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Abstract
Within the last decades, the needed for communication towers has accelerated with the requirements for effective com-
munication, especially for radio, radar, and television. The complexity configuration of the tower and limit access to the 
structure body especially inner part of the tower with hollow section is led the health monitoring of tower as the main chal-
lenging issue to maintenance during its function. The change of natural frequencies can be considered as one of the prevalent 
damage detection methods in structural assessment procedures. Therefore, the main aim of present research is to develop 
health monitoring system for Ultra High Fiber Performance Reinforced Concrete (UHPFRC) communication tower based 
on frequency domain response. Since the frequency data of tower is mostly noisy and interpreting of frequency in different 
modes in variant case of tower damage. The hybrid algorithm based on the Adaboost, Bagging and RUSBoost algorithms 
are implemented to identify the damage in the UHPFRC communication tower using frequency domain data. The training 
samples for the algorithm are obtained from a finite element simulation and full-scale experiment testing is also performed 
to generate the testing samples. The finite element simulation dynamic frequency results are verified through conducting a 
full-scale experimental test on 30 m height UHPFRC communication tower. For this propose, frequency Response Functions 
(FRF’s), for healthy and damaged structures were obtained by exciting of tower by an impact hammer and the acceleration 
response recorded by three accelerometers sensors attached in suitable positions. The developed hybrid algorithm to identi-
fying the damage is tested and verified by considering the part of tower segments 2–3 and conducting experimental testing 
on the healthy structure as well as a damaged structure which caused using dynamic actuator. The testing results proved the 
accuracy of the developed optimized hybrid algorithm to identify damage in the tower structure in variant condition.
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1  Introduction

Structural Health Monitoring (SHM) has great importance 
in many engineering applications, such as enhancing the 
structure safety, forecasting structure failure, reducing the 
cost of structure maintenance and improving productive effi-
ciency. Structural health monitoring (SHM) was evolved in 
the last 50 years when engineers had some difficulties by 
complicated structures geometry and measurement technolo-
gies. In the last 10 years, the development gets progressed 

with utilizing of electronic data processing and storage tech-
nologies and the field broadened to data analysis algorithms 
[1]. Evaluation of foundation aging is one of the main chal-
lenges in the Structural Health Monitoring (SHM) process 
[2]. Brownjohn [3] covered several case studies based on 
the vibration technique from the practical perspective and 
presented the application issues of SHM on various forms 
of civil infrastructure, such as dams, tall buildings, bridges, 
towers, offshore and nuclear installations Erazo et al. [4] 
also worked on vibration technique on beam bridges. Many 
various techniques of signal processing have been investi-
gated for health monitoring of structures through vibration 
frequencies [5]. Klikowicz et al. [6]. Presented a review of 
the importance of using an SHM system to minimize the 
possibility of damage and increase structural safety using 
a bridge structure as an example. A different method has 
been implemented for damage detection in SHM. In the last 
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three decades, SHM methods based on changes in dynamic 
properties have been studied. When damage is significant, 
these methods successfully determine the damage [7]. In 
the structural heath monitoring process, the state of a struc-
ture is examined using modal parameters, like the natural 
frequency, mode shape, and damping ratio, in which usu-
ally determine by vibration measurements, to calculate the 
structural safety [8]. The frequency of the structure is a key 
factoring examining the dynamic performance of the struc-
ture because its effect on the stability and strength of the 
structure. Many environmental disasters are occurring as 
strong winds and severe ground motions which could affect 
to structural performance in their lifespan. These forces are 
unstable in magnitude and frequency [9]. The structural 
response control systems under these types of loadings have 
developed noticeably in the last 30 years [10, 11].

When damage happens in a structure, the stiffness reduces 
and leads to reduce in the natural frequencies of the system, 
which can be observed. The frequency measurements can 
be quickly and easily conducted and have a low-cost experi-
mental procedure. Moreover, the frequency measurements 
can be extracted with relatively high accuracy, and doubts 
in the measured frequencies can be easily measured if the 
experimental measurements are conducted under perfectly 
controlled experimental conditions [12]. Moreover, fatigue 
damage can arise when the structure is excited by the load 
impact and the load frequency is near the structural fre-
quency of structure. Therefore, natural frequencies are the 
most common dynamic parameters used in damage detec-
tion. According to the Euro code Standard, 2005 [13], the 
first natural frequency is undoubtedly a key parameter in 
estimating the response of the structure [14].

The Frequency Response Functions (FRF) is often imple-
mented in frequency domain methods through Fast Fourier 
Transform (FFT) analysis [15]. There are several studies 
have been discussed the structural health monitoring and 
damage detection using shifts in frequencies method with 
different structures type. Doebling et al.[16]. Reported an 
early work that used the change in frequency and mode 
shape of the structures for health monitoring to detect dam-
age. A review based on the structural damage detection 
through shifts in frequencies has been discussed by Zou 
et al. [17] and Salawu [18] which suggested that the fre-
quency changes can be used for predicting the fatigue life of 
a structure by correlating the rate of decrease the first natural 
frequency of the fatigue life. Yang et al. [19] detected a saw-
fish cut in an aluminum beam using the 3D plot depth and 
location of a crack against the frequency change. They found 
that the location and depth of the crack are indeed identi-
fied from the contour lines obtained from each frequency 
change. Kim and Adeli [20] presented as a breakthrough 
in development of structural control with the introduction 
of wavelets in vibration control in a developed innovative 

wavelet- based algorithms for dynamic vibration control of 
smart structures. The natural frequencies and mode shapes 
are controlled in real time and damage detection algorithms 
based on the modal properties can check the performance 
of the structure in the real time [20]. Mao et al. in 2019 [21] 
studies a bridge case study in both finite element modeling 
and experimental test. A nonlinear structural control using 
integrated DDA/ISMP on tuned mass damper in FRF also 
investigated by Karami et al. in 2019 [22].

Dixit [23] discussed the challenges in the SHM area by 
estimating and predicting the sensitivity of structural vibra-
tion properties, such as natural frequencies to the existence 
of damage. Patjawit and Chinnarasri [24] found that using 
natural frequency shifts to identify damage in embankment 
dams subjected to ground vibration is useful to a health 
monitoring system. Cantieni [25] (discussed the health 
monitoring of two dams, one is between Switzerland and 
France and the other is in northern Sweden) as case studies 
using dynamic testing (natural frequency and mode shape) 
analysis. Ashwear and Eriksson [26] studied the vibration 
health monitoring for tensegrity structures based on fre-
quency analysis and presented several solutions for the appli-
cation of vibration health monitoring methods for tensegrity 
structures. Chen et al. [27] studied about numerical damage 
localisation for building system including dynamic soil-
structure interaction.

Recently, there has been a growing awareness of struc-
tural health monitoring (SHM) of large infrastructures, 
including the structure of aircraft, towers, long-span bridges 
and high-rise buildings. Since the damage of the structure 
resulting from the load, failures in the joints, etc., it can 
cause a tremendous disaster. The towers are one of the 
important infrastructures of physical supports for the instal-
lation of radio equipment that allow various services, such as 
radio, television and / or mobile communications. Unluckily, 
the changes in geometric/material properties are experienced 
by the structural system, including system connectivity and 
changes in the boundary conditions, by which the system 
performance is affected [28] and led to health monitoring 
the structure. Aktan et al. [29] discussed the challenges in 
health monitoring systems using the modal analysis test for 
bridge and tower structures and highlighted that dynamic 
testing is often required for an effective and feasible solu-
tion to vibration problems. Antunes et al. [14]. Presented 
the dynamic monitoring system of two tall slender steel tel-
ecommunication towers, which are 50 m high, in Portugal 
using the frequency domain. Their findings indicated that 
stiffness loss can occur due to the connections and degrada-
tion of existing materials. Saisi et al. [30]. Conducted a study 
on the dynamic monitoring system of the 54-m high Gabbia 
Tower in Mantua, Italy, using fault detection methods based 
on shifts in natural frequencies. The effect of earthquake 
and temperature on tower frequency was also investigated. 
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Their findings indicated that an increase in temperature leads 
to an increase in the modal frequencies. They found that 
when a far-field seismic event occurs, the natural frequency 
decreases slightly. Niu et al. [31]. Proposed an algorithm for 
reconstructing the wind load based on the algorithm pro-
posed by [32]. Their study was applied to Canton Tower, 
which is 600 m tall, in an active typhoon-prone area. The 
method (FEM) used in this first study of the Canton Tower 
was modified, and then the modal properties of the Canton 
tower were identified by operational modal analysis (OMA). 
The response of a structure during dynamic loading due to 
strong ground motions is measured using sensors and actua-
tors are used to apply internal forces to compensate for the 
effects of the external forces [10].

