the effects of multiple 
events and/or because the building is unrepaired between 
sequential events [2]. Therefore, the precise type of failure 
is extremely hard to recognize, since damage scenarios can 
easily change over time due to seismic swarm and cumula-
tive effects of damage, as may have happened, for example, 
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at several sites in central Italy during the 2016–2017 seismic 
sequence [3].

In situ observations after seismic events have shown 
that non-structural component failures are a source of 
many earthquake-related losses [4], and can put human 
lives at risk. For instance, infill walls and masonry par-
titions, commonly used as elements to enclose or sepa-
rate internal spaces in reinforced concrete (RC) framed 
buildings, are typically designed to guarantee sound and 
thermal insulation. From a structural point of view, they 
are considered non-structural components due to their low 
bearing capacity, even if they are able to interact with the 
structural frame, influencing the dynamic behavior and 
seismic response of a building [5, 6]. Nevertheless, the 
assessment of their vulnerability, especially out-of-plane 
(OOP), is currently an important topic in the field of seis-
mic engineering because their failure can cause serious 

economic damage (e.g., limiting immediate occupancy 
after the earthquake event) and can aggravate the risk to 
human life due to falling debris. Moreover, it has been 
proven that OOP collapse depends on the type of wall and 
the efficiency of its connection to the RC frame [7].

Given all this, monitoring seems to be a highly effec-
tive tool for controlling the state of existing buildings, 
considering that people’s safety must be protected, on 
the one hand, though on the other the costs of interven-
tion are not compatible with widespread and generalized 
immediate intervention. Moreover, it is clear that in new 
constructions monitoring systems able to guarantee effec-
tive management of the built environment in the future are 
extremely important.

Recent literature has highlighted that dynamic in situ tests 
based mainly on operational modal analysis (OMA) tech-
niques are excellent tools with which to derive the modal 
parameters under service conditions [8–10] and calibrate 
reliable numerical models while taking into account the 
actual boundary conditions [11–13]. Since damage produces 
variations in the mechanical and physical properties of the 
structure, which can change its natural frequencies and mode 
shapes, analyses of the dynamic properties of the structure 
can be used for damage detection. On the other hand, artifi-
cial intelligence (AI) methodology based on semi-supervised 
methods with a data-driven approach has been shown to be 
reliable for detecting damage to structural members [14].

Since the aforementioned concepts could also be applied 
to non-structural components, this paper shows the outcomes 
of output-only vibration experiments carried out on an infill 
partition, as part of the PON research project CADS—
“Creating a Safe Home Environment”.

Fig. 1  Building hosting the masonry partition

Fig. 2  Wall cross section (a)

(b)
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Damage scenarios were studied with experimental data 
recorded on the actual damaged wall and then simulated 
through a numerical model. The possibility of creating 
damage scenarios does not come about often in real struc-
tures due to the costs, which are not negligible. The authors 
exploited the opportunity provided by restoration work that 
was being done in the building, and obtained permission 
from the owner to damage the wall. The model was pre-
liminarily updated with data taken from the healthy com-
ponent to evaluate its ability to introduce various damage 
conditions.

It should be noted that using a set of accelerometers 
directly installed on the infill is not a standard practice to 
assess the health state of a partition wall. The proposed 
methodology is designed to use the damage of partitions 
to evaluate the consequences of seismic events that do not 
cause significant damage to structures but instead increase 
a building’s vulnerability and introduce risks to the people’s 
safety through damage to non-structural components (infill 

walls or partitions), which in many post-earthquake data 
collections are related to the highest percentage of losses. 
Furthermore, the relationship of these components with the 
structure can reduce seismic capacity in aftershocks, and in 
damage detection it may, therefore, be more useful to have a 
warning message in a domotic integrated system, rather than 
waiting for the outcome of an in situ inspection. Finally, the 
damage to partitions and infill walls can also give a measure 
of the drifts that have occurred in the structure. The aim of 
this paper is to show that for real applications, if an innova-
tive algorithm is used instead of traditional techniques, it is 
possible to use a single sensor on the individual panel when 
the objective of the monitoring system is limited to rapid 
damage identification and not location. Clearly, an optimiza-
tion of the monitoring system on the building requires the 
choice of the most critical and/or significance elements to 
be monitored; that, however, falls outside the scope of this 
paper.

2  Research significance

The rapid assessment of the health status of “non-struc-
tural components”, i.e., elements that do not contribute to 
the bearing capacity of the structure but are characterized 

Fig. 3  Layout of the sensors placement

Fig. 4  Pictures of the in situ 
dynamic test: a setup S1; b 
setup S2

Table 1  Identified frequencies and damping factors

Mode FDD SSI Comparison

fexp
[Hz]

fexp
[Hz]

ξ
[%]

ε
[%]

MAC [-]

1 19.04 19.12 2.09 0.4 1.00
2 30.86 30.79 0.84 − 0.2 0.99
3 41.50 41.55 0.89 0.1 0.91
4 52.44 52.58 0.64 0.3 0.96



 Journal of Civil Structural Health Monitoring

123

instead by their own structural behavior, is a key issue in 
improving the resilience of buildings after a catastrophic 
event. The issue is particularly significant when the main 
structure maintains its bearing capacity but loses its opera-
tionality and functionality due to severe damage to parti-
tions, plants (e.g., firefighting or air conditioning systems), 
windows and so on. Furthermore, it is well known that most 
of a building’s cost is related to its non-structural elements. 
Therefore, the prioritization of their repair allows one to 
optimize the costs and improve the resilience of the build-
ing’s functionality, while also protecting the safety of the 
occupants, who may be threatened by the failure of these 
elements.

