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Abstract
A completely automatic algorithm for accurately detecting delamination on tunnel concrete lining surfaces using laser 3D 
point cloud data is first proposed to facilitate tunnel lining inspection. A mobile mapping system (MMS), which mounts laser 
sensors and a positioning system, is utilized to measure the geometries of the surfaces at high speed. The algorithm consists 
of two steps: extraction of the 3D shapes of anomalies and discrimination of delamination from appendages by a support 
vector machine (SVM). The article focusses on the second step. On tunnel linings, there are many conspicuous appendages 
such as cables, lights, signs, and water guides which mask the features of delamination. In this study, straightness, a novel 
3D feature, is introduced to realize accurate discrimination. An automatic algorithm based on the SVM is developed and 
validated using real tunnel data, showing an accurate delamination map.

Keywords Mobile mapping system · Delamination · Tunnel linings · Laser 3D point cloud data · Support vector machine

1 Introduction

Aging infrastructures are an important world-wide social 
problem [1]. Especially, the peelings of tunnel concrete 
linings are critical because they threaten the safety of road 
users [2, 3]. To prevent severe accidents, road administra-
tors must detect delamination before it advances to peel-
ings. To maintain the enormous amounts of infrastructure 
stocks, automatic and high-speed monitoring techniques are 
indispensable.

In practice, the delamination of concrete structure sur-
faces is detected by a hammering test. However, it is labor 
intensive and subjective. Covering large areas of the tunnel 
lining surfaces by manual inspection is not feasible. Further-
more, it requires skilled inspectors to accurately detect dam-
age. The infrared (IR) camera method detects delamination 
based on differences in surface temperature [4]. The differ-
ence of temperature between day and night are needed for 
the method to work. An automatic sounding system records 
acoustic signals [5]. A laser-sounding system hits a light 
beam to evaluate the dynamic characteristics of delaminated 
concrete surfaces [6]. A non-destructive monitoring method 
has been developed inside concrete structures using neu-
ron sources [7]. These methods require special instruments, 
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inspection time, and cost. Typical frequency ranges of 
ground-penetrating radar (GPR) systems are not amenable 
to thin millimeter-order thickness cracks [8].

The addressed problem of this research is to propose an 
automatic algorithm for detecting delamination on tunnel 
concrete lining surfaces using laser 3D point cloud data, 
aiming to facilitate tunnel lining inspection. A mobile map-
ping system (MMS) is used here. Ranging lasers and a 
GNSS/IMU positioning system are mounted on an ordinary 
MMS (Fig. 1, [9]). The advantage of the MMS is the high-
resolution grid data of the height (altitude) of an infrastruc-
ture surface is obtained at a high speed.

Previous studies on the laser method are introduced here. 
Kim et al. estimated spalling areas on precast concrete sur-
faces using the proposed edge detection algorithm [10]. 
Yoon et al. illustrated utility cables on tunnel concrete lining 
surfaces using laser data in a feasibility study [11]. The two 
research works proposed their own fixed laser scanner sys-
tem and vehicle-equipped type laser scanner, respectively. 
They achieved millimeter-order accuracies for assessing 
each target object. Our group first proposed an automatic 
algorithm for detecting delamination on tunnel concrete 
lining surfaces by adopting the-state-of-the-art signal and 
image-processing algorithms [12, 13]. The areas and maxi-
mum height of the delamination were estimated, realizing 
the quantitative evaluation of damages, and showing their 
shapes on a 3D map. As reported in our previous research, 
when delamination advances to a certain extent, which is 
our target delamination, it causes deformations of at least 
a several-centimeter area and several-millimeter height. 
Delamination was detected as a positive peak of local dis-
placements from laser 3D point cloud data.

The problem of the research is that the environment of 
a real tunnel lining surface is complicated including many 
conspicuous appendages such as cables, lights, and signs 
as shown in Fig. 2. Yamaguchi et al. proposed primitive 
judging criteria based on maximum height and projected 

areas of 3D anomalies [13]. There are at most several 
areas of delamination in a 100 m section. Delamination 
is subtle in natures, resulting in an unacceptable number 
of false detection cases. It is necessary to increase the 
accuracy by reorganizing and adding feature values to 
effectively discriminate artificial objects of appendages 
from delamination.