Many techniques have been used before to generate the 
frequency response [33–35]. The impact hammer test has 
been used in many engineering areas to analyze frequency 
response functions (FRF) of the structures, due to suitability 
and simplicity of the experiments, as well as the validity of 
the analysis procedures [36, 37]. Schwarz and Richardson 
[38] presented a review of all the main topics associated with 
experimental modal analysis test using impact hammer test; 
the results indicated that the impact testing has a low-cost, 
fast, and appropriate way to find modes. FAIZAL [39] stud-
ied the structural evaluation using low-frequency technique 
and impact hammer test through experimental modal analy-
sis and computational analysis software for beam members. 
The study found that using the impact hammer test to detect 
the damage provides a close approximation between 3D 
modeling in computational analysis and experimental modal 
analysis. Da Silva et al.[40]. Presented the vibration analy-
sis based on the impact hammer test for multilayer damage 
detection in the pipeline and found that this method is sim-
ple to conduct in measuring and determining the dynamic 
response parameters. According to Lam and Wong [41] the 
likelihood of identifying the damage in railway ballast under 
a sleeper was examined. For this purpose, they continued 
by monitoring the vibration of the parallel sleeper and the 
simple impact hammer test was used in this regard. As per 
the findings, the suggested method can be used to identify 
the ballast damage and the natural frequencies of the sleeper 
are changed as a result of the damage-induced changes. With 
the help of frequency response function (FRF) based statisti-
cal method, the characteristic frequencies of railway tracks 
were identified through the impact hammer test [42]. As 
per the findings, the proposed method has the possibility to 
detect the damage.

As a result of the mentioned studied SHM is essential to 
access the structural integrity and ensure the performance 
of structures. The changes in natural frequencies is affected 
by the degradation of the structure and this parameter is 
a suitable indicator of the structure health condition and 
allows taking preventive action if needed to save money and, 

sometimes, lives. However, the recorded data for dynamic 
frequencies for special structure such as communication 
tower is noisy, randomness, unstable and skewed data, due 
to some uncontrolled environmental condition such as vibra-
tion sources include of an automobile engine, reciprocat-
ing motion in a machine, or broadband noise from wind or 
environment which cause many challenges in interpret of 
frequency data and recognize the damage. Therefore, this 
study aims to develop a hybrid algorithm as health moni-
toring system for communication tower based on machine 
learning method which can function with noisy, randomness, 
instable and skewed data.

2 � Health monitoring for UHPFRC 
communication tower 

Damage is the main cause of structural failure and often 
occurs on structures due to loading, joint failure and, etc. 
Interest in the ability to monitor structures and detect dam-
age at the earliest possible stage is widespread in all civil, 
mechanical and aerospace engineering communities. The 
existence of structural damage in an engineering system 
leads to variation in natural frequency and vibration modes. 
These variations manifest themselves as changes in modal 
parameters such as natural frequencies that can be obtained 
from the results of dynamic (vibration) tests. Knowing about 
nature of damage and vibration response of target structure 
can implement suitable approaches to detect location and 
size of the damage. Structural health monitoring very effi-
cient tools to detect the damage based on the vibration of 
structures. Within the last decades, the need for tall struc-
tures to install the communication equipment for radio, tel-
evision and mobile communication has been increased. Due 
to the rapid growth of the telecommunication technology, 
many challenges are related with tall and slender structures 
such as communication towers. The difficulty in capturing 
low-frequency responses and the complexity configuration 
of the tower and limit access to the structure especially the 
inner part of the tower with hollow section are leaded the 
health monitoring of tower as the main challenging issue to 
maintenance the tower structure during its function.

Moreover, the recorded data for dynamic frequencies 
for special structure such as communication tower is noisy, 
randomness, instable and skewed data, due to some uncon-
trolled noise such as vibration sources include of an auto-
mobile engine, reciprocating motion in a machine, or broad-
band noise from wind or environment which cause many 
challenges in interpret of frequency data and recognize the 
damage.

Therefore, this study aims to develop a computation 
procedure based on AdaBoost, Bagging and RUSBoost 
algorithms as health monitoring system for communication 
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tower which can work with noisy, randomness, instable and 
skewed data to identify the location and type of damage for 
UHPFRC communication tower in frequency domain with 
high convergence, quality solutions and lower iterations. At 
the first stage of this research, few attempts have been made 
to implement the Artificial Neural Network (ANN) method 
for identify the damages in UHPFRC tower, however due to 
the low accuracy in prediction, the hybrid ensemble meth-
ods with AdaBoost, Bagging and RUSBoost algorithms have 
been considered.

3 � Damage detection for UHFPRC 
communication tower using machine 
learning algorithms

The purpose of machine learning algorithms in SHM, is 
to enhance the damage detection in structures subjected 
to different operational and environmental conditions. The 
suitable algorithm to use depends on the capacity to func-
tion supervised or unsupervised learning. The supervised 
studying refers to the case where data from the undamaged 
and broken cases are available. Unsupervised learning refers 
to the case the place records are only accessible from the 
undamaged situation of the structure. For excessive capi-
tal expenditure structures, such as most civil engineering 
infrastructure, the unsupervised studying algorithms are 
frequently required since only information of the undam-
aged situation is available [43]. Recently, researchers are 
focused on implementing machine learning methods for 
damage detection in the structures [44]. Freund and Schapire 
[45–47] proposed the adaptive boosting (AdaBoost) algo-
rithm. The aim of this algorithm is to make an arbitrarily 
robust classifier via combining a set of weak classifiers. It 
can be used in conjunction with many other mastering algo-
rithms to enhance their performance. It is adaptive in the 
sense that the weights of records misclassified data through 
previous classifiers increase for subsequent classifiers. The 
key concept at the back of Adaboost is to use weighted ver-
sions of the same training facts as a substitute of randomly 
subsamples thereof.

In investigating corrosion and crack cases, AdaBoost 
and time frequency have been used to classify damage 
[48]. Cord and Chambon [49] studied the identification of 
cracks on roads by considering the compositional descrip-
tion and statistical learning procedure, with the AdaBoost-
dependent image processing. The use of the bagging tech-
nique improves the classification results whenever the base 
classifiers are unstable; this is why the bagging method 
works effectively for classification [43]. The main effect 
of boosting is to reduce variance [50] the bagging method 
provides better classification results, especially when the 
base classifiers are unstable, which occurs when slight 

changes in the training data can result in high changes in 
the resulting classifier, that is, when the learning method 
is unstable.

Moreover, RUSBoost is a new technique for learning 
from skewed datasets. Kesikoglu et al. [51] reported that 
using the RUSBoost classification algorithm increases the 
classification accuracy of the remote sensing techniques 
employed to ascertain impenetrable surface areas in Kay-
seri, Turkey.

Different ensemble algorithms have been proposed and 
developed for classification methods to achieve robust 
generalization ability. This study focused on the Adap-
tive, Bagging, and RUSBoost algorithm. With the present 
knowledge for using these algorithms to deal with noisy, 
randomness, instable and skewed data with high conver-
gence, quality solutions and lower iterations. The recorded 
data for dynamic frequencies for a special structure such as 
communication tower is noisy, randomness, instable and 
skewed data, due to some uncontrolled noise such as vibra-
tion sources include of an automobile engine. Therefore, 
this study aims to develop computation algorithm based 
on Adaptive Boosting, Bagging and RUSBoost algorithms 
as damage identification procedure for UHPFRC commu-
nication tower.