Given all this, the focus of this paper is the design of a 
continuous dynamic monitoring system for non-structural 
elements that is able to detect damage through a data-driven 

approach. Without losing generality, the procedure is applied 
to the case study of an internal partition.

The study has been developed by comparing the results 
of damage detection procedures based on the interpretation 
of acceleration, by means of: (i) established techniques 
such as operational modal analyses (OMA); and (ii) inno-
vative machine learning techniques such as artificial neural 
networks (ANN). The techniques are applied to the accel-
eration recorded on undamaged and damaged elements.

Finally, also worthy of note is the comparison between 
the performance of convolutional and fully connected 
neural networks used in the semi-supervised variational 
autoencoders (VAEs).

Mode 1 Mode 2 Mode 3 Mode 4

Fig. 5  Identified modal shapes

Fig. 6  Identification of the first 
natural frequency: a singular 
values of spectral densities; b 
AutoMAC for the first three 
identified peaks
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3  Dynamic identification and model 
updating

The masonry internal partition wall selected for the in situ 
dynamic tests is located on the first floor of an RC-framed 
building in a seismic area of the south of Italy (Fig. 1). 
The wall is b = 500 cm × h = 350 cm, with a total thickness 
ttot = 37 cm, obtained by coupling two hollow clay brick 
independent walls with t = 10 cm, with an internal gap of 

14 cm, and a 1.5 cm thick plaster layer on both the external 
sides (see Fig. 2). The wall is oriented in the transverse 
direction of the building, as shown in the floor plan (red 
wall in Fig. 2a). In addition, the masonry partition is con-
nected by means of a layer of mortar to the floor, ceiling, 
and lateral reinforced concrete columns.

Fig. 7  Frequencies (in Hz) pro-
vided by numerical model and 
experimental identification, and 
MAC values before the model 
updating
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3.1  Ambient vibration test

The first ambient vibration test was carried out to obtain 
the natural frequencies and the mode shapes of the masonry 
partition wall under operating conditions. As stated above, 
the partition is constituted by two leaves that are not con-
nected, and thus independent. Therefore, the investigations 
were performed exclusively on one leaf. The excitation was 
environmental ambient noise; though not measured, it was 
assumed to be broadband random. The best sensor location 
was planned according to the results of a modal analysis car-
ried out on a preliminary FE model, as described in the fol-
lowing section. A regular and dense measurement grid of 21 
points was defined to obtain accurate mode shapes through 
out-of-plane accelerometers, numbered as shown in Fig. 3.

The available eleven accelerometers were enough to cover 
the entire extension of the member with two setups. Figure 3 
shows one red dot representing the accelerometer used as 
reference to merge the data obtained by the two acquisi-
tions and ten blue/green dots representing the location of 
the accelerometers for the setups S1/S2, respectively. The 
accelerometers were placed on the wall through mechanical 
connection (Fig. 4).

The equipment was composed of uniaxial Integrated Cir-
cuit Piezoelectric (ICP) accelerometers with a bandwidth 
ranging from 0.04 to 400 Hz and a sensitivity of 10 V/g. 
The noise was less than  10−6 g. These accelerometers were 
connected via cables to a twelve-channel data acquisition 
system with a 24-bit ADC, provided with anti-alias filters. 
The parameters set for the dynamic tests were a sampling 
frequency of 200 Hz and 3600 s time duration for each test. 
These assumptions assure that frequencies from 1 to 80 Hz 
would be properly measured.

3.2  Data processing for the dynamic identification

The data processing to extract the modal properties was car-
ried out with the software Artemis Modal Pro [15], work-
ing both in frequency and time domains. In the frequency 
domain, the power spectral density matrices were obtained 
using the frequency domain decomposition (FDD) tech-
nique [16], which decomposes the spectral density matrix 
of the system response into a set of single degree of free-
dom (SDOF) systems using the singular value decomposi-
tion (SVD). The singular values estimate the spectral density 
of the SDOF systems, and the singular vectors estimate the 
mode shapes. In the time domain, the SSI-UPC merged test 
setups algorithm, available in the software, and based on the 
data-driven stochastic subspace identification (SSI) method 
[17], was used. In this procedure, the data are merged and 
normalized prior to the identification step. Table 1 lists fre-
quencies and damping factors of the four modes identified 
through these methods (FDD and SSI). The methods were 
in excellent agreement, since they were characterized by a 
frequency difference of ε = fexp,FDD / fexp,SSI lower than 1% 
and modal assurance criteria (MAC) values greater than 0.9. 
Figure 5 shows the modal displacements for the identified 
mode shapes.