Another problem is that there were five thresholds for 
distinguishing delamination from appendages. The thresh-
olds were arbitrarily selected, which may not be optimized, 
and not apply to other tunnels. Deep learning algorithms 
are possible answers, although a large amount of training 
data with at least ten thousand to one hundred thousand 
cases is needed to develop a reliable algorithm [14–16]. 
The automatic construction of classification criteria for 
sets of high-dimensional vectors composing of feature val-
ues using a simple machine-learning algorithm is required. 
A support vector machine (SVM) is one of the most typi-
cal machine-learning algorithms suitable for this type of 
problem [17–19]. It automatically estimates the optimized 
division plane in a feature space by maximizing the dis-
tances between the plane and vectors. Only vectors which 
are close to the dividing plane contribute to the construc-
tion of the plane. The vectors are called support vectors.

In response to the discussions above, the two contribu-
tions of this study are listed below.

1. A novel feature, ‘straightness’ of an outline of a 3D 
object is defined based on Hough transform. The fea-
ture and maximum height, area, and occupancy are used 
to eliminate artificial objects of tunnel appendages. 
Straightness is a novel index in the context of pattern 
analysis and image-processing fields.

2. After constructing high-dimensional feature vectors for 
inputs, an SVM is trained and validated using real tunnel 
laser measurement data to realize the automatic detec-
tion of delamination.

Fig. 1  Mobile mapping system (MMS) for obtaining laser 3D point 
cloud data Fig. 2  Appendages on real tunnel linings. a Cables and light. b Sign
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The implementation of an SVM is important for realizing 
the automatic detection of delamination. The effectivity of 
the novel feature is quantitatively discussed in the automatic 
detection by SVM section. The rest of this study is organ-
ized as follows: the proposed algorithm section introduces 
the concept of the algorithm of the previous research and 
proposal of this research; the measurement system and data 
configuration and evaluation metrics sections describe the 
configuration of the utilized system, training and validation 
data; the proposed 3D features section proposes novel 3D 
features for automatic detection; the automatic detection by 
SVM section presents the detection results by the developed 
SVM. Parametric studies were also conducted to optimize 
the SVM and demonstrate the effectiveness of the proposed 
features; the discussions and conclusions sections summa-
rize the findings of the research to conclude the article.

2  Proposed algorithm

The entire concept of the algorithm is summarized in Fig. 3 
by the flow chart. Figure 4 depicts calculation steps 1.1–1.4. 
The concepts of the steps 1.1–1.4 are explained in [10, 11]. 
The profiles of tunnels such as cross sections and incli-
nations are meter-order in sizes in horizontal and height 
directions. Appendages are centimeter-order. Delamina-
tion is centimeter-order in the area and millimeter-order in 
the height. To detect small delamination, the profiles were 
removed from the raw data. The travel (longitudinal) direc-
tion is the running direction; the circumferential (lane width) 
direction is the transverse direction along the circle of a tun-
nel. The height (altitude) direction is the normal direction 
to the horizontal plane (travel–circumferential) plane. In the 
travel and circumferential directions, the profiles were esti-
mated by time-series analysis updated by a Kalman filter 
(step 1.1, [20]).

Hilbert transform was applied to each measurement line 
to draw an envelope (step 1.2, [21, 22]). Anomaly peaks 
were detected by the differences between the data and enve-
lopes. The threshold was set 5 mm [10, 11]. The algorithm 
considers peeling and other types of damages. In this study, 
only positive peaks were extracted to target delamination. 
Reference lines were estimated by detecting the change 
points and extrema. To evaluate areas, the detected sec-
tions were overplotted on a 2D map (step 1.3). Morphology 
transform was applied to accurately detect anomaly areas by 
smoothing boundaries and removing small noise [23, 24]. 
Reference lines were approximated by reference planes to 
extract 3D shapes of anomalies (step 1.4).

