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Abstract
Currently, there is a limited number of tools that can be used to assess progressive damage of buildings in large-scale study 
areas. The effectiveness of such tools is also constrained by a lack of sufficient and reliable data from the buildings and the 
area itself. This research article presents an innovative framework for damage detection and classification of precast concrete 
(PC) buildings based on satellite infrared (IR) imagery. The framework uses heat leakage changes over time to assess the 
progressive damage of buildings. Multispectral satellite images are used for a spatial scanning and large-scale assessment 
of a study area. A deep learning object detection algorithm coupled with two pixel intensities classification approaches are 
utilized in the framework. The proposed framework is demonstrated on two case study areas (parts of Karaganda and Almaty 
cities) in Kazakhstan using a set of multitemporal satellite images. Overall, the proposed framework, in combination with 
a YOLOv3 algorithm, successfully detects 85% of the PC buildings in the study areas. The use of a peak heat leakage clas-
sification approach (in comparison to mean heat leakage classification) over the 4 years showed a good agreement with the 
proposed framework. On-site visual inspections confirmed that PC buildings that were classified as having “High damage 
probability” have indeed evident signs of deterioration, as well as a more heat leakage than the rest of the buildings in the 
study areas. Whilst the framework has some limitations such as its applicability to extreme continental climate and its low 
sensitivity to detect minor damage, the proposed innovative framework showed very promising results at detecting progres-
sive damage in PC buildings. This article contributes towards developing more efficient long-term damage assessment tools 
for existing buildings in large urban areas.
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1  Introduction

Much of the existing precast concrete (PC) infrastructure 
around the world has reached its service life, which has 
led to structural issues. Indeed, the demand for affordable 

housing after WWII pushed constructors to build PC build-
ings in a hasty manner. Moreover, constant construction 
cost reductions, inadequate design and low-quality control 
during the construction phase led to the poor present struc-
tural condition of these buildings [1]. In the former USSR 
countries alone, an estimate of two hundred thousand PC 
buildings with an average age of 55 years exist [2, 3]. Previ-
ous independent investigations showed that some of these 
buildings have already reached their critical structural state 
and require immediate intervention [4, 5]. Figure 1 illus-
trates common structural issues in such PC buildings, with 
spalling of panel joints being identified as the most critical 
one [6]. The repetitive freezing and thawing cycles destroy 
the plastering cover, resulting in deep gaps and corrosion of 
the internal reinforcement elements and metal joints between 
panels. These gaps are in turn connected to interior rooms 
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in the buildings, and this produces a high level of heat loss 
[7–9].

However, the large amount of buildings and their location 
across the former USSR countries makes the assessment 
of existing PC buildings difficult and impractical by exist-
ing methods/techniques. Moreover, no practical tools for 
large-scale damage assessment of such PC buildings have 
been developed so far. Therefore, in the last decades, remote 
sensing technologies, in particular infrared imagery (IR), 
computer vision (CV) and deep learning (DL) showed great 
potential to help solve the lack of assessment tools [10]. 
However, the assessment of existing structures experiencing 
progressive damage is incredibly complicated and thus not 
all optical evaluation methodologies can be directly applied 
in damage detection of buildings.

Remote sensing (RS) technologies collect information 
from a distance without any interaction with the object 
of interest [11]. Among these technologies are very well-
known seismic topography, gravity gradiometry and others 
[12]. RS technologies that use satellite or aerial multispectral 
optical imagery [13] provide remarkable results in damage 
assessment, if accompanied by image processing techniques 
[14]. The rapid development of RS technologies has led to 
the fast growth of their applications in spatial scanning and 
damage detection. More recently, these technologies have 
been used for damage identification of buildings by utilis-
ing various space or air platforms fitted with optical [15], 
radar [16], and LiDAR sensors [10]. All these methodolo-
gies concentrate on the use of received images to correlate 
building damage to visual patterns in pictures and perform 
damage classification. Many methods have been used for 
damage classification, applying co-occurrence matrices on 
satellite pictures [17] or morphological-scale spaces [18]. 
Other studies attempted to optimise the identification of spe-
cific building components, such as bricks and roof tiles [19, 
20]. Higher photographic resolution has enhanced the degree 
of detail in the images and, as a result, the complexity and 

variety of the objects that can be identified. Consequently, 
active learning methods [21] have been utilised to increase 
the quality of the damage classification for large-scale areas 
and to automate the process.