It is worth underlining that the identification of the first 
natural frequency from the frequency-domain plot of singu-
lar values of spectral densities vs frequency was not unique, 
in this case. Figure 6a shows the presence of three peaks 
(18.16 Hz; 19.04 Hz; 20.22 Hz), and the analysis of the 
AutoMAC, depicted in Fig. 6b, did not provide information 
useful for defining which of these was right. Therefore, the 
frequency to which the low complexity value was associated 
was selected (19.04 Hz) and considered in the following for 
the model updating.

3.3  Numerical model

A 2D linear elastic model of one leaf of the wall was devel-
oped using the software SAP2000 [18]. Homogeneous and 
orthotropic material was adopted, since the masonry wall is 
constituted of horizontally hollowed clay units, with mass 
per unit volume ρ = 700 kg/m3. The hollow clay brick wall 
was modeled using 10 cm × 10 cm shell elements with the 
thickness 12.5 cm (i.e., the brick and the plaster layer). This 
mesh made it possible also to have joints at the same posi-
tion as the sensors used during the experimental test. The 
elastic modulus E1 = 900 MPa and E2 = 1800 MPa of the 
hollowed clay brick infill in the two directions parallel and 
orthogonal to the holes, respectively, were assumed, accord-
ing to the technical literature for masonry infill, such as case 
study [19]. Moreover, the model of the wall was restrained 
along the perimeter by linear springs that had to be cali-
brated using the experimental results. At this initial stage, 

Table 2  Values of the updated parameters

Updated parameters Initial
value

Updated value

E1 [MPa] 900 1480
E2 [MPa] 1800 2150
Ky1 [kN/m/m] 107 104

Ky2 [kN/m/m] 104

Ky3 [kN/m/m] 106

Ky4 [kN/m/m] 106

Krx1 [kNm/mrad] 102

Krx2 [kNm/mrad] 107 102

Krz3 [kNm/mrad] 104

Krz4 [kNm/mrad] 104
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very high values of stiffness were assigned to the springs to 
reproduce a fully restrained condition along the four sides.

Generally, the frequencies and mode shapes obtained 
from in  situ testing do not coincide with those of the 
numerical model, and therefore model updating was 
required to modify the numerical model by using experi-
mental measurements [20]. A modal analysis was then 
performed with this model to obtain the numerical 
modal properties. The correlation between the dynamic 

experimental behavior and the numerical behavior was 
developed using the frequency difference ε, in percent-
age, along with the MAC, as suggested in [21]. For each 
i-th mode, Fig. 7 lists the values of the experimental and 
numerical frequencies, fi, and  MACi values.

The numerical frequencies are lower than the experi-
mental frequencies for the first two modes and are higher 
for the other modes, with differences ε = (fnum—fexp) / fexp 
up to 13%. The MAC values show good correlation for all 
the modes except the last (with a value of 0.76). Moreover, 

Fig. 8  Frequencies (in Hz) provided by numerical model and experimental identification, and MAC values after the model updating
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the third numerical mode was not detected experimentally. 
Hence, a calibration of the model was necessary to improve 
the correlation with the experimental results. By updating 
the model, the differences between the numerical and experi-
mental modal properties could be minimized; specifically, 
by changing some uncertainty parameters, such as material 
properties and boundary conditions.

3.4  Modal tuning

To update the model, the Young’s modulus was manually 
adjusted in two directions (E1 parallel and E2 orthogonal 
to the holes), while the stiffness of the translational springs 
was adjusted along the vertical y-axis  (Ky), and the rotational 

springs were adjusted around the horizontal in-plane x-axis 
 (Krx) for the two horizontal sides (side 1 at the top and 2 
at the bottom), and the horizontal z-axis  (Krz) for the two 
vertical sides (side 3 on the left hand and side 4 on the right 
hand). Table 2 lists the parameters before and after the tun-
ing: the degree of constraint of the horizontal sides (1, 2) is 
lower than the vertical sides (3, 4). The updated parameters 
were obtained minimizing the differences between fi,exp and 
fi,num, which are the experimental and numerical values of 
the i-th frequency, and maximizing the MAC via the follow-
ing convergence criteria:

and

where  MACi is the scalar indicator relevant to the i-th mode 
and N is the number of vibration modes on which the updat-
ing is based (in this case, N = 4 since only four modes were 
experimentally detected). As suggested in [22], δf = 5% and 
δs = 25% were assumed admissible values.

Figure 8 shows that frequencies’ differences and the MAC 
values for each mode together with the weighted percent-
age errors according to Eqs. (1) and (2) highlighting a good 
correlation.
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Fig. 9  Real and simulated damage scenarios

Fig. 10  Sensors layout for damage scenarios
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4  Damage scenarios

Paper [23] shows typical in-plane damage to an infill 
masonry panel (with either diagonal or sliding cracking) 
after an earthquake, including detachment of the panel from 
the surrounding RC frame, also because this lateral connec-
tion is a weakness of the handmade construction. This type 
of defect/damage is particularly interesting because it can 
reduce the capacity of the component for out-of-plane seis-
mic actions (the horizontal arch mechanism cannot occur), 
causing failure and harm to people even in earthquakes of 
low magnitude, which do not damage the structures.