4 � Considered UHFPRC tower

The communication tower that used in this study is 30 m 
height located in Malaysia and contains three segments, 
each segment with 10 m height fixed to a reinforcement 
concrete foundation block with Sect.  4.00 m in plan and 
1 m in deep as shown in Fig. 1. The tower system is con-
sidered as a rigid hollow column (cantilever) which is able 
to stand against horizontal load through its lateral stiffness 
which is provided through tower component such as the 
prestress tendons inside the segmental can help to increase 
the resistance against the lateral load. Bolts and nuts will 
be used to connect the segments. Eight holes are made to 
connect the segments. The length of bolts and diameter is 
about 1000 mm and 25 mm, respectively. Meanwhile, the 
length and diameter of first segment connection are about 
1000 mm and 32 mm, respectively. An epoxy layer is also 
used in the interface between concrete segmental connec-
tions. Each segment is arranged with eight tendons and 
each connection is arranged with eight holes for bolts. The 
total mass density for (UHPFRC) material is 2500 kg per 
cubic meter with grade 150Mpa, young modulus of elastic-
ity (55GPa), 0.18 Poisson’s. The reinforcement diameter is 
(15.2 mm) with density (7.85*10^-7), the young modulus 
(200GPa). Table 1 listed the details of UHFPRC commu-
nication tower.
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5 � Numerical modeling of UHPFRC tower

Finite element method was used to develop the UHFPRC com-
munication tower similar to the geometry and properties of the 
considered structure as shown in Fig. 2a. A convergence study 
was conducted to verify the material properties and meshing 
size of the suggested FE models of the UHPFRC communi-
cation tower. The 3D model was carried out using ABAQUS 
6.14 software. All tower parts meshed with a mesh size of 

150 mm as shown in Fig. 2b. A fixed boundary condition is 
applied to the UHPFC tower foundation as shown in Fig. 2c.

The details of the fix boundary conditions in terms of 
displacements (U) and rotations (UR) have been defined as 
below.

The Lanczos eigensolver analysis is implemented to gen-
erate the frequency.

(1)U1 = U2 = U3 = UR1 = UR2 = UR3 = 0

Fig. 1   Locally detailed of UHP-
FRC tower details
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5.1 � Considered damages

The most frequent damage for the towers which reported 
in previous studies is crack in the concrete sections. The 
cracks appear in body of tower segment in vertical or hori-
zontal direction during loading and functioning of com-
munication tower and mostly start narrow and sharp in 
one direction than take place in the other directions. The 
cracks can be formed due to many situations, such as over 
stress, vibration, applied excessive load, creep, fatigue, 
impact, manufacturing and molding issues. Although in 
the segmental structures, the bolts losing in the segment 

joints is a common damage issue due to applied vibrations, 
bolts corrosion and construction matters.

Therefore, in this study, different damage scenarios (dam-
age index) for cracks and losing bolts are considered and 
created using the FE method as listed in Table 2.

These 78 damages consist of removing one to six bolts 
from each connection separately from the UHPFRC tower 
which will be used later to develop the hybrid algorithm for 
damage detection of UHPFRC communication tower.

In this study, the crack width and length for the com-
munication tower segments have been considered as 2 mm 
and 200 mm respectively. Based on many trial attempts for 
modeling and analysis, it is revealed that the crack width 

Table 1   The UHPFRC communication tower details

Type Height External diameter 
at bottom (mm)

Internal diameter 
at bottom (mm)

External diam-
eter at top (mm)

Internal 
diameter at top 
(mm)

Thick-
ness 
(mm)

Seg. 3 10 m 1000 900 800 700 50
Seg. 2 10 m 800 700 600 500 50
Seg. 1 10 m 600 600 400 300 50
Connection for segmental 1 to foundation 0.5 – – 1400 900 500
Connection for segment 1 to 2(upper and lower) 0.5 1100 700 1100 700 400
Connection for segment 2 to 3(upper and lower) 0.5 900 500 900 500 400

Fig. 2   Finite element modeling 
for UHPFRC tower

Table 2   Damage class type 
and damage case number for 
UHPFRC communication tower

Damage type and location Segment Case No Class no

Healthy All 0 0
Losing 1 to 6 bolt Connection of seg1- foundation 1 to 6 1
Horizontal crack at 1 m to 10 m Seg 1 with 10 m height 7 to 16 2
Vertical crack at 1 m to 10 m Seg 1 with 10 m height 17 to 26 3
Losing 1 to 6 bolt Connection of seg 1–2 27 To 32 4
Horizontal crack at 1 m to 10 m Seg 2 with 10 m height 33 to 42 5
Vertical crack at 1 m to 10 m Seg 2 with 10 m height 43 to 52 6
Losing 1 to 6 bolt Connection of 2–3 53 to 58 7
Horizontal crack at 1 m to 10 m Seg 3 with 10 m height 59 to 68 8
Vertical crack at 1 m to 10 m Seg 3 with 10 m height 69 to 78 9



1111Journal of Civil Structural Health Monitoring (2023) 13:1105–1130	

123

less than 2 mm and crack length less than 200 mm has no 
considerable effect on dynamic and frequency response of 
structure as well as strength of the segment. During conduct-
ing experimental test also, it was observed that small cracks 
(about 0.1 mm width and less than 200 mm) has no effect 
on dynamic frequency response of the considered structures. 
Besides, in some references also [52] these range are dis-
cussed as the most common width and length for concrete 
cracks.

Then, 60 cracks are simulated with 200-mm cracks width 
which consists of 30 vertical cracks and 30 horizontal cracks 
(Fig. 3) at 1 m intervals.

5.2 � FE results for UHFPRC communication tower 
in frequency domain

Numerical analysis is conducted to estimate the frequency 
response of UHPFRC communication tower in healthy con-
dition (no damage) through free vibrating analysis of tower. 
Besides, Different damages scenarios have been created 
using finite element method as mentioned in above.

The finite element results of frequency response for UHF-
PRC communication tower in healthy and different damage 
cases were determined. These dynamic frequencies for all 
78 cases of tower structure in healthy condition as well as 
damaged conditions are used for training of hybrid algorithm 
for damage detection.

6 � Experimental modal analysis using impact 
hammer

Experimental modal analysis portrays the dynamic proper-
ties when the structure excites artificially to determine the 
vibration modes [53]. When damage occurs in the structure, 
then the dynamic characteristics of the structure in the form 
of natural frequencies also are changed.

Also, it should be mentioned that, based on observation 
during experimental test, frequency response of the consid-
ered components is not affected by micro cracks since small 
cracks are not changing overall stiffness of structure. Hence, 
by increasing of the crack width, its effect on frequency con-
tent of structure appears.

Modal analysis relies on the vibration response of a linear 
time-invariant dynamic system, which can be described as 
the linear combination of a set of harmonic motions called 
natural modes of vibration. The modal testing is theoreti-
cally based on establishing the relationship between the 
vibration response in one location and excitation in the same 
or another location. This connection, which is often a com-
plex mathematical function, is known as the FRF. Experi-
mental tests on the UHPFRC communication tower have 
been conducted by excitation using impact hammer test to 
verify the frequency results of the numerical analysis and the 
structural responses are measured by three accelerometers. 
The excitation types and sources, data acquisition, signal 
processing, and modal parameters extraction are explained 
in the following sections.

6.1 � Excitation

Impact hammer type KISTLER model 9728A20000 was 
used to excite the UHFPRC communication tower as shown 
in Fig. 4a. The hammer is used to excite the samples at each 
selected point.

6.2 � Accelerometers

Three accelerometers type KISTLER model 8702B50M1 
as shown in Fig. 4b were used to record the acceleration 
response. Each accelerometer is placed in a specific position.

6.3 � Data acquisition and signal processing system

Noise and vibration analyzer, OROS36 (Fig. 4c) is used to 
convert the analog input signal from the transducer into a 
digital form. A computer with NVGATE software was used 
to raw and saved the measured data. Then, the MODAL 
software was used to model the communication tower and 
to calculate FRFs response.

Then, the FRF values are obtained through fast Fourier 
transform (FFT) by dividing the accelerometer signals by the 
corresponding signals from the hammer. Then, the experi-
mental modal parameter (frequency) is obtained from a set 
of FRF measurements which recorded through data acquisi-
tion and signal processing system.

The test procedure is presented as follows:

•	 The three accelerometers are installed.
Fig. 3   Vertical and horizontal crack for UHPFRC communication 
tower
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•	 The knocking point is determined and marked as 
shown in Fig. 5. The excitation points are placed at 22 
points at each 1.5 m (11 points in front of the tower 
and 11 points at the tower side) for better excitation 
since it is cylinder and symmetric. Besides, to ensure 
adequate adhesion, epoxy resin is applied between the 
accelerometer and tower surface.

•	 Develop geometry model of tower using MODAL 
software and determine the knocking points and the 
accelerometers position.

•	 The data logger is set up, the hammer and acceler-
ometers are connected to the data logger, to start the 
knocking as shown in Fig. 6.

•	 Recorded the acceleration data using NVGATE soft-
ware which used to raw and save the data.

•	 Transfer acceleration data from NVGATE to MODAL 
software.

•	 Convert acceleration to FRF and filter the noise by 
FFT and generate of Modal frequency.