Image data processing for large-scale areas is time-
consuming and complex. As a result, several methods were 
proposed to automate data interpretation. These methods 
range from traditional Fourier analysis to advanced meth-
ods based on Markov random fields/Bayesian inference the-
ory or variational/partial differential equations [22]. More 
recently, analytical models and algorithms based on patterns 
and geometry recognition have been developed for image 
interpretation. Computer vision (CV) generally covers these 
areas, including image processing and analysis [23]. Among 
the different CV methodologies, Convolutional Neural Net-
works (CNN) has a huge potential for damage detection in 
buildings [24–26].

For instance, several architectures have been presented in 
order to enhance the performance of debris detection [27]. 
However, such architectures have used convolutional autoen-
coders to deal with a small number of samples [28], which 
have resulted in modest enhancements in damage categori-
sation. Other approaches have attempted to use multitem-
poral data to find differences before and after catastrophic 
events [29]. However, their practical application has been 
constrained by the lack of pre-event data. To compensate 
for the lack of pre-event data, subsequent research [30] used 
CNNs to define building footprints from multitemporal pre-
event images to update such footprints just after the disaster 
and compare them [10, 31].

However, all the above-mentioned approaches are based 
on pre-event and post-event comparisons of images. Hence, 
such approaches cannot be easily applied to existing build-
ings that experience progressive damage. In the last 2 dec-
ades, satellite IR imagery showed the potential to help in 
this matter [25]. IR imagery relies on the radiation emitted 
by objects in proportion to their temperature. Most of the 

Fig. 1   Issues in PC buildings: a—Concrete spalling of external bearing walls, b—Spalling of external panel joints
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applications of thermal sensing lie in the areas of effective 
energy use [32, 33], natural hazards or disasters monitor-
ing [34, 35], and climate and environmental studies [36]. 
However, to date, limited studies have examined the use of 
IR satellite and airborne imagery to detect damage in build-
ings. Past research has confirmed that the amount of heat 
transferred through a material depends heavily on its thermal 
properties [37, 40]. This is particularly true for the thermal 
conductivity (TC) of a material. The TC greatly depends 
on the severity of damage in the material, and this in turn 
is expected to change the pixel intensity in the IR images. 
Very recently, Zhang [41] applied UAV IR photography 
for automatic detection of earthquake-damaged buildings. 
Thermal imagery was utilised to detect external damage and 
cracking, and a methodology to assess the severity of dam-
age was proposed. Despite the promising results, Zhang’s 
methodology was limited to the maximum altitude of the 
UAV and, therefore, could not cover large areas in the same 
assessment. More detailed review of application of UAV 
for damage assessment was presented by Rakha [42]. Nev-
ertheless, large-scale post-disaster assessments using IR 
has been successfully performed in the past. In a pioneer-
ing study, Hanada and Yamazaki [43] used measured aver-
age heat leakage from buildings to compare histograms of 
leakage intensities and detect building damage before and 
after a tornado. The results showed that IR images success-
fully detected damage in 76% of the buildings that actually 
experienced some damage (as confirmed by on-site inspec-
tions). However, the manual processing and handling of the 
collected data performed by Hanada and Yamazaki makes 
this process unsuitable to assess damage at a large scale (e.g. 
large urban areas). Therefore, a new framework to process 
large amounts of data in a more efficient manner is required.

This article proposes an innovative framework for dam-
age detection and classification of PC buildings based on 

satellite IR imagery. The framework automatically detects 
changes of heat leakage in such buildings over time to assess 
their damage condition. The effectiveness of the framework 
is demonstrated through the analysis of multitemporal IR 
satellite images from buildings in two case study areas in 
Kazakhstan, and the results are compared with on-site vis-
ual inspections of the actual buildings. An overview of the 
proposed framework is introduced in Sect. 2 of this article. 
Section 3 discusses the case studies that were used to test 
the effectiveness of the proposed framework. It also intro-
duces the CNN used in this research to automatically detect 
damaged buildings. Sections 4 and 5 compare and discuss 
the results from the analysis and on-site visual inspection. 
Concluding remarks of this investigation are given in Sect.  
6. This article contributes towards developing more efficient 
long-term damage assessment tools for existing buildings in 
large urban areas.

2 � Methodology

The proposed damage assessment framework is divided into 
two stages (Stage 1 and Stage 2), as shown in Fig. 2. Each 
stage consists of several steps:

2.1 � Stage 1

Step 1. IR Imagery pre-processing performs image pre-
processing, sorting, and aligning to ensure the same posi-
tioning of the view. After that, an IR channel separation is 
performed to extract only required IR data.

Step 2. Pan sharpening performs image quality enhance-
ment for an automated building extraction.