To check the ability of the OMA technique to detect dam-
age via an engineering approach based on the updating of a 
numerical model, and comparing this with the application of 
AI algorithms to dynamic measures, three damage scenarios 
were implemented on the partition wall with increasing lev-
els of severity. To assess the reliability of post processing of 
monitoring measures with respect to simulation of numerical 
damage, the importance of actually executing the damage 
is evident.

Damage scenario 1 involves the detachment of the plaster 
layer and partial demolition of the mortar along the upper 
half of one vertical side, because the damage in this kind of 
partition often starts in the corner zone of the wall that is 
typically more stressed in the interaction with the surround-
ing bearing structure, and built by hand, and, thus, vulner-
able. Scenario 2 represents a more serious level of the previ-
ous condition, because the same detachment of the plaster 
layer and mortar demolition has extended along the entire 

vertical side. Finally, scenario 3 involves the most significant 
damage, because the infill leaf has been completely detached 
from the column, removing the mortar vertical joint.

The three damage scenarios were implemented (see 
Fig. 9), and further dynamic tests were performed to inves-
tigate whether the operation modal analysis could detect 
the damage. One acquisition of 3600 s with a sampling 
frequency of 200 Hz was carried out for each damage sce-
nario. Figure 10 shows the sensors layout used for the dam-
age scenarios.

Moreover, the model updated with data taken from 
the healthy condition was used to define and analyse the 
damage scenarios that were actually implemented on the 
wall. Damage scenario 1 was introduced to the numeri-
cal model, reducing the thickness of the shell elements 
of the last column of the mesh grid to 10 cm (to simulate 
the removal of the plaster layer), while the stiffness of the 
springs inserted along the half of the right vertical was 
halved to simulate the partial removal of the layer of mor-
tar between the partition and the RC column. The same 
changes—though along the entire vertical side—were 
introduced to the numerical model to simulate damage sce-
nario 2. Damage scenario 3 was numerically simulated by 
assigning a very low value for the stiffness of the springs 
along the entire vertical side (a stiffness four orders of 
magnitude lower than for no damage). This value was set 
to take into account both the disconnection and friction 
phenomena. Indeed, the friction between the panel and 
the column could give a stiff connection at the interface 
under micro-vibration conditions. Figure 9 also shows the 
drawing of the FE model for the three cases, with an indi-
cation of the length of removed plaster represented by a 

Fig. 11  Magnification of singular values of spectral densities: a damage scenario 1; b damage scenario 2; c damage scenario 3
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Fig. 12  Dynamic effect of damage scenarios (experimental and numerical results)
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thin black line and the entire side that had been detached 
represented by a thick black line. Note that the models 
with damage were made to obtain feedback from a numeri-
cal modal analysis. The proposed methodology requires 
neither model updating nor damage simulation.

5  Damage detection by experimental OMA 
and numerical model

It is worth noting that numerical models were used to com-
plete the framework of the possible approaches in the analy-
sis of the data from monitoring systems, but the aim of this 
work is to assess damage detection procedures based only 
on experimental data. Therefore, for this aim, experimental 
data that varied due to damage were post-processed with tra-
ditional techniques to obtain an anomaly index based on the 
dynamic properties of the element (i.e., variation of frequen-
cies and mode shapes). The raw data were then elaborated by 
AI techniques to obtain alternative anomaly indexes.

First, it is worth underlining that identification of the 
frequency associated with the first mode was difficult for 
the cases of damage scenario as well. Figure 11 shows very 
close peaks in the plots of the singular values of spectral 
densities. As for the undamaged scenario, in this case too, 
the AutoMAC analysis confirms that they are the same 
modes. Accordingly, for the comparison all the detected 
values were considered.

In Fig.  12, the experimental and numerical results 
obtained for the damage scenarios are compared with the 
results of the undamaged scenario. The variation of fre-
quency for increasing damage from scenario 1 to scenario 
3 is lower than 7% for all modes identified with the experi-
mental data. The MAC values are close to one for all the 

modal shapes identified for the first two damage scenarios 
and lower (0.88, 0.66 and 0.16) for the third damage sce-
nario. Low values of the MAC that are much lower than 
one indicate a change in the modal shapes. Therefore, the 
experimental results show that the OMA technique could not 
detect the damage of scenarios 1 and 2, while damage detec-
tion for scenario 3 was enabled by considering the change 
of frequency (about 5% in average for modes 1 and 2) and, 
overall, the change of modal shape (MAC lower than 0.9 
and 0.7 for modes 1 and 2, respectively). On the other hand, 
damage simulation by the numerical model provides results 
that are trivial when compared to those obtained by experi-
mental methods: (i) the frequency always decreases when 
the damage increases for all the modes considered; and (ii) 
scenario 3 is clearly individuated with variations of 30% in 
the second and third modes.

In contrast to the numerical simulations, the trend of the 
experimental frequency obtained for the damaged walls 
underlines that the OMA experimental procedure can pro-
vide an anomaly detection but may fail for an identification 
of the damage type and localization. Note that this result is 
obtained by comparison with a numerical model calibrated 
on the healthy structure.