Figure 4a shows raw tunnel data. The curved surface 
corresponds to the tunnel ceiling. The profiles, particularly 
the cross sections of the tunnels, are dominant in the tunnel 
laser data. Figure 4b displays a map after subtracting the 

estimated profiles from the raw data. Peaks which are cor-
responding to the anomalies are observed. The peaks of the 
cables continued in the travel direction, whereas the lights 
are represented by local displacements. Even at this step, 
delamination is not evident because of the prominent peaks 
of the appendages. Figure 4c exhibits the circumscribed 
rectangles of all the detected anomalies after the Hilbert 
and morphology transforms. All the features are observed 
including the cables, lights, signs, water guides, and target 
delamination.

Subsequently, 3D features are calculated for the extracted 
anomalies. Delamination is discriminated from the append-
ages by setting thresholds on the feature values. The pro-
posal of this study is related to this step. In addition to the 
maximum height, area, and occupancy, straightness is newly 
introduced to eliminate artificial objects. A classification 
algorithm based on an SVM is developed to automate the 

Step 1.2: Detection of anomalies 

by envelopes and reference lines

Step 1.3: Localization of anomaly 

areas by Morphology transform

Step 1.4: Extraction of 3D shapes

by reference planes

Definition of 3D features: height, 

area, occupancy and 

straightness

Step 1.1: Estimation of tunnel 

profiles by time series analysis 

using Kalman filtering
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Fig. 3  Flowchart. The algorithm is based on Mizutani et  al. (2022), 
Yamaguchi et al. (2022). This research discusses the extraction of 3D 
features and automatic detection of delamination by an SVM
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detection process. The detected delamination is displayed 
on a 2D delamination map and a 3D quarter-view map with 
its 3D shape.

3  Measurement system

The measurement system is shown in Fig. 1. A laser sensor 
radiates light beams at each vehicle position and scanning 
angle. The system uses two laser sensors to accelerate the 
measurements. It needs certain time for laser sensors to scan 
assigned areas. By utilizing the two sensors simultaneously, 
the scanning time can be halved. This point is important for 
maintaining a vehicle speed.

The electric signals are converted to optical signals using 
a laser diode (LD). The distances between the sensors and 
target objects are measured considering the phase delays of 
the transmitted and received sinusoidal waves of the lights. 
Further details are beyond the scope of this study.

The measured distances, referred to as 3D point cloud 
data, are converted to grid height data by referring to the 
GNSS/IMU positioning system. Table 1 summarizes the 
configuration of the laser measurement system. The vari-
ation of the measured distance in the height direction is 
0.4 mm, small enough to measure millimeter-order defor-
mations. The most important measurement parameters are 
the resolution of the grid data and the corresponding speed 
of the vehicle. The research adopts a resolution of 2 cm. 
The MMS scans the surfaces of tunnels at approximately 
10–20 km/h to achieve a resolution of 2 cm. Further increas-
ing the speed, e.g., at 50–60 km/h, the corresponding resolu-
tion is about 5 cm. However, coarse data are not favorable 
for the accurate detection of delamination.

4  Data configuration and evaluation metrics

4.1  Preparation of training data

Table 2 summarizes the manual inspection target tunnels 
and the corresponding laser measurement data used in the 
research. Three tunnels No. 1–No. 3 consisting of five sec-
tions data No. 1–No. 5 were measured and inspected. Sec-
tions No. 1–3 are in the same tunnel. The locations vary 
around the capital area of Tokyo, Japan. Tunnel No. 3 is 
200 km distant from the other tunnels. The construction 
methods and years are also varied to demonstrate the appli-
cability of the algorithm to other tunnel data. Sheet piling 

Fig. 4  Extraction of 3D shapes of anomalies from laser measurement 
data. a Raw tunnel lining data. b After removal of a tunnel profile. c 
Anomaly areas and extracted 3D shapes. Corresponding steps 1.1–1.4 
in Fig. 3 are shown here

Table 1  Accuracy of laser measurement system

Parameter Nominal value

1� variation of the measured distance in the height 
direction at 25 m

0.4 mm

Measurement speed 1 million points/s
Sensor rotation speed 200 Hz
GNSS/IMU positioning resolution 0.02–0.05 m
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and new Austrian tunneling method (NATM) are the typical 
tunnel construction methods. The tunnels are 30–60 years 
old.