Fig. 2   Flowchart of proposed damage assessment framework
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Step 3. IR histogram normalisation, contrast enhancement 
performs normalisation and equalisation of the histograms, 
for further classification part.

2.2 � Stage 2

Step 4 and Step 4.1. CNN model training and YOLOv3 
building detection. These steps perform training of the 
You only look once (YOLO) object detection model. The 
YOLOv3 model was pretrained based on ImageNet dataset 
[44]. The sub-step 4.1 trains the CNN model for PC build-
ing detection adopting a transfer learning technique. Trans-
fer learning applies the knowledge from source domains to 
target domains which might be related but different [45]. 
The YOLOv3 model’s architecture is given in Appendix A. 
This model is used for automatic PC buildings detection and 
extraction over the entire study area from Step 3. It should 
be noted that YOLOv3 was chosen as it has proven to be a 
robust and easily deployable model for object detection [46]. 
In this article, the purpose of the YOLO algorithm applica-
tion is to automatically detect PC buildings over the entire 
study area (it is not used for a damage classification nor 
detection itself). Therefore, other object detection models 
can be used for the same purpose of PC building detection.

Step 5. Heat leakage assessment performs heat leakage 
intensities evaluation and damage classification based on 
pixel intensities values.

Step 6. Production of classification map performs the 
damage probability classification. It uses classification logi-
cal expressions to produce damage probability classification 
maps to suggest further on-site investigations.

As shown in Fig. 2, Stage 1 consists of three steps and 
performs image processing required for an object detection 
model, such as image aligning, channels separation, pan-
sharpening, and histogram normalisation. Step 1 separates 
image data from the redundant information from other chan-
nels using GIS software (QGis 3.10 [47]). The far-infrared 
(FIR) channel was separated from the geo-tiff file that rep-
resents a tensor with a degree of four. This FIR channel still 
has enough information of the existing buildings, including 
pixel intensities that can be used for heat leakage evaluation. 

Equation 1 is the mathematical representation of IR channel 
separation:

where in is an original image from a year ‘n’, uD are pixel 
intensities and D is the number of channels in multispectral 
image, as defined in Eq. 2:

The single FIR channel represents a black and white 
image with pixels of different intensities and with a very 
low spatial resolution (6 mpp).

In Step 2, a pan-sharpening technique [48] represented 
by Eq. 3 was used to increase the image resolution. In this 
technique, pairs of low-resolution multispectral images (IR 
spectra, Fig. 3a) and high-resolution panchromatic images 
(Fig. 3b) are combined to obtain new high-resolution multi-
spectral images (Fig. 3c) of 1 mpp.

where PXS(·) is the modified sharpened image, i,j are the 
pixel indexes, PAN is a panchromatic image, PANsmooth is 
a smoothed panchromatic image and S is a low-resolution 
multispectral image.

After that, the resultant IR images are coloured using 
the viridies palette, as explained later in Section III (Step 
1–Image preparation). Therefore, Step 2 produces IR images 
of high resolution and with coloured and enhanced features 
of the multi-channelled satellite images.

Step 3 eliminates discrepancies in the light intensities 
of the images. Accordingly, the source images from Step 2 
(e.g. Figure 4a) are normalised to reference images (Fig. 4b) 
through a cumulative-probability distribution histogram 
matching process [49]. This led to images with similar light 
intensities (Figs. 4c), which allows for a direct comparison 
of the heat leakage using pixel intensities.

Stage 2 in Fig. 2 detects buildings (Step 4), assesses their 
heat leakage (Step 5), and produces a classification map of 
the buildings in the study area (Step 6). Step 4 implements 

(1)in = uD(X,Y) => in = u(X,Y),

(2)D = {n|0, 1,… n}.

(3)PXS(i, j) =
PAN(i, j)

PANsmooth(i, j)
⋅ S(i, j),

Fig. 3   Step 2. Example of pan-
sharpening process: a—Mul-
tispectral image, b—Panchro-
matic image, c—Pan-sharpened 
IR channel
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the trained YOLOv3 algorithm to detect existing PC build-
ings in the same study area over several consecutive years. 
The pixel intensities of each detected building are then eval-
uated for every year. If a general trend of changes in pixel 
intensities is detected, then the PC building is classified with 
a “damage class”. Based on these results, a classification 
map is created. A sub-step 4.1 trains the CNN model for 
object detection adopting a transfer learning technique. The 
YOLOv3 model’s architecture is given in Appendix A.