5.1  Damage detection by AI algorithms

The limited ability of OMA demonstrated by the previous 
analyses leads us to consider the ability of a data-driven 
approach that can arrive at the same anomaly detection, 
avoiding both the over-complicated analysis of the experi-
mental results and the developing of numerical model. For 
the application of the AI to automatically detect damage in 
the infills, the methodology proposed by the authors of [14] 
is applied, which aims at identifying the presence of damage 
regardless of its severity, with outcomes that can be inter-
preted in terms of a binary classification response. Basically, 
the methodology depends on performing a training stage that 
is based only on normal data, thus avoiding analysis of struc-
ture deterioration through numerical or analytical modeling.

Fig. 13  Graphical representation of the signal reconstructed by VAE 
with the feed forward neural network

Table 3  Data dimensionality for each partition

* Dimensions are reported as (number of samples, number of input 
channels, number of features)

Partition Dimensionality*

Training set (2925, 11, 100)
Validation set (325, 11, 100)
Test set (362, 11, 100)
Damaged set—case 1 (3612, 11, 100)
Damaged set—case 2 (3612, 11, 100)
Damaged set—case 3 (362, 11, 100)
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6  Brief outline of the algorithm

Autoencoders correspond to neural networks that are 
logically divided into two components: an encoder and a 
decoder. The encoder projects the input into internal repre-
sentation, while the decoder reconstructs the input from the 
internal representation. The internal representations form the 
latent encoding space. In particular, variational autoencod-
ers (VAEs) are generative models where the latent encoding 
space is defined by a mixture of distributions instead of a 
fixed functional mapping. In the proposed approach, VAE is 
trained only on undamaged data, so that the network learns 
the natural structure behavior (undamaged conditions). The 
damage-sensitive features are the errors made by the network 
in the signal reconstruction. In this case, authors used the 
mean squared error (MSE), which measures the reconstruc-
tion error between the input acceleration signals and their 
reconstruction and the original-to-reconstructed-signal ratio 
(ORSR), which represents the ratio in decibels between the 
magnitudes of the original signal and its reconstruction [14]. 
Data are first fed into the VAE. Then, using original and 
reconstructed signals, after a feature extraction stage, data 
are fed into a one-class support vector machine (OC-SVM) 
for classification as being either damaged or undamaged. 
For this application, acceleration generated by the updated 
finite element (FE) numerical model was used, to test the 
feasibility of the methodology that would be tested on the 
damage scenarios.

7  Data pre‑processing and arrangement

Data were downsampled to emphasize the most important 
informative content of the signals, thus reducing the data 
dimensionality. The downsampling was set at 100 Hz, based 
on the expected dynamical properties of the instrumented 

element. Data were then divided into frames of one sec-
ond each. A random 10% of the undamaged samples were 
extracted to evaluate the performance of the model when 
the structure was in an undamaged state. Finally, a random 
10% of the resulting training set was extracted to validate 
the generalization capability of the VAE during the training 
stage. Finally, for each sensor s, data were normalized using 
a Z-score as follows:

where Xs represents data related to the sensor s , �s represents 
their mean, and �s represents their standard deviation com-
puted on the training set.

Following [14], a first attempt to model a VAE to pro-
cess the experimental cases in this study was made using 
a multi-layer perceptron VAE (MLP-VAE). Throughout 

X
s
(t) =

X
s
− �

s

�
s

,

Fig. 14  Graphical representation of the encoder and decoder network of the CVAE

Fig. 15  Graphical representation of the signal reconstructed by VAE 
with the convolutional neural network
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the model selection process, exploration of the MLP-VAE 
architecture encompassed a broad range of configurations, 
exhaustively investigated through grid search, while con-
straining the decoder to be symmetric to the encoder. In 
particular, architectures with 1–3 hidden layers were evalu-
ated, with each layer containing 2–256 neurons in powers 
of two. The dimensions of the latent space were explored 
among 32, 64, and 128 neurons. Every configuration was 
evaluated with respect to the Sigmoid, Tanh, and ReLU acti-
vation functions.

However, after the model selection stage, the MLP-VAE 
was unable to correctly distinguish between damaged and 
undamaged cases. Figure 13 shows the graphical repre-
sentation of a random signal sampled from a sensor (blue 
line) and its reconstruction (orange line) obtained through 
the MLP-VAE. The x-axis has been labeled with ‘time [s]’ 
to indicate that it represents the time axis in seconds. In 
particular, the plots show 1 s of signal. Also, the signal is 
normalized, and is, thus, dimensionless. For this reason, the 
y-axis indicates the data from which the signal was randomly 
sampled for the plot (in this case,  X5 since it belongs to sen-
sor 5). The best model barely reconstructed the input train-
ing signals, since it tended to approximate input signals to 
values close to the average trend, i.e., high error of signals 
reconstruction. For this reason, the choice of the model was 
oriented toward Convolutional VAE (CVAE) to leverage 
their capability in successfully capturing spatial and tempo-
ral dependencies in data, thus allowing us to obtain a reliable 
signal reconstruction and internal modeling of undamaged 

prior distribution. The acquisitions of all the sensors were 
arranged through the channel dimension, thus resulting in 
samples that had 11 input channels and 100 features. A sum-
mary of the dataset is reported in Table 3.