Manual inspection was performed; the total number of 
the detected delamination was 16. Delamination was not 
detected in the area of the data No. 4. Therefore, only the 
appendages were extracted. The other tunnels included mul-
tiple areas of delamination, which necessitated dense condi-
tion monitoring. As an example, Fig. 5 shows the inspection 
results of the data No. 1. Step-like deformations and delami-
nation caused by the free lime were reported.

The laser data contain longer sections. To match the 
areas of the manual inspection results with the laser data, 
appendages were utilized. Frequency analysis was applied 
to emphasize features of 20–30 cm scale sizes following 

the previous research [25]. The areas of the delamination 
detected by the manual inspectors were located by referring 
to the characteristic features such as the cables and lights 
(Fig. 5a).

Then, the step 1 of Fig. 3 was applied to the laser data to 
extract the 3D shapes of the features. As shown in the red 
rectangles in Fig. 4c, all the features including delamination 
and appendages were extracted. Referring to the delamina-
tion areas, each feature was labeled as a delamination or 
appendage. The SVM parameters were trained using the data 
shown in Table 2. The data No. 1 of the tunnel No. 1 were 
used as validation (test) data. The other four datasets, data 
No. 2–No. 5 were used for training. To consider the impor-
tance of large-area delamination, the feature vectors were 
replicated in proportion to the areas of delamination. The 

Table 2  Manual inspection 
target tunnels and laser data for 
training and validation of SVM

Tunnel No. Data Location (in Japan) Construction method year Section length 
(travel by cir-
cum.)

No. of 
delam.

Tunnel 1 No. 1 Validation Nagano pref Sheet piling 1975 20 m by 15 m 6
No. 2 Training 25 m by 12 m 6
No. 3 25 m by 15 m 2

Tunnel 2 No. 4 Nagano pref NATM 1991 22 m by 12 m 0
Tunnel 3 No. 5 Kanagawa pref Sheet piling 1963 60 m by 12 m 2

Fig. 5  Delamination of the data No. 1. a Frequency analysis of data and delamination areas detected by manual inspection. Yellow areas are the 
characteristic features emphasized by frequency analysis. b Sizes of delamination were measured for references
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ratio of the total number of the detected features between 
the training and validation datasets was approximately 3.4:1. 
The dataset was arranged to demonstrate the applicability of 
the developed SVM algorithm to the unforeseen tunnel data.

4.2  Evaluation metrics

Two indices are introduced in this study to evaluate the per-
formance of the trained SVM. Accuracy is the ratio of the 
number of correctly classified data among validation data. 
Because the number and areas of the appendages are larger 
than the delamination, the data is not balanced between the 
two categories. Therefore, the area under the curve (AUC) 
of a precision–recall (PR) curve is also compared. Accuracy 
and AUC show similar tendency. However, they do not nec-
essarily correspond to each other one to one [26].

The delamination and quarter-view maps were plotted for 
the data No. 1 to demonstrate the performance of the algo-
rithm. The ratio of the numbers of the successfully detected 
areas of the delamination among the true delamination, 
detection rate, and ratio of the areas of the true delamination 
among the detected areas, precision, were also evaluated as 
will be discussed in the detection results section.

Because of the complicated geometries of the delamina-
tion and nature of the manual detection, there may be a slight 
difference between the estimated shapes of delamination and 
inspection results. In the previous research, the estimation 
error of the areas and heights was within 20% [10]. The 
detailed comparison between the estimated and measured 
shapes of the delamination is not the target of the research. 
The successful detection by the SVM indicates the validity 
of the estimation algorithm.