It should be mentioned that the YOLOv3 algorithm can-
not directly handle high-resolution IR satellite imagery. 
Therefore, a sliding window approach is adopted to han-
dle high-resolution images. The window slides along the X 
and Y axes to produce cropped images equal to the size of 
the window. The YOLOv3 algorithm deals only with small, 
cropped images (see Fig. 5a). It should be also noted that, in 
the sliding window approach, the initial IR image itself does 
not shrink after each sliding round. This modification was 

done to reduce computational difficulties and to shorten the 
process of building detection. Hence, the detection cycles 
are reduced to a number of cropped images taken from the 
original IR image. Each of these cropped images is then fed 
into an object detection model to determine the coordinates 
of the detected buildings.

The coordinates of each building determined in Step 4 
(on every nth cropped image) are then converted into global 
coordinates (Glob(X1, X2, Y1, Y2)) using Eq. 3:

where glob(wn) are the global coordinates of the nth cropped 
image, and loc(bw) are the local coordinates of each building 
on the nth cropped image.

When the local and global coordinates are combined, 
various overlapping boundary boxes appear at the same loca-
tion due to a multiple object detection process (see Fig. 5b). 

(4)Glob(X1,X2, Y1, Y2) = glob
(
wn

)
+ loc

(
bw

)
,

Fig. 4   Step 3—Histogram matching of two images: a—source image from Step 2 (Almaty city, 2015), b—reference image (Almaty city, 2018), 
c—normalised image after histogram matching

Fig. 5   Local to global coordinates conversion: a—sliding windows, b—overlapping boundaries and definition of IoU, c—global coordinates of 
each building after NMS
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Therefore, to improve the precision of the building detection, 
it was decided to overlap each consecutive cropped image. 
A non-maxima suppression (NMS) method is applied to 
remove the unnecessary boundary boxes [50]. This method 
utilises an Intersection over Union function (IoU) (Eq. 4 and 
Fig. 5b) to find an area of intersection between two different 
boundary boxes, and then it divides such area of intersection 
by the total combined area of the two boundary boxes. The 
result from Eq. 4 is then compared to a threshold value so 
that IoU value higher than the threshold is kept as a unified 
boundary box for a detected building.

where B1 and B2 are the areas of the two boundary boxes 
being analysed.

Finally, the global coordinates of each building (Fig. 5c) 
are stored in a CSV file for heat leakage analysis in Step 5.

Step 5 performs heat leakage assessment based on the 
pixel intensities. Accordingly, pixel intensities are obtained 
for every building according to their global coordinates. 
After that, an algorithm is applied to classify buildings 
according to their damage, as described in the following 
section.

The last step in the damage assessment framework (Step 
6) produces a classification map of the buildings based on 
the damage class obtained in Step 5.

2.3 � Damage classification system

In the proposed framework, damage classification probabil-
ity is necessary to determine the damage condition of the PC 
buildings on the study area. The ‘damage class’ probability 
of an individual building is defined by an integer number C 
{c|c = 0,1,2,3}:

c = 0–Low damage probability,
c = 1–Minor damage probability,
c = 2–Moderate damage probability,
c = 3–High damage probability.
The proposed classification utilizes the hypothesis of 

higher heat leakage due to internal damage and is deter-
mined by the rate of a building's external heat radiation. 
Therefore, buildings with higher heat leakage are assumed to 
have a higher level of damage. Validation of this hypothesis 
is discussed in the following chapters. The exact building's 
damage level and its relationship to heat leakage will be 
obtained in further studies.

In the proposed framework, two approaches of damage 
assessment are examined so as to determine the best correla-
tion between damage and heat leakage.

Approach 1. For each multitemporal image of an indi-
vidual building (in), a function of a maximum value of heat 

(5)IoU =
B1

⋂
B2

B1

⋃
B2

,

leakage detection λmax is sought after (Eq. 6). Equation 6 
defines a peak intensity value of the pixels over the RGB 
channels:

where Pc is pixel intensities, and the rest of the variables are 
as defined before.

Approach 2. As an alternative to the above approach, 
Eq. 7 defines a mean intensity value of the pixels over the 
RGB channels for each multitemporal image (in):

The damage probability of a building is defined based on 
the peak values or mean values of heat leakage intensities, 
as defined by Eq. (8):

where C is a damage gradation coefficient.
It should be noted that C does not represent the severity of 

a building’s damage. However, it shows a trend of changes 
in heat leakage, which can represent a progressive damage. 
Therefore, the following classification is based on the likeli-
hood of damage appearance. Accordingly, ѱ(λmax/mean) is a 
logical expression as given below:

if  𝜆n > ⋯ > 𝜆3 > 𝜆2 > 𝜆1 > 𝜆0 → High damage 
probability.