8  Training configuration and CVAE 
architecture

An RMSProp optimizer was used in the training stage, with 
a starting learning rate of 0.0001, a weight decay factor of 
0.0003, and momentum factor of 0.7. A learning rate sched-
uler was adopted to reduce the learning rate by a factor of 
30% when it plateaued for 20 consecutive epochs. Batch 
size was fixed to 256, and early stopping was used as con-
vergence criteria, with 100 epochs of patience. A maximum 
number of epochs was fixed at 15,000. Training data were 
augmented by adding random Gaussian noise at each epoch 
and flipping data through normalized amplitude and time.

Since the CVAE processes one-dimensional input sig-
nals, all the convolutional layers were implemented as one-
dimensional convolution.

The encoder network was based on the following convo-
lutional block:

Convolutional layer → Batch normalization → Tanh → 
Max pooling layer.

This block was repeated three times. In each block, kernel 
sizes of the convolutional layer and the max pooling were, 
respectively, 5 and 2. The number of filters was doubled 

Fig. 16  Graphical representation of a random input signal (blue) and its reconstruction obtained through CVAE (orange). Vertical lines separate 
signal segments attributed to each sensor
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(a) (b)

(c) (d)

Fig. 17  MSE and ORSR distribution—whole dataset (a,b) and without outliers (c,d)
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for each building block, starting from 32 filters. Moreover, 
same-padding configuration was used for each convolutional 
layer to ensure the same dimensionality of the data after the 
convolutional operation. The output of the last convolutional 
block, which had a shape of (128, 12), was flattened to a 
vector of length 1536, and given as input to the resampling 
process, which was performed by mapping data in two dense 
layers representing, respectively, the mean and the variance 
of the latent isotropic unit, with a Gaussian distribution of 
70 dimensions.

In the decoder network, latent representations were first 
given as input to a dense layer of 1536 neurons and Tanh as 
activation function. This was followed by a dropout layer 
with a 20% of drop probability. Next, data were reshaped to 
recover the dimensionality of the output of the last encoding 
block, i.e., (128, 12). The following convolutional block was 
used in the decoder network:

Transposed convolution → Convolutional layer → Batch 
normalization → Tanh.

This block was repeated three times to mirror the encoder 
network, except for the last block where the batch normaliza-
tion layer and Tanh activation function were omitted. Same-
padding configuration was used for each convolutional layer 
for the decoder network as well. Transposed convolutions 
were used to mirror the functionality that max pooling lay-
ers have in the encoder network, i.e., expanding the input 
data. Thus, the number of input and output filters are equal, 
the kernel size is equal to 2, and convolution is made using 
a stride of 2. The kernel size of the convolutional layers is 
instead fixed at 5, as in the encoder network, and the number 
of filters is halved after each block. In the last block, the 

number of output filters of the convolutional layer is equal 
to the number of sensors. A graphical representation of the 
CVAE architecture is shown in Fig. 14.

After the extraction of damage-sensitive features, differ-
ently from [14], both for MSE and ORSR, data within 2 
standard deviations were selected from the mean to remove 
outliers that might compromise the classification made with 
the OC-SVM (note that, as in [14], the OC-SVM is trained 
with the goal of including all the undamaged data within 
the decision hypersphere). Leveraging Chebyshev’s theorem 
[24], this assumption guarantees at least 75% of the data 
points for each of the distributions, whatever the data distri-
bution, up to 95% for a standard distribution. Finally, data 
were normalized using Min–Max normalization before the 
training stage of the OC-SVM, which was fitted considering 
radial basis function as kernel function and v = 0.001 [14].

9  Damage detection on simulated data

The first application of this CVAE was carried out on the 
data gathered through the FE model (i.e., undamaged and 
damaged partitions).

Figure 15 shows the graphical representation of the same 
random signal sampled from sensor  X5 shown in Fig. 13 
(blue line) and its reconstruction (orange line) obtained 
through the CVAE. By comparing the representations, it is 
easy for the reader to see that when using the CVAE the 
signal reconstruction is significantly better than when using 
the MLP-VAE.

Figure 16 shows the reconstruction of a random sample 
for each partition (training and validation are referred to the 
undamaged partition). The normalized input signal (in blue) 
and its reconstruction obtained through CVAE (in orange) 
are reported. For each case, signals related to each sensor 
(A1–A11) were concatenated to allow the simultaneous 
graphical representation of all the sensors data belonging to 
a random input signal. The vertical lines guide the reader in 
identifying the signal segments attributed to each sensor. It 
is worth noting that, for instance, the reconstruction of the 
signal associated with sensor A5 in Test Damage 2 exhibits 
significant inaccuracies, suggesting a potential damage. Fig-
ure 17a,b show the damage-sensitive feature extraction MSE 
and ORSR. Each distribution is represented through boxplot 
(top) and histogram (bottom). The box represents the inter-
quartile range, and the orange line represents the median 
value. The two lines emanating from the box are used to 
detect potential outliers (represented by circles) within the 
data distribution.