6.4 � Experimental results of UHPFRC tower test 
in healthy condition

In this study for modal testing, the communication tower 
is excited by the impact hammer in various points of tower 
body, and the response of the tower is recorded using three 
DC accelerometers. In the experimental modal analysis, 
the transformed signal from the hammer and the acceler-
ometers were analyzed, and the modal parameters of the 
structure were obtained.

From the time history of the acceleration response, the 
frequencies of the structures can be obtained using FFT 
response. The accelerometers were set, and the response 
signals were recorded with a signal analyzer of OROS 
(8-channel). The equipment was used to convert input 
analog signals of the transducers to digital data. These 
data were recorded in the analyzer, and NVGATE soft-
ware converted the data into FFT response. The NVGATE 
software exports the FFT results in the UFF format. The 
MODAL utility program read the UFF files and exported 
them to FRF. FRFs were determined by dividing the Fou-
rier transform signal of the accelerometers by that of the 
impact hammer.

The acceleration data corresponded to a frequency band-
width of 0–400 Hz to measure the natural frequencies with 
improved accuracy. FRF data were generated by knocking 
with an impact hammer at 22 points of tower body as well as 
connections at each 1.5 m of the full-scale tower. The tower 
has a cylindrical and symmetrical shape. Therefore, knock-
ing of tower by impact hammer conducted in one direction 
only and effect extend to the other direction due to sym-
metrical configuration of the tower. Three accelerometers 
were used to measure the acceleration response of the struc-
ture after excitation by the hammer located at top, middle 
and bottom of tower. The communication tower was tested 
in healthy condition (undamaged) to determine the natural 
frequencies.

In the following sections, the results for the undamaged 
condition are discussed. Figure 7 shows the knocking at the 
selected points of the UHPFRC communication tower.

Fig. 4   Impact hummer and 
Accelerometer (KISTLER type 
8702B50M1)

Fig. 5   Marking the knocking point for UHPFRC tower
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The dynamic properties of the tower, including FRFs 
and natural frequencies, were determined at the undamaged 
condition from the experimental modal analysis through 
MODAL software. Different peaks of frequency recorded 
which depicted the first 11 modes through frequency 
bandwidth in the range of 0 Hz to 400 Hz as generated by 
MODAL software.

These are the maximum number of modes that could be 
captured with high precision through the selected setup.

As mentioned before the frequency range of 0–400 Hz 
is considered for the communication tower as depicted in 
stabilization chart for modal frequency variations, as it 

can be seen the peaks of modal frequency for the tower 
in healthy case is appeared in 0.9 Hz as the second peak 
modal frequency damage is follow the first mode and 
appeared on 1.13 Hz and the last mode (mode number 11) 
appeared in 138.49 Hz because the frequency of the pole 
does not change in the range after 138.49 Hz.

Table 3 shows the average frequencies, which were 
determined through the dynamic tests for the UHPFRC 
tower on the site. These values were used to verify the 
numerical results and test the hybrid learning algo-
rithm for damage detection. The peak frequency of the 

Fig. 6   Setup the data logger at UHPFRC tower
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UHPFRC tower was approximately 0.9 Hz for low mode 
and 138.49 Hz for high mode.

6.5 � Validation of finite element frequency results 
for UHPFRC communication tower

Experimental analysis was conducted to evaluate and 
verify the numerical frequency response of the 30-m high 
communication tower in healthy condition, as shown in 
Table 3. The vibration modal frequencies of the UHP-
FRC communication tower before damage, which were 
obtained from the modal experimental test, were compared 
with the vibration modes resulted via FE modal analysis. 
The difference in variation is less than 20% for all modal 

frequency results for the full-scaled tower. The maximum 
variation in the frequencies of the finite element and 
experimental results was 16.81% for the UHPFRC com-
munication tower. This difference proves that FEM is an 
appropriate method to predict the modal frequency proper-
ties of the UHPFRC communication tower.

Both experimental tests for the 30 m communication 
tower in the site and also the tower segments in the lab were 
conducted by having very noisy environment due to vehicle 
traffics in very nearby highway, operation of equipment in 
the site factory or lab buildings.

Specially for the tests which have been conducted in the 
lab, there were many noises due to operating hydraulic pump 
for dynamic actuator, water cooling, water pumping, fans, 

Fig. 7   Impact hammer test for UHPFRC communication tower

Table 3   Verification of experimental and numerical frequency results for the UHPFRC communication tower

Mode No M.1 M.2 M.3 M.4 M.5 M.6

f. EXP 0.9 1.13 3.45 8.63 15.36 18.1
f. FE 0.93 0.94 3.80 8.87 17.79 20.1

 Mode No M.7 M.8 M.9 M.10 M.11

f. EXP 42.83 79.21 101.56 119.46 138.49
f. FE 41.35 74.15 104.14 113.86 137.44
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forklift, drills, cutting machine, air pump and traffic in the 
side street which all of these machines were continuously 
performed during test. Although the results of prediction 
by developed hybrid ensemble method were highly match 
with FEM results which obtained without considering any 
environment noise. Therefore, the comparison revealed that 
the proposed method is capable to predict accurately even 
using noisy data.

The Frequency Response Functions (FRFs) recorded 
at different accelerometer points after knocking of the 

UHPFRC communication tower by impact hamper are 
showed in Fig. 8 along with stabilization chart to calculate 
the frequency of structure. Therefore, Fig. 8a shows the 
FRF graphs which recorded by three acceleration sensors 
after knocking of tower body by impact hammer. Different 
frequency peaks have been obtained through analysis by 
MODAL software, which the first 11 modes appeared in 
the frequency bandwidth in the range of 0 Hz to 400 Hz. 
These are the maximum number of modes that could be 
captured with high precision through the selected setup.

The frequency range of 0–400 Hz is considered for the 
communication tower as depicted in stabilization chart for 

(a)  Envelope of FRFs recorded at different accelerometer points for UHPFRC communication tower 

(b) Stabilization chart to calculate the frequency of UHPFRC tower 
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Fig. 8   Recorded FRFs and modal frequencies during experimental test of UHPFRC communication
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modal frequency variations (Fig. 8b). As it can be seen in 
this figure, the first peak modal frequency for the tower is 
appeared in 0.9 Hz while the second peak modal frequency 
damage is appeared on 1.13 Hz and then the last mode 
(mode number 11) occurred in 138.49 Hz.

6.6 � Development of hybrid algorithm for damage 
detection of UHPFRC communication tower 
as SHM system 

The damage detection algorithm adopted in this study 
for the UHPFRC communication tower is based on the 
Adaboost, Bagging, and RUSBoost algorithms since these 
algorithms gives better accuracy and can treat a larger 
set of data.

A total of 78 damage scenarios are simulated using 
the FE software and input as training samples for the 
hybrid algorithm. The 79 cases include the healthy case 
utilized to train 9 classifiers for the UHPFRC communi-
cation tower. The training data consist of 869 frequency 
values. The experimental frequency (f1 to f11) results are 
used as a testing sample to validate the accuracy of the 
hybrid algorithm and examine if the correctness of the 
prediction. Moreover, the developed hybrid algorithm for 
identifying the damage is tested and verified by consid-
ering two tower segments (1–2 and 2–3) and conducting 
experimental testing on the healthy and damaged struc-
tures using a dynamic actuator.

The 79 including of healthy case with damages cases 
training samples were utilized to train a 10-classes (0–9) 
classifiers which set as an output for the Hybrid algo-
rithm. The experimental frequency result of the healthy 
tower was setting as case 0 to check the cross-validation 
accuracy of the hybrid algorithm.

The hybrid algorithm for detecting damage in the 
communication tower is developed through the follow-
ing steps:

Step 1: The numerical frequency data for the healthy 
and different types of damage for the UHPFRC commu-
nication tower are set as input data for training the hybrid 
algorithm.

Step 2: The output data are set as the type and location 
of damage (Damage Index, DI). DI is given as follows:

Step 3: Develop hybrid algorithm using input and out-
put data.

Step 4: The frequency results of the experimental test 
of the UHPFRC communication tower are set as data for 
testing.

Step 5: The developed hybrid algorithm is tested using 
frequency result of experimental testing.

Step 6: Finally, the hybrid algorithm is tested and 
compared with the goal to make the decision with all the 
structural states (damaged or not).