5  Proposed 3D features

Figure 6a shows a delamination case. The maximum heights 
and areas of the features were calculated. These two features 
contain information on their scales. The heights and areas of 
the appendages are larger than delamination. Furthermore, 
too small features can be considered as noise and ignored. 
Figure 6b shows the occupancy of the feature. The features 
were projected onto three planes, horizontal, circumfer-
ence–height, and travel–height planes. Circumscribed rec-
tangles were drawn for projected areas. Occupancy is the 
ratio between the area of the rectangle and projected feature. 
The concept of occupancy is to simply evaluate the shapes 
of 3D features in the three planes.

Straightness is a novel index, which is proposed in 
this study. The profiles of the artificial objects are com-
posed of straight lines, whereas the delamination has 
a complicated profile. Figure 7 explains the process of 
evaluating straightness. Figure 7a displays the area of 

the delamination shown in Fig. 6 with the corresponding 
height in a colormap. Figure 7b shows the profile of the 
area. Area projections can be considered in the horizontal, 
circumference–height, and travel–height planes. Therefore, 
three straightness values were obtained in the three planes. 
Figure 7c shows the Hough transform of the profile shown 
in Fig. 7b. The number of the passing lines for each pixel 
is the parameter of the Hough transform. The numbers 
were counted for each pixel of the profile. Yellow areas in 
the Hough space indicate large numbers. Profile images 
which are too coarse, for example, only several pixels 
by several pixels, may fail to extract peaks in the Hough 
space. Therefore, the images were up-sampled 10 times on 
both axes. In the Hough space of Fig. 7c, each peak of a 
yellow area corresponds to a straight line. The longer the 
lines were in the image, the higher the peaks were in the 
Hough space.

In the Hough space, the n highest peaks were extracted; 
n = 5 was adopted to target the squared features of the 
appendages, such as cables and lights. The summation I of 
the peak values pk of the n peaks was calculated.

Fig. 6  Extraction of 3D features. a Quarter view. b Side view. The 
maximum height, area and occupancy were defined. Three occupancy 
values were calculated from a top and two side views
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The ratio between I and the total number of the pixels in 
the profile L was defined as the straightness S to remove the 
effect of the scales of the features.

The longer the selected five lines were in the profile, the 
larger the summation I was; Given the same profile length 
L , S should be larger from Eq. (2). n is the parameter. An 
excessively small and large n will fail to delineate lines. n 
was not sensitive to the detection results, possibly because 
the relationship of S was important in SVM, and polygons 
with many edges may not exist in the data. As shown in 
Fig. 7c, a clear peak was observed to contribute the S value.

Figure 8 shows examples of a circle and square to explain 
the characteristics of straightness. From Fig. 8a, S of the 
square is approximately 1.1 . When all pixels in a profile 
belong to one of the n lines, one pixel increases the peak 
value by one, consequently S ≅ 1.0 . Theoretically, for poly-
gons with several edges smaller than or equal to n , S = 1 . 
Owing to the effects of the intersections of the edges and 
limited resolution of the images, the calculated S was 
slightly larger than 1.0 . Figure 8b shows a polygon with an 
infinite number of edges, that is, a circle, indicating S = 0.3 . 
S of any profile lies between the polygon and circle. S of a 
complicated winding and jaggy profile is small, and profile 
composed of several straight lines is large. In the case of 
delamination in Figs. 6 and 7, S = 0.5 . The profile was close 
to a circle and far from artificial objects.

One of the most important characteristics of a feature 
value is scale invariance. Straightness and other features 
exhibit scale invariance. Straightness also exhibits rotation 

(1)I =
∑n

k=1
pk.

(2)S = I∕L.

invariance. However, occupancy does not hold for rotation 
invariance. The successful detection results indicated that 
most of the analyzed appendages are aligned along the travel 
or circumferential directions, for example, the cables. An 
SVM may automatically construct rotation-invariant features 
by combining the feature values.

Fig. 7  Extraction of straightness. a Area of the delamination of 
Fig.  8. Colors represent the height. b Profile of the feature. Profile 
image is 10 times up-sampled. c Hough transform of the profile. 