The damage-sensitive feature extraction MSE and ORSR 
are characterized by several outliers. This leads the OC-
SVM to learn a decision hypersphere that covers portion 

Table 4  PoD values, in percentage, for undamaged and damage sce-
narios—simulated data (standard deviation in brackets)

Sensor ID Undamaged Scenario1 Scenario 2 Scenario 
3

A1 0.00 1.33 71.67 99.67
A2 13.33 4.00 3.33 4.00
A3 6.67 4.33 99.33 98.33
A4 6.67 3.33 99.33 99.33
A5 3.33 6.00 98.67 100.00
A6 13.33 5.67 98.33 67.67
A7 6.67 2.33 95.67 99.67
A8 3.33 5.33 7.00 7.67
A9 10.00 1.67 96.33 40.00
A10 3.33 1.67 79.33 98.00
A11 13.33 4.67 10.00 4.67
All sensors
separate

7.27
(4.45)

3.67
(1.63)

69.00
(39.08)

65.36
(40.77)

All sensors
together

3.33 1.00 99.67 100.00
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of the hyperspace where undamaged data are not actually 
located. Extracting only data within 2 standard deviations 
from the mean value (Chebyshev’s inequality theorem), 3% 
of data were excluded and considered as outliers. Figure 17c, 
d show the features distributions after the outlier removal.

The method performance evaluation was obtained by the 
probability of damage (PoD) computed as.

PoD = c / n,
where c is the number of samples classified as dam-

aged by the OC-SVM and n is the total number of samples. 
Table 4 shows that the PoD values reflect the a priori known 
damage conditions of the structure: damage probability is 
low for the undamaged case, while it is high for the remain-
ing cases (i.e., damaged cases). Sensors that could better 
identify damage were trained with a strong computational 

Fig. 18  Damage detection: graphical representation of the OC-SVM for the undamaged partition and three damage scenarios (numerical data)
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effort. The last row shows that when the network is trained 
by using all the sensors together, the performance of the 
ANN increases, with scenarios 2 and 3 identified perfectly. 
In the authors’ opinion this result is similar to that obtained 
by using OMA: with the operational analyses the frequency 
alone is not a damage feature, while modal shapes are more 
significant. Here, using an ANN, the data processed together 
can exploit information about the different vibration shapes 
of the wall in the various scenarios.

By way of example, Fig. 18 shows the graphical repre-
sentation of the OC-SVM for the undamaged partition and 
three damage scenarios, based on the data recorded by all 
sensors. Input samples are represented through red and blue 
dots. The red area represents the hypersphere learned by 
the OC-SVM. An input sample falling into the red area is 
classified as undamaged (red) by the OC-SVM. On the other 
hand, an input sample falling outside the red area is classi-
fied as damaged (blue) by the OC-SVM. Data classification 
is represented for the undamaged case and three damage 
scenarios. For damage scenario 3 the scale of representation 
greatly changes, to allow the representation of all the data.

10  Damage detection on experimental data

In this section, the AI algorithm is applied to the experi-
mental data. Table 5 shows the PoD values obtained for the 
undamaged scenario and the three damaged scenarios. The 
machine learning algorithm identified three damage scenar-
ios realized with increasing intensity on the wall, with the 
index PoD equal to 23%, 51% and 94% on a scale ranging 
from 0 to 100, where 100 represents the maximum score 
of anomaly detection. Even if there is a great improvement 

when the ANN is trained with the data recorded by all the 
sensors, it is worth noting that for the approach used here, 
which is based on acceleration analysis, the sensors most 
sensitive to damage are those closest to the damaged area 
(i.e., sensors 4, 5, and 9), and in particular sensor 9 for dam-
age scenario 1 and sensor 5 for damage scenarios 2 and 3, 
which only differ according to intensity. This result was not 
obtained when the CVAE was carried out on the data gath-
ered through the FE model.

It is important to note that the proposed AI approach was 
first applied to simulated data to assess its plausibility and 
effectiveness (see Table 4 and Fig. 17), and then validated 
on real data (see Table 5 and Fig. 18). The tests on real 
data aim to verify the validity of the proposed AI approach 
in real-life scenarios. Including noisy data in the training 
set allows us to enhance the generalization capabilities of 
the approach, a practice commonly used in various machine 
learning methods.

Figure 19 shows the graphical representation of the OC-
SVM for the three damage scenarios, based on the data 
recorded by all sensors. Although in the authors’ opinion the 
quality of the result would improve greatly if the quantity of 
experimental data available increased, the figure shows that 
the network can identify even slight damage in the scenarios.

To provide some preliminary information on the possibil-
ity of reducing the number of sensors necessary to detect the 
three damage scenarios, Table 6 lists:

- the values of frequency variation, ε =  (fdam—fundamn) / 
 fundamn, which can be obtained with OMA applied to accel-
eration recorded by the central sensor only;

- the differences between modal forms, μ = (1—MAC), 
which can be obtained with OMA using data recorded from 
five sensors (one in a central position and four on the edges 
of the wall);

- the values of ρ = PoD × 100, which can be obtained with 
AI for each of the five sensors.