In this study, three methods are used to develop hybrid 
algorithm for damage detection as describe in following:

6.6.1 � Bagging

The main reason for error in learning is noise, bias, and 
variance. Noise leads to error by the target function. Bias 
is where the algorithm cannot learn the target. Variance 
comes from the sampling, and how it affects the learning 
algorithm. The bagging algorithm helps to reduce these 
errors. It enhances the classification results when the base 
classifiers are unstable. Variety in bagging is determined by 
the bootstrapped replicas of the original training set: dif-
ferent training datasets are randomly pulled with replace-
ment. Then, a single decision tree is constructed with each 
training data replica using the standard approach (Breimanet 
al., 1984). Finally, bagging predictions are combined by a 
majority vote but takes the average during testing.

The bagging algorithm implemented in this study is 
defined as follows:

Input: Dataset Ψ = {Ψ1, Ψ2, …, Ψ N}, with Ψi = (F, DI), 
where F ∈ f1 to f11, and DI ∈ {0, 9}.

Where F is frequency and DI is the damage index.
Number of bootstrap samples: B
Output: A classifier H: f1 to f11 → {0, 9}.
1: For b = 1 to B do.
2: Draw, with replacement, N samples from Ψ to obtain 

the b-th bootstrap sample Ψ∗
b
.

3: From each bootstrap sample Ψ∗
b
 , learn classifier H.

5: The final classifier by a majority vote of H1, …, HB 
is H(x) = argmax (

∑B

b=1
Hb(x)).

Figure  9 depicts the bagging approach for the 
classification.

Fig. 9   Depicts the bagging approach for the classification
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6.6.2 � Adaptive boost learning approach

Adaboost is an ensemble method that produces robust classi-
fiers by combining multiple weak classifiers. It uses only one 
classification algorithm to construct diverse weak base classi-
fiers, which are trained on datasets that are selectively sampled 
from an initial training dataset. Each sample is given a weight 
that represents the possibility of selection as a training sample, 
and all examples share an equal weight in the first iteration. In 
subsequent iterations, the samples that are correctly classified 
by the base classifier of the last iteration get lower weights, and 
the samples that are misclassified get higher weights. Thus, the 
base classifiers focus on the “difficult” data points that may be 
near the classification margin and finally improve the classifi-
cation accuracy. After a certain number of iterations, the base 
weak classifiers are gathered to become a strong classifier, and 
the final classification result is the output (Sunet al., 2017). The 
Adaboost algorithm that is implemented in this study is defined 
as follows:

Input: Dataset Ψ = {Ψ1, Ψ2,…, Ψ N}, with Ψi = (F, DI), 
where F ∈ f1 to f11,and DI ∈ {0, 9}.

Where F is frequency data, DI is damage index.
The maximum number of classifiers: M
Output: A classifier H: f1 to f11 → {0, 9}.
1: Initialize the weights.w(1)

i
 = 1/N, i ∈ {1, …, N}, and 

set m = 1
2: While m ≤ M do.
3: Run the weak learner on F using weights w(1)

i
 to yield 

classifier DIm: f1 to f11 → {0, 9}.
4: Calculate errm = N ∑ i = 1 w(1)

i
 h (− DI Hm (F)), the 

weighted error of Hm.
5: Calculate αm = 1/ 2 ln ( 1−errm

errm
 ) {/* Weight of the weak 

learner. */}.
6: Update the weight v i (m) = w(1)

i
 exp(− αm DI Hm (F)). 

For each sample i = 1, …, N.
7: Renormalize the weights: calculate Sm = 

∑N

j
= 1 v j 

and, for i = 1,…, N, w(m+1)

i
 = vi(m) /Sm.

8: Increment the iteration counter: m ← m + 1.
9: Finally, the strong classifier: H(x) = argmax 

∑M

j=1
(αjHj(x))

The Adaboost algorithm produces a set of suppositions, 
which are combined and weighted with the majority voting 
method of the class prediction using each hypothesis. To 
produce the preceding hypotheses by training a weak classi-
fier, instances that are drawn from an iteratively updated dis-
tribution of training instances are utilized. This distribution 
is updated in such a manner for the misclassified instances 
from the previous hypothesis to be similar and included in 
the training data of the coming classifier. Figure 10 depicts 
the structure of Adaboost.

6.6.3 � RUSBoost

RUSBoost combines data sampling and boosting to produce 
a simple and efficient technique for enhancing classifica-
tion performance when training data are imbalanced. It was 
designed to increase the performance of trained models 
when data are skewed.

In the first step of this algorithm, the weights of each 
example are initialized to 1/m, where m is the number of fre-
quencies in the training dataset. Then, the weak hypotheses 
are trained. Random under sampling is applied to remove 
majority classes and the weight to update parameters. 
Finally, hypothesis H(x) is generated as the weighted vote 
of the weak hypotheses.

The RUSBoost algorithm implemented in this study is 
defined as follows:

Input: Set Ψ of examples (F1, DI1), …, (Fm, DIm).
Where F is frequency data, DI is damage index.
T is the number of iterations.
The required percentage of total instance to represent the 

minority class is N.
1: Initialize w1(i)= 1/m, for all i.
2: Do for t = 1, 2, …, Ta
a: Create a temporary training dataset Ψt̀ with distribution 

ẁt using random under sampling.
b: Call the weak learner provided, with examples Ψ̀t and 

their weighted ẁt.
c: Get back hypotheses ht F × DI {0, 9} d: Estimate the 

pseudo loss for (Ψ and Wt):
 t = 

∑

wt(i)(1 − ht(Fi,DIi) + ht(Fi,DI)) e: Calculate the 
weight update parameter: αt =  εt

1−εt
 f: Update W t

Wt + 1(i) = Wt (i) αt(1+ht(Fi,DIi)−ht(Fi,DI∶DI≠DIi)  

g: Normalize Wt + 1(i): let Zt = 
∑

i Wt + 1(i)

wt + 1(i) = Wt+1(i)

Zt
3:  The f inal  hypotheses  is  H(x)  = argmax 

∑T

t=1
ht(F,DI)log

1

αt

Fig. 10   Adaptive boosting classification or Scheme for Adaptive 
boosting algorithm
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6.6.4 � Development of hybrid algorithm for damage 
detection of UHPFRC communication tower

The frequency data of tower are mostly can be random, 
unstable, and with skewed data. There for, this study aims 
to develop the optimized hybrid prediction method as health 
monitoring system based on the AdaBoost, Bagging, and 
RUSBoost algorithms for damage detection of UHPFRC 
communication tower using frequency domain.

The classification learner toolbox of MATLAB was used 
to develop the hybrid algorithm to detect the condition 
(healthy, with cracks, and with lost bolts) of the UHPFRC 
communication tower.

In this study, the Hybrid Ensembles Optimization method 
has been adopted by combining Ensembles and Sampling 
Based Ensembles methods [54]. Where Random Balance 
Ensemble Method is used for preprocessing stage while 
processing is conducted using Different Contribution Sam-
pling (DCS) and Bagging method. The implemented trained 
classification ensemble model object contains the results 
of boosting 100 classification trees and the predictor and 
response data in the AdaBoost, Bagging, and RUSBoost 
algorithms [55]. The purpose of Hybrid Ensembles opti-
mization is to reduce the size of required training data to 
obtain desirable prediction accuracy since due to difficulty 
of access to the communication tower structure, limited 

number of knocking by impact hammer (or shaker) and 
acceleration sensors for collecting data could be arranged.

A large number of training data generated using the finite 
element analysis for the UHPFRC tower in the healthy and 
damage conditions were utilized as input data for the hybrid 
algorithm. The experimental results were used as testing 
data to verify the accuracy of the proposed hybrid learning 
algorithm for damage detection.

The optimization process of the hybrid learning algo-
rithm that predicts damage using frequency is depicted in 
Fig. 11. The figure shows that through the optimization pro-
cess, three different learning techniques such as Bagging, 
AdaBoost, and RUSBoost are implemented. The results of 
estimated damage using input frequency are evaluated based 
on objective function, which indicates the minimum error 
in estimating damage classification. The best learning tech-
nique is considered the best damage identifier. Then, the 
learning coefficients of all three methods are changed and 
the result of estimation is evaluated and sorted based on the 
minimum objective function to achieve higher accuracy. The 
process is repeated until the best technique is achieved and 
the coefficient with minimum objective function in estimat-
ing damage classification is identified.

The operating time for each learning process is pre-
sented in the fourth column. The number of cycles, 
which was obtained to minimize the objective function 

Fig. 11   The optimization process of hybrid algorithm for damage detection of UHPFRC communication tower
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(difference between damage estimation and actual damage 
classification) to achieve an acceptable algorithm for dam-
age prediction, is presented in the last column.