Colors are the number of passing lines, a parameter of the Hough 
transform for line detection. One clear peak is observed to contribute 
to the straightness value in this case

Fig. 8  Examples of the straightness values of the profiles. a Square. b 
Circle. Left figures are profiles and right are Hough transforms. Cor-
responding straightness values are shown
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The area and maximum height of a feature are related to 
its scale. Occupancy is related to the geometry of a feature 
area. The 3D geometries were evaluated by considering the 
three planes. However, the problem is that polygons with the 
same areas within circumscribed rectangles will show the 
same occupancy. Straightness is related to the geometry of 
the feature profile. Considering all the features, 3D shapes 
are precisely evaluated.

Summarizing the discussions, the features about scales, 
maximum height h and area s , features about the geometries 
of areas, occupancy in the three planes Oyz , Ozx , Oxy , features 
about the geometries of profiles, straightness in the three 
planes Syz , Szx , Sxy , total four features with eight parameters 
were introduced. An integrated feature vector F is defined 
as follows:

Using the feature vectors as an input to an SVM, a 
machine-learning model is trained to automatically con-
struct classification criteria between the delamination and 
appendages.

Each type of an object shows characteristic feature val-
ues. Figure 9 introduces the examples of extracted fea-
tures. Figure 9a–d corresponds to delamination, cable, 

(3)F =
(

h, s,Oyz,Ozx,Oxy, Syz, Szx, Sxy
)

.

light, and water guide, respectively. As shown in Fig. 9, 
the cables are narrow rectangles in the horizontal plane 
and have tall heights; the lights and signs are box-shaped; 
the water guides and repair patches are U-shaped or box-
shaped, depending on adjacent features; the delamination 
is convex. The occupancy of the cables in the perpendic-
ular direction and boxes was high, whereas that of the 
U-shaped objects was low. The occupancy of the convex 
plane was moderate on all projected planes. By setting 
thresholds for higher and lower occupancy, the delami-
nation was detected reducing the false detection of the 
appendages.

The heights of the cables and lights were 15–20 cm 
in Fig. 9, which was higher than those of the delamina-
tion and water guide, 1–2 cm. The occupancy Oyz of the 
cable was low and the light was high. The occupancy of 
the water guide in one direction ( Oxy ) was low, whereas 
in the other directions they were high. The straightness 
Syz of artificial objects, such as cables, lights, and water 
guides, is generally high. In the case of the crossing cables 
shown in Fig. 9b, Syz was low, whereas Oyz was high. All 
parameters were moderate in the case of the delamination, 
indicating a convex 3D volume. From Fig. 9, the features 
were effectively defined to distinguish the delamination 
from the artificial objects.

Fig. 9  Extracted typical 3D shapes and feature values. a Delamination. b Cables. c Light. d Water guide. Yellow and blue areas show high and 
low heights respectively. All the target parameters, height, area, occupancy, and straightness are shown
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6  Automatic detection by SVM

6.1  Detection results

Figure 10 shows the detection result of the data No.1 by 
the optimized SVM, the manual inspection result of which 
is shown in Fig. 5. Figure 10a shows the detected areas of 
the delamination, which is distinguished from the other 
features shown in Fig. 4c. Figure 10a indicates that the 
target delamination Nos. 1 and 3–6 were successfully 
detected in the appropriate positions compared to Fig. 5a. 
The detection rate was 5∕6 = 83% . The total detected area 
was 22,540 cm2 , while 16,100 cm2 is the true delamina-
tion area. Therefore, of the detected areas, 72% had actual 
delamination. In the context of deep learning, intersec-
tion over union (IoU) is a popular evaluation criterion for 
matched areas, the typical values of which may be 30–40% 
in the case of region proposal problems [27–29]. The 
detection rate 83% and precision 72% were high. Using 
the proposed SVM algorithm, the possible delamination 
regions were localized from 3,750,000 cm2 (25 m by 15 m) 
to 22,540 cm2 , which was approximately 0.8%. Figure 10b 
shows a quarter-view of the estimated 3D shapes to visual-
ize the realistic delamination shapes.