As mentioned above, it is confirmed that OMA succeeds 
in providing damage indication only for scenario 3, and such 
that it is necessary to also consider the parameter on MAC 
(μ = 12%), because |ε|= 7% is trivial for the purpose of dam-
age detection. Therefore, the damage detection is possible 
only if five sensors are used, at least.

In contrast, using AI algorithms, the damage can be iden-
tified with only one sensor. For instance, a single sensor in 
the center (i.e., A1) would enable damage identification for 
all three scenarios. The best outcome is obtained with the 
sensor that is closest to the location of damage, namely sen-
sor 5. Sensor 5 consistently exhibits the highest PoD value 
in both the numerical and experimental scenarios, indicating 
that results belonging to single sensors could provide valu-
able insights about the damage location. To reduce the costs 
of real application, using the configuration with four sensors 
in the centers of each of the four sides of the partition (A2, 

Table 5  PoDavg values, in percentage, for undamaged and damage 
scenarios—experimental data (standard deviation in brackets)

Sensor ID Undamaged Scenario1 Scenario 2 Scenario 3

A1 5.52 22.07 18.63 15.29
A2 5.80 16.72 11.02 14.18
A3 8.29 20.74 15.37 30.68
A4 6.63 12.98 12.46 17.42
A5 4.97 22.81 55.12 99.91
A6 9.12 26.00 22.48 32.07
A7 5.25 13.07 13.76 23.82
A8 8.29 18.69 26.38 23.35
A9 7.73 26.30 21.32 37.53
A10 7.46 20.82 19.49 22.61
A11 7.46 23.64 28.38 23.35
All sensors
separate

6.96
(1.34)

20.35
(4.38)

22.22
(11.67)

30.92
(22.85)

All sensors
together

7.8 23.48 51.27 94.07
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A5, A8, A11) is proven to enable damage localization. An 
individual moving sensor could also be used for damage 
localization, but only if this innovative algorithm is used, 
because OMA would be not effective with one sensor at a 
time.

11  Conclusions

The use of artificial neural networks (ANN) as a machine 
learning tool is shown to be highly promising for monitor-
ing the condition of non-structural elements. Indeed, the 
proposed artificial intelligence (AI) methodology is based 
on a machine learning approach, which belongs to the class 
of ‘data-driven’ methods, with ANN that are trained exclu-
sively on actual measures recorded by sensors. Hence, the 

Fig. 19  Damage detection: graphical representation of the OC-SVM for the undamaged partition and three damage scenarios (experimental data)
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approach is model-free; i.e., it can be applied without creat-
ing a model of the structure, since it is based on the data 
recorded by sensors.

This study, which has aimed to identify which features are 
important to consider for use in a structural context, may be 
of use when searching for the correct design of a network 
of sensors to serve a neural network pilot. The focus on the 
VAE framework revealed limitations of MLP architectures 
for the objective of this work, leading to the implementation 
of a CNN-based VAE (CVAE).

The application of the methodology to data recorded from 
a real infill wall allowed us to demonstrate the effectiveness 
of a monitoring system that issued a warning about infill 
damage. Indeed, the machine learning algorithm identified 
three damage scenarios that had been realized with increas-
ing intensity on the wall.

The algorithm recognized some signal alteration due to 
damage located at the corner of the wall, or damage that 
was spread along the interface between the wall and the 
building’s column/structural elements. It did so better than 
traditional techniques, and was also able to perform with 
a reduced set of accelerometers. The results obtained with 
the AI algorithm are encouraging because the algorithm 
was capable of detecting damage in all three damage sce-
narios, whereas the traditional OMA succeeded in only 
one case. Moreover, the algorithm was demonstrated to 
be able to identify anomalies even when a single sensor 
was used.

Exogenous environmental factors—such as tempera-
ture, wind, humidity, etc.—which may alter measurements 
and generate false positives, were not considered in these 
experiments, because their effects on internal ambient are 
lower than in the case of external structures. Neverthe-
less, they may also be considered in the algorithm train-
ing of the proposed method, so as to improve its forecast 
robustness.

Future developments will include: (i) optimizing the 
number and placement of sensors by introducing a criterion 
into the machine learning algorithm to identify an automated 
improvement in sensor layout; and (ii) using this methodol-
ogy for dynamic identification tests with known input (i.e., 
an instrumented hammer).
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Table 6  Comparisons between techniques and sensor layout

ε = (fdam—fundamn) / fundamn

ρ = PoD × 100
μ  = (1 – MAC)

Technique Parameter Sensors’ layout Sensor ID Parameter Damage 
scenario 1

Damage 
scenario 2

Damage 
scenario 
3

OMA Frequency One sensor A1 |ε| 2% 2% 7%
Modal shape (MAC) Five sensors A1,A2, A5, A8, A11 μ 0% 1% 12%

AI Five sensors A1 ρ 22% 19% 15%
A2 ρ 17% 11% 14%

Acceleration A5 ρ 23% 55% 100%
A8 ρ 19% 26% 23%
A11 ρ 24% 28% 23%
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