The figure shows the verification of the objective function 
during the optimization process using various types of learn-
ing methods with different learning coefficients. The objec-
tive function, which represents the percentage error between 
the actual and damage cases and the predicted damage, is 
evidently reduced after the 5th, 22nd, and 23rd cycles of 
optimization, thereby indicating an increase in accuracy. In 
addition, during the optimization process, the graph of the 
estimated damage classification shows excellent agreement 
with the minimum objective function, thereby confirming 
the accuracy of the hybrid algorithm to estimate and predict 
the damage classification based on dynamic frequency.

The objective function (difference of predicted and real 
damage for UHPFRC communication tower) is shown in 
Fig. 12 which indicated close agreement between pre-
dicted and real damage scenario in the optimized and 
trained algorithm.

6.6.5 � Testing of optimization hybrid learning algorithm

After completing the optimization process, few actual dam-
age cases for the tower are considered to test the trained 
algorithm.

The frequency of the damaged tower is used to test the 
trained algorithm. Due to limitation of obtained frequency 
data because of difficulties to access various parts of tower 
structure to generate excitation by knocking using impact 
hammer (or shaker) and record data by sensors (using long 
cables to connect impact hammer and also all 3 sensors to 
the data logger which located at the middle height of the 

tower are caused more noise on data), it is tried to use the 
maximum number of data to have a better training. There-
fore, 90% of data were selected for train of hybrid algorithm 
and 10% of data were randomly selected to test the trained 
prediction method.

However, few attempts have been made to use various 
proportion of data in range of 50% to 98% for training of 
hybrid algorithm, and it was revealed that as expected using 
more data set for training is resulted more accurate pre-
diction. Hence, for the considered communication tower, 
accuracy of training using almost above 80% of data led 
to acceptable accuracy, therefore, it is decided to use 90% 
of frequency results for training of hybrid algorithm and 
remained 10% for accuracy testing of trained system. There-
fore, data for frequency response were divided to two parts 
as 90% for training and 10% for testing. Therefore, the 10% 
of frequency data which considered for testing, were not 
used in the training process.

The 79 cases, which were divided into 9 classes from 
FEM, were used to train the hybrid algorithm. A total of 
90% of the finite element results used for training and 10% 
of the data were used for testing the algorithm to verify the 
hybrid algorithm. The comparison between the prediction 
damage classification and the finite element damage classi-
fication. The prediction accuracy of actual cases, confirming 
the accuracy of the hybrid algorithm to predict the damage 
scenarios.
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Also, the frequency result of the tower in the healthy 
condition is implemented to test the hybrid algorithm, as 
shown in. The predicted classification was compared with 
the actual case that resulted from the experimental test. The 
predicted results (0) were accurately classified and con-
firmed the high accuracy of the hybrid algorithm in predict-
ing the healthy case of the UHPFRC communication tower. 
Therefore, the developed hybrid algorithm can accurately 
predict the damage classification for the UHPFRC communi-
cation tower. The testing samples were accurately classified, 
and the estimated time to operate the hybrid algorithm was 
approximately 12.3085 s. The minimum estimated objec-
tive function value was0.02055 (the agreement between 
predicted and real damage scenario in the optimized and 
trained algorithm).

7 � Verification of hybrid algorithm with case 
study of Segments 2–3

Due to limitation and feasibility of making damage in the 
30 m tower, another part is considered to create damage 
and test them to validate the accuracy of develop optimized 

Fig. 12   Measured vs. predicted damage classification of UHPFRC 
communication tower using

Fig. 13   Communication tower segments 2–3 details

Fig. 14   Details for segments 2–3
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hybrid algorithm to predict damage condition. For this pur-
pose, tower segments and their connection (2–3), are con-
sidered and tested experimentally before and after making 
damage to validate the proposed hybrid algorithm model. 
As showed in Fig. 13, a part of segment 2–3 and its connec-
tion is cut with 5 m high to conduct testing before and after 
creating damage and verify the computation procedure for 
damage detection.

A dynamic actuator is used to apply load and make dam-
ages in the tower segments. Same procedure that used for 
test the UHPFRC tower was considered to test tower seg-
ments 2–3 as explained in the following.

Implementing various structural frequency response in 
different conditions such as healthy, slight damage (small 
cracks), damage (medium cracks) and large damage (large 
cracks) for training of hybrid system indicated that the pre-
diction was not effective for very slight damages. As men-
tioned before, it is because of very small cracks (0.1 mm 
width and less than 200 mm) have no effect on frequency 
response of structure therefore, training of prediction method 
which is based on learning data (frequency response in this 
study) cannot be done properly. In the other side, similar 
issue has been occurred for the major cracks which hap-
pened due to widening of the medium cracks by applying 
higher loads. Since the stiffness of structural member has 
already changed through experiencing medium cracks which 
led to losing the integrity of material, then by widening of 
cracks and also increasing of length of crack, there were only 
slight change on the frequency response of structure which 
effected on the training of the hybrid system. Therefore, the 
best effective results which obtained was for medium cracks 
which as civil engineer aspect, it is the main important dam-
age condition to be considered for the structural stability. 
For this reason, in this study, medium damages have been 
considered and corresponding results have reported.

7.1 � Numerical modeling of UHPFRC tower 
segments 2–3

Is used to develop segments 2–3 as same as the considered 
segment. A fixed boundary condition is applied to the foun-
dation of segments 2–3.

The Lanczos eigensolver analysis is implemented to gen-
erate the frequency. A 150-mm mesh size is used to mesh 
segments 2–3 as shown in Fig. 14.

Similar damage scenarios for UHPFRC communication 
tower are created for segments 2–3 using the FE method. 
The 33 damage scenarios (damage index) consist of remov-
ing one to six bolts from the connection separately of seg-
ments 2–3, vertical crack, horizontal crack, and the combi-
nation of vertical and horizontal cracks. The 200-mm cracks 
are located at 500-mm intervals. Table 4 listed the conditions 
class type and number for segments 2–3.

7.2 � Finite Element frequency analysis results 
for UHPFRC communication tower segments 
2–3

A total of 33 damage scenarios, including the separate 
removal of 1 to 6 bolts from the connection of segments 
2–3, vertical cracks, horizontal cracks, and a combination 
of vertical and horizontal cracks, were used to assess the 
frequency after damage to UHPFRC communication tower 
segments 2–3.

Table 4   Damage class type and damage case number for segments 
2–3

Damage type and location Segment Case No Class No

Healthy No. damage 0 0
Losing 1 bolt Connection of 

seg 2–3
1 1

Losing 2 bolt 2
Losing 3 bolt 3
Losing 4 bolt 4
Losing 5 bolt 5
Losing 6 bolt 6
Without epoxy 7
Horizontal crack at 0.25 m Segment 2 8 2
Horizontal crack at 0.5 m 9
Horizontal crack at 0.75 m 10
Horizontal crack at 1 m 11
Horizontal crack at1.25 12
Horizontal crack at 1.5 m 13
Vertical crack at 0.25 m Segment 2 14 3
Vertical crack at 0.5 m 15
Vertical crack at 0.75 m 16
Vertical crack at 1 m 17
Vertical crack at1.25 18
Vertical crack at 1.5 m 19
Horizontal crack at 0.25 m Segment 3 20 4
Horizontal crack at 0.5 m 21
Horizontal crack at 0.75 m 22
Horizontal crack at 1 m 23
Horizontal crack at1.25 24
Horizontal crack at 1.5 m 25
Vertical crack at 0.25 m Segment 3 26 5
Vertical crack at 0.5 m 27
Vertical crack at 0.75 m 28
Vertical crack at 1 m 29
Vertical crack at1.25 30
Vertical crack at 1.5 m 31
Horizontal and vertical crack at 

mid of seg 2 and 3
Seg3-2 33 6
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7.3 � Experimental test procedure for Segments 2–3

A part of segment 2–3 and its connection cut to conduct the 
test in healthy condition and after damage and verify the 
computation procedure for damage detection. For this pur-
pose, 1.5 m of segment two and 1.5 m of segment three was 
cut after constructed the tower as shown in Fig. 15. Then 
these two parts are connected to each other from the joints 
using epoxy and bolts and embedded in the foundation with 
1 m height for hold end of segment 2–3 which bolted to the 
strong floor. The cyclic load is applied to the top of segment 
laterally to make damage in the body of segments 2–3.