Figure 11 shows the areas and 3D map of the append-
ages which remain after removing the delamination from 
all the detected features. The features of the cables aligned 
in the travel direction are apparent. The lights between the 

cables, sign, and water guides were successfully classified 
as appendages. These features are useful for locating the 
positions of delamination during repair works and analyz-
ing the causes of the delamination.

6.2  Parametric study

A kernel function is the important hyper-parameter of the 
SVM. The kernel function is a nonlinear conversion applied 
to the input feature vectors, the effect of which is equivalent 
to drawing nonlinear dividing planes in a feature space. The 
kernel function improved the performance of the SVM clas-
sification. Figure 12 shows a comparison of different ker-
nel functions. Linear is no kernel trick; polynomial is third 
order. Compared to the ordinally linear SVM, a radial basis 
function (RBF) kernel increased the area under the curve 
(AUC) by approximately 0.3, whereas the polynomial func-
tion decreased the accuracy and AUC. The most appropriate 
kernel function depends on the problem. The RBF kernel 
was adopted in this study.

A feature vector is defined by Eq. (3). To evaluate the 
effect of these parameters, the performances of SVM models 
were compared by changing the combinations of the feature 
values. Table 3 lists the configurations of the SVM models. 
Model No. 1 (height–area) considers only the scales of the 
anomalies. Model 2 (previous) is a model of Yamaguchi 
(2022) [11]. Model 3 (proposed) additionally considers the 
straightness of the profile on a horizontal plane. Model 4 
(all) includes straightness in all three directions. Accuracy 

Fig. 10  Detection results of the delamination of the data No. 1 (a) 
Top view of the 3D mapping result, corresponding to a delamination 
map. b Quarter view, showing the 3D shapes of the anomalies. Red 

cross points represent the highest positions in the detected areas with 
the estimated maximum heights
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has not been systematically compared in the previous stud-
ies. Figure 13 compares the accuracy and AUC. The larger 
the number of the feature parameters was, the higher the 
accuracy was. The most accurate SVM model was devel-
oped considering size, occupancy, and straightness. The 
accuracy of the proposed model was improved by approxi-
mately 6% compared to that of the previous model. How-
ever, the proposed models with all the feature values show 
the same accuracy. The straightness in the horizontal plane 
can accurately evaluate the straight lines of the profiles. The 
highest AUC was achieved by the proposed model. Figure 14 

Fig. 11  Detection results of the appendages, which are the remaining areas of the delamination detection results of Fig. 10. a Appendage map. b 
Quarter view of the 3D mapping result

Fig. 12  Effect of the kernel functions on classification accuracy 
(black) and AUC (gray). Linear is no kernel. Polynomial is third order

Table 3  Combination of the used feature values for each SVM model

SVM model Used features

No. 1 (height-area) (h, s)

No. 2 (previous) (h, s,Oyz,Ozx,Oxy)

No. 3 (proposed) (h, s,Oyz,Ozx,Oxy, Syz)

No. 4 (all) (h, s,Oyz,Ozx,Oxy, Syz, Szx, Sxy)

Fig. 13  Effect of the feature parameters on accuracy and AUC 
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shows precision–recall (PR) curves. Recall is the ratio of the 
number of the detected delamination among all the delami-
nation. False-positive rate is the ratio of the number of the 
false detection among all the detected possible delamination. 
Recall and false-positive rate define the axes of the ordinate 
and abscissa of the PR curves. AUC is the area under the 
curves. Figure 14 indicates that the AUC was improved by 
adding a new feature, straightness.

The probability of delamination p is fitted to each feature 
vector, the threshold of which is the only tuning parameter 
of the proposed detection algorithm based on the SVM. Fig-
ure 15 compares the delamination maps of Fig. 10a changing 
the minimum probability, P ( p > P ) from 0.1 to 0.9. Fig-
ure 10a is the case P = 0.5 . Figure 15 includes the delami-
nation with various heights and areas in a 25 m section. 