Figure 16 shows the details of UHPFRC communication 
tower segments 2–3 and their conection in the vertical posi-
tion with a fixed boundary condition by bolting the segments 
foundation to the ground.

The same procedure for testing the UHPFRC communi-
cation tower is implemented for testing of segments 2–3. 
An impact hammer Type 9726A5000 is utilized to excite 
segments 2- 3 in healthy and damage conditions, and the 
response is recorded using three accelerometers.

The setup of the test is explained in following:

1.	 The tower specimen is located to the ground.
2.	 The tower foundation is tied to the floor using bolts to 

create a fixed support as a boundary condition for seg-
ments 2–3 in the vertical position.

3.	 Connecting of dynamic actuator to the top of segment 3 
to apply the vibration and damage the considered seg-
ments.

The test procedure is presented as follows:

1.	 The accelerometers are installed. To ensure adequate 
adhesion, epoxy resin is applied between the acceler-
ometer and the surface of tower segments 2–3.

2.	 The knocking point is marked as shown. The excita-
tion points are placed at 16 points (8 points in front of 

Fig. 15   Construct of UHPFRC 
communication tower segment 
2–3

Fig. 16   Install the accelerometers for segment 2–3 in vertical position

Fig. 17   Setup the Data logger for segment 2–3
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the segments and 8 points at the side) to provide better 
excitation.

3.	 Setup the data logger. The hammer and accelerometers 
are connected to the data logger for segments 2–3 as 
shown in Fig. 17.

The acquired response time history signals are converted 
into the frequency spectra domains using the Fourier trans-
form by dividing the Fourier transform signals of the accel-
erometers (output signals) by the Fourier transform signal 
of the impact hammer (input signals). After the raw data 
are measured and saved using the NVGATE software, the 
MODAL analysis software is used to model segments 2–3, 
as shown in Fig. 18, and to calculate the FRFs results.

The acquired response time history signals are converted 
into the frequency spectra domains using the Fourier trans-
form by dividing the Fourier transform signals of the accel-
erometers (output signals) by the Fourier transform signal 
of the impact hammer (in- put signals). After the raw data 
are measured and saved using the NVGATE software, the 
MODAL analysis software is used to model segments 2–3, 
and to calculate the FRFs results. The modal parameter that 
contains the natural frequencies are extracted from the FRFs 
by a curve fitting technique. In other words, from the experi-
mental modal analysis, the dynamic properties of segments 
2–3, including the FRFs and natural frequencies, are deter-
mined at each undamaged and damaged state.

To evaluate the frequency response of tower for various 
types of cracks, the cyclic displacement is applied using 
dynamic actuator up to 75 mm and then test stopped and 
frequency response is measures. Then by applying more 

displacement it is tried to cause more crack in vertical and 
horizontal direction and evaluate the response frequency 
again to test the developed algorithm to predict the damage.

The MTS dynamic actuator with 1000kN capacity was 
used to apply dynamic cyclic load make damages in the 
segments 2–3. The extension plate was needed to design 
and fabricate to fit to the tower segments and connect it to 
the actuator for applying the cyclic load with maximum 
150-mm displacement as presented in Fig. 19.

Figure 20 shows the installation of the extension plate 
for the dynamic actuator and prepares it for applying cyclic 
load to the top side of segment 3. The damage levels con-
sidered in step of 75 and 150 mm displacement.

In the initial stage of initiating damage during experi-
mental testing, some slight cracks appeared with width of 
0.1 mm and length of less 50 mm to 200 mm, which only 
could be able to observe them using magnifier. However, 
these slight cracks had no effect on the dynamic response 
of considered structure and once cracks width increase 
more than 0.2 mm width and 200 mm length, then fre-
quency response of structures showed some changes.

7.3.1 � Experimental results of undamaged case segments 
2–3

In this section, segments 2–3 and their connection were 
tested to obtain the dynamic characteristics of the struc-
ture in the frequency domain. The segments were excited, 
and the same procedure as explained for communication 
tower was conducted to extract the modal parameters of 

Fig. 18   UHPFRC segments 2–3 
using MODAL software
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segments 2–3 in a healthy condition (bolted foundation 
segment after adding epoxy), as shown in Fig. 21.

The maximum number of modes that could be captured 
using the selected setup with the presented bandwidth from 
0 to 400 Hz was illustrated from the FRF measurements.

FRFs results were determined at the undamaged con-
dition for segments 2–3 from the experimental modal 
analysis through MODAL software. The peaks of modal 
frequency for segments 2–3 before damage is appeared 
in 17.56 Hz while the last mode (mode number 10) is 
appeared at 339.05 Hz as presented in the Stabilization 
chart to calculate the frequency of segments 2–3 before 
damage in frequency bandwidth 0-400 Hz.The frequencies 
values for the undamaged segments 2–3 are presented in 
Table.5.

7.4 � Experimental results of damaged segments 2–3

In this experimental test, various damage scenarios were 
examined. These scenarios consisted of the following 
cases:(1) bolted foundation to the ground without using 
epoxy in connection, (2) bolted foundation to the ground 
with epoxy in connection, (3) bolted foundation to the 

ground with four loose bolts from connection, and (4) 
applied cyclic forces to carry segments to make crack dam-
age using a dynamic actuator with 75 and 150 mm displace-
ment amplitude. The modal testing was conducted for each 
damage scenario as mentioned.

The specimen (segments 2–3) was excited in a frequency 
bandwidth of 0 Hz to 400 Hz using the impact hammer. 
Then, using three accelerometers, the response of the struc-
ture was recorded. The measured data in the analyzer were 
transferred, and NVGate software was used to convert them 
in terms of fast Fourier transform. The NVGate software 
exported the FFT results in a UUF format. Modal utility 
read the UFF format files and exported them to FRF; then, 
the frequency and damping were generated through MODAL 
software.

The outcomes of the experimental modal analysis of the 
damaged and undamaged seg- ments (2–3) were obtained 
and explained in this section.

Figure 22 shows the knocking of segments (2–3) after 
segment damage by applying lateral force on the tower seg-
ment connection. Incremental load was applied for displace-
ment of75 and 150 mm through the dynamic actuator. The 
FRF response was measured at two-step damage with 75 

Fig. 19   Displacement Vs time
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and 150 mm from the applied displacement due to differ-
ent damage scenario of crack. The dynamic frequency was 
evaluating in different crack level.

Horizontal and vertical cracks appeared in the middle of 
segments 2–3 after applying 75 and 150 mm displacement 
through the dynamic actuator. This type of damage (vertical 
and horizontal cracks in both segments) was classified as 
damage class number (6).

The modal parameter (natural frequencies) of the intact 
segments 2–3 were extracted from the FRFs using the post-
processing module in MODAL software. For each case of 
experimental test, the envelopes of recorded FRFs were 
obtained to observe a shift in natural frequencies. The sta-
bilization chart to calculate the peaks of modal frequency for 
the first 11 modes of segments 2–3 with different damage 
cases in frequency bandwidth 0–400 Hz was evaluated.

The frequency values and their variation with respect 
to undamaged condition at different damage degrees were 
determined. The analysis results of the recorded frequency 
show that the frequency decreased with the increase in dam-
age severity. Therefore, frequency related to tower segment 
with the removal of bolts from the foundation is approxi-
mately 13.35 Hz and that due to the reduction of the stiffness 
in comparison of the frequency of healthy segments 2–3 is 
approximately 17.56 Hz. In addition, the result indicates that 
the increase in stiffness with the use of epoxy between the 
segment connections 2–3 was up to approximately 16.06 
and that without using epoxy was approximately 17.56 Hz.

The damage generated a localized reduction in the stiff-
ness of the structure; thus, the natural frequencies decreased 
as compared to those corresponding to the healthy segments. 
The result of 4 loose bolts at the connection or with dam-
age (75 and 150 mm) using the dynamic actuator decreased 
due to the reduced stiffness in comparison to the healthy 
segment.

The maximum reductions of the natural frequency were 
23.97%, 8.71%, 8.54%, 6.83%, and 4.48% for mode 1, f2, f4, 
f5, and f6, respectively, with respect to the frequency of the 
healthy segment case. Moreover, when the crack increased, 
the modal natural frequency decreased.