The optimized P has a certain validity. From Fig. 15a, the 
entire delamination was successfully detected, while the 
false detection cases increased in the case of P = 0.1 . On the 
other hand, from Fig. 15c, a few areas of the delamination 
were missing in the case of P = 0.9 . P = 0.5 is optimal from 
Fig. 15b. In a practical sense, there is a tradeoff between 
false detection and missing delamination cases. A smaller 
P indicates a safer side evaluation; a larger P is vice versa. 
Missing delamination areas may not be favorable. In that 
case, a smaller P is appropriate.

7  Discussions

A completely automatic algorithm for detecting the delami-
nation on tunnel concrete lining surfaces based on an SVM 
was proposed. The contribution of this research compared 
with other research is that the automatic algorithm for detect-
ing delamination from tunnel lining laser profile data is first 
proposed. Because real tunnels are considered, appendages 
are distinguished from delamination by the SVM reducing 
false detection cases.

From the results of Fig. 10, after adopting an appropri-
ate kernel function, proposed feature values, and moderate 
probability threshold, a high-accuracy SVM algorithm was 
developed and validated by the real tunnel test data. Append-
ages such as cables and lights were also successfully visu-
alized. The large delamination such as delamination No.2 
and smaller appendages around cables were confused by the 
algorithm. Future work for the improvement of the algorithm 
and practical limitations is discussed below.

Fig. 14  Comparison of the PR curves of the previous (blue) and pro-
posed (red) SVM models

Fig. 15  Delamination maps of the optimized SVM model with the different probability thresholds P . a P = 0.1 . b P = 0.5 . c P = 0.9
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- The resolution of laser data is crucial for accurate 
detection. The resolution was set to 2 cm. The speed of the 
measurement vehicle was 10–20 km/h to obtain the 2 cm 
resolution. Increasing the speed lowered the resolution. 
The required resolution depends on the characteristics of 
the target features. The optimization of the measurement 
conditions may be needed to realize the further high-speed 
measurements. The utilization of repeatedly measured data 
is considered though it is difficult because of the data-match-
ing problem. Considering laser luminance data and optical 
camera images may increase accuracy. The estimation accu-
racy of the 3D shapes of delamination was not discussed 
because of the complicated and ambiguous shapes of the 
real delamination. The utilization of artificial delamination 
models and simulation data may improve the classification 
accuracy of the algorithm.

Different tunnel data were prepared for the SVM train-
ing and validation. Therefore, the algorithm can be applied 
to other tunnel datasets. However, because of the charac-
teristics of a mobile mapping system (MMS), which is a 
vehicle equipped with laser scanning sensors, target tunnels 
are mainly highway road tunnels. The developed algorithm 
may be applicable to railway tunnels.

8  Conclusions

An automatic and accurate SVM algorithm for detecting 
delamination on tunnel concrete lining surfaces using laser 
3D point cloud data was developed. The algorithm con-
sists of two steps: extraction of 3D shapes and detection of 
delamination by SVM. The second step was developed in 
this study to achieve accurate and automatic detection. The 
introduction of straightness and automatic detection by an 
SVM are the contributions. Artificial objects such as cables 
and lights were characterized by defining the straightness of 
feature profiles. The SVM was trained and validated using 
the data of real tunnel concrete lining surfaces. A paramet-
ric study was conducted to optimize the model parameters 
and determine the most appropriate probability threshold. 
Including straightness improved accuracy by 6% and AUC 
by 0.3 compared with the previous model. The proposed 
algorithm successfully visualized the areas of the delami-
nation on a map with their realistic 3D shapes, enabling 
automatic and high-speed tunnel lining inspection.

In future work, the algorithm can also be applied to the 
detection of peeling on concrete surfaces and road potholes. 
Delamination on concrete walls of other types of infrastruc-
tures is also a possible application. The validation data was 
limited to the highway road tunnels. The developed algo-
rithm may be applied to railway tunnels and other large-scale 
data to conduct regional and time-series analysis of aging 
tunnels. The estimation of the tunnel cross sections from 

the infrastructure profiles in the step 1.1 is also considered 
to monitor tunnel deformations. There is a limitation in the 
vehicle speed. Measuring the same tunnel multiple times and 
considering laser luminance data and camera images may 
further improve the performance. The optimization of the 
measurement conditions remains as a topic for future work.
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