Fig. 21   Knocking bolted foundation segment after adding epoxy

Table 5   Experimental frequency values for undamaged segmental 
2–3

Mode No f Healthy(Hz) Mode No f Healthy(Hz)

Mode 1 17.56 Mode 6 231.95
Mode 2 51.91 Mode 7 236.75
Mode 3 137.2 Mode 8 259.5
Mode 4 149.43 Mode 9 330.42
Mode 5 168.01 Mode 10 339.05

Fig. 22   Knocking segments 
(2–3) with 150 mm damage in a 
different position
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7.5 � Verification of FE results of Segments (2–3)

To validate the FEM, the FE analysis frequency values were 
compared with recorded ex- perimental frequency values 
for segments 2–3 healthy condition as listed in Table.6.
Moreover, the variation of finite element frequency results 
and experimental frequency results was in- troduced, and 
the variation was less than 20% for all modes, which proved 
the capability of FEM to generate the frequency results for 
segments 2–3 after damage.

7.6 � Verification of hybrid algorithm using case 
study 2

Same procedure for UHPFRC communication tower was 
considered for segments 2–3 in verify the Hybrid learning 
algorithm. A large number of frequencies data consist of 33 
damage cases were used as input to the Hybrid algorithm 
which it is about 380 for segments 2–3 and its connections. 
The output data were divided into 8 classifiers (0–7) includ-
ing of healthy case (0) and set as output (damage index).
Training and testing of Hybrid algorithm with segments 2–3.

A large number of data consisting of 34 cases generated 
from FEM, including healthy and damaged cases, were con-
sidered to train the hybrid algorithm as input data. The 34 
cases were divided into seven classifiers (0–6). The experi-
mental data were used as testing data for the hybrid algo-
rithm to validate the developed hybrid algorithm and were 
divided into five cases. The healthy case was numbered (0) 
and the damaged cases were numbered (5) and (6) based 
on the damage type that was generated through the experi-
mental test.

The optimization process through the AdaBoost, Bag-
ging, and RUSBoost algorithms for the damage detection 
of UHPFRC communication tower segments 2–3 is shown 
in Fig. 23. The number of cycles is presented in column 
8, which considered the learning process to minimize the 

objective function and obtain an acceptable algorithm for 
damage prediction.

Figure 24 shows the objective function for the estimated 
minimum objective function with minimum observed 
objective function for the frequency of damaged and 
healthy segments 2–3. As shown in the presented graph, 
the objective function gradually decreases between the 
3rdand 9th cycles to reach the minimum objective func-
tion. This decreasing trend proved the accuracy of the 
hybrid algorithm in estimating and predicting the damage 
classification based on dynamic frequency.

The 34 training samples were used to train the hybrid 
algorithm. After completing the training, the developed 
hybrid algorithm was tested by an experimental test, which 
was conducted in healthy condition as well as damage con-
dition using a dynamic actuator. As mentioned previously, 
the five experimental test cases were conducted as follows:

Table 6   Verification of experimental and numerical frequency results 
for UHPFRC tower segment 2–3

Mode No f EXP Healthy f FE Healthy Variation %
( f EXP-f FE)/f EXP

Mode 1 17.56 17.5292 0.175399
Mode 2 51.91 57.3287 − 10.4386
Mode 3 137.2 145.581 − 6.1086
Mode 4 149.43 146.773 1.77809
Mode 5 168.01 169.468 − 0.86781
Mode 6 231.95 248.749 − 7.24251
Mode 7 236.75 275.388 − 16.3202
Mode 8 259.5 284.191 − 9.51484

Fig. 23   Running of hybrid algorithm for segments 1–2

Fig. 24   Measured vs. predicted for frequency
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1)	 f1: frequency of bolted foundation with epoxy at connec-
tion segments,

2)	 f2: frequency of bolted foundation without epoxy at con-
nection,

3)	 f3: frequency with four loose bolts at segment connec-
tion,

4)	 f4: frequency of segments with 75 mm damage pushed 
using an actuator, and

5)	 f5: frequency of segments with 150 mm damage pushed 
using an actuator.

After inputting the dynamic frequency testing results 
for the aforementioned experimental test, the damage clas-
sifications were predicted by trained hybrid algorithm as 
shown in Fig. 25. The comparison of the predicted damage 
classification with the actual damaged case resulting from 
the experimental test shows that the first classification was 
related to the healthy condition, which was in accordance 
with the frequency test result made before any damage in 
segments 2–3 and their connection. However, the second 
and third frequency inputs led to the prediction of damage 
classification no. 5, which was for loose bolts and connection 
without epoxy as a result of the same experimentally tested 
damaged cases.

The last two cases were related to the prediction of dam-
age class no. 6, which had vertical and horizontal cracks 
in segments 2–3. The same cracks and damage classifica-
tion appeared after experimental test of segments 2–3 by 
applying 75and 150 mm cyclic displacement using the 
dynamic actuator. Although the crack numbers and sizes 
were different for applied displacement in experimental test, 
robust hybrid algorithm successfully predicted real dam-
age classification, which proved the accuracy of the devel-
oped hybrid algorithm in identifying damage classification 
using frequency data with noticeable variation. Therefore, 
the developed hybrid algorithm can accurately predict the 
damage classification of the UHPFC communication tower 
with desire accuracy. The testing samples were correctly 
classified in 1.2604 s predicted time and 0.29606 objective 
function value.

The finite element analysis results are compared with the 
recorded frequency values of the experimental test before 
damage to validate FEM analysis. Furthermore, the variation 

of finite element frequency results and experimental fre-
quency results was presented in Table.5. The variation is 
less than and equal to 20%. Although, the verification of 
experimental and numerical frequency results for UHPFRC 
tower segment 2–3 showed up to 20% variation, but the 
robust algorithm successfully predicted the actual damaged 
case with 100% accuracy.

This issue proved the reliability and performance of the 
developed hybrid algorithm with numerical simulation 
results by having unavoidable variations and differences 
with the actual result.

As demonstrated before, since the small cracks with less 
than 0.1 mm width and 200 mm length have no effect on 
overall strength and stiffness of considered tower segments, 
therefore the developed hybrid ensemble method was not 
performed to predict small cracks through obtained dynamic 
frequency response. However, as reported, the output of 
trained hybrid system to identify medium cracks was highly 
satisfied. Therefore, it is concluded that if the considered 
parameters have no effect on training data, then, the hybrid 
system also will not be capable to perform proper prediction.

8 � Overall procedures for development 
and verification of hybrid algorithm 
for damage detection

To simplify presenting and demonstrating the developed 
procedure, the overall flowchart for train the hybrid algo-
rithm for damage detection in communication tower using 
dynamic frequency response and it is verification is depicted 
in Fig. 26. Although the developed procedure is developed 
for communication tower but same process can be imple-
mented to any type of structure such as high-rise building, 
dams, tower and etc.

9 � Conclusion

This study aims to develop a hybrid optimized prediction 
method based on AdaBoost, Bagging and RUSBoost algo-
rithms as health monitoring system for communication 
tower which can work with noisy, randomness, instability 

Fig. 25   Damage detection using 
a hybrid algorithm for segments 
2–3
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Fig. 26   Methodology procedure for development of hybrid algorithm
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and skewed data to identify the location and type of damage 
for UHPFRC communication tower using frequency domain 
response with high convergence, quality solutions and lower 
iterations.

For this purpose, UHFPRC communication tower with 
30 m height located in Malaysia was considered in this 
study. Damage classification algorithm is adopted based on 
Adaptive Boosting, Bagging, and RUSBoost algorithms. The 
FEM was used to generate the frequency of the healthy and 
different type of damage for UHFPRC communication tower 
as input data for training the hybrid algorithm. The type and 
location of damage set as output (Damage Index).

The frequency response functions (FRF’s), for healthy 
UHFPRC communication tower, was obtained using the 
excitation caused by an impact hammer and the signal gath-
ered by three accelerometers sensors attached in suitable 
positions. Then the frequency results were generated using 
the MODAL simulation tools.

The frequency results of the experimental test of UHF-
PRC communication tower was used as data for testing the 
algorithm. The results of the testing for hybrid algorithm 
indicated the high accuracy prediction damage classifica-
tion and finite element damage classification. Moreover, 
the comparison of predicted damage classification with the 
actual case resulting from the experimental test shows that 
the testing samples were correctly classified with a minimum 
estimated objective function and running time for the hybrid 
algorithm.

In addition, another case study consists of tower segments 
2–3were considered to verify and validate the proposed 
hybrid algorithm in damage detection. The results showed 
that, the testing samples were correctly classified for healthy 
and damage cases. Therefore, it is concluded that the devel-
oped hybrid algorithm can be used for damage detection for 
special structure such as communication tower.
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