if 𝜆
n
> 𝜆

n−1 > 𝜆
n−2⋯

⋃
𝜆
2
> 𝜆1> 𝜆0 → Moderate dam-

age probability.
if 𝜆n > 𝜆n−1⋯

⋃
𝜆
3
> 𝜆2

⋃
𝜆1 > 𝜆0  → Minor damage 

probability.
If none of the above is applicable → Low damage 

probability.
The logical expression above evaluates the trend of heat 

leakage changes over a specific time between observations. 
In the above Eq. (8), a consecutive increase in the heat leak-
age (λn) over the years of observation represents a high dam-
age probability. In this framework, it is proposed to adopt a 
time between observations of approximately twelve months. 
The highest damage class probability (“High damage prob-
ability”, c = 3) indicates a constant heat leakage rate growth 
over an ‘n’ number of years. This would suggest that high 
damage probability is expected to be observed in a build-
ing, and that further urgent investigations are necessary to 
confirm the actual severity of the damage. On the contrary, 
a low damage class (“Low damage probability”, c = 0) indi-
cates an inconsistent trend in heat leakage changes, which 
in turn suggests that a building has low damage probability 
and, therefore, it is not of serious concern. It should be noted 
that, since the framework detects the consistency in damage 
progression over time, even minor damage over a few years 
could be classified as “High damage probability”. Whilst 

(6)�max,n = max
(
Pc

(
iD
n

))
,

(7)�mean,n = mean
(
Pc

(
iD
n

))
.

(8)C = �
(
�max∕mean

)
∀C ∈ c,
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the actual damage in the building may not be severe, this 
information can be used to propose more thorough on-site 
inspections to verify the condition of the building. There-
fore, even minor damage detected at an early stage could be 
swiftly repaired before it turns into a major structural issue.

To show the effectiveness of the proposed framework, the 
following section applies the framework to two case study 
areas where PC buildings with structural issues have been 
identified.

3 � Case study of Karaganda and Almaty cities

3.1 � Data collection

In this study, the framework was applied to detect damage on 
existing PC buildings located in Karaganda and Almaty, two 
of the main cities of Kazakhstan. Karaganda is located in an 
extreme continental climate zone with a temperature range 
from -40 to + 38˚C, whereas Almaty has a mild continental 
weather (-30 to + 30˚C). Almaty is also located at the highest 
seismic zone of Kazakhstan [51].

The multitemporal (years 2015–2018) satellite images 
from these two cities were provided by a governmental com-
pany (JSC Kazakhstan Gharysh Sapary). Each multitemporal 
image covered parts of Almaty and Karaganda cities equal 
to 8.61 sq.km and 3.62 sq.km, respectively. Due to the pres-
ence of critical security facilities in the studied cities, much 
of the dataset cannot be publicly shared. Accordingly, only 
the main results of non-critical areas are presented and dis-
cussed in this article. The received images were taken by the 
satellites KazSat-1 and KazSat-2, which started operating in 
2015 and 2016, respectively. Both KazSat 1 and 2 are geo-
stationary satellites with geosynchronous orbits. Therefore, 
the nadir direction remains unchanged throughout all service 
time of these satellites. KazSat-1 has a panchromatic cam-
era with a spatial resolution equal to 1 m per pixel (mpp). 
KazSat-2 can provide multispectral images with a spatial 
resolution of 6 mpp and a far-range infrared camera with a 
spatial resolution of 6 mpp. The signal to noise ratio of these 
satellites is > 100, as reported by the manufacturer [52].

To apply the framework, images were chosen from the 
same areas considering similar weather conditions and time 

of the year. In order to avoid any change in the emissivity on 
a particular day, all selected IR images were taken between 
5.00 and 6.30 AM. Therefore, at the time the IR images 
were taken, all buildings would been cooled down for at 
least 10 h and no other heat sources could have disturbed the 
emissivity. This was done to minimise discrepancies with 
heat loss values due to variations of exterior temperature 
at different dates, changes in operation of heating fixtures 
inside the buildings, and sunlight heat radiation. The chosen 
images come from days with an outside temperature below 
− 10 °C, when (according to the local regulations) the cen-
tral heating station provides maximum power to the heating 
system. In this way, the maximum value of heat leakage 
could be observed. Table 1 shows the weather data for the 
4 years of images received for both cities, with a minimum 
of 11 months interval between the received images. Each set 
of images consisted of five separate channels: Red, Green, 
Blue, far-range infrared (FIRc) and panchromatic spectra in 
GeoTIFF format. Before receiving the images, each of them 
was pre-processed to overcome spatial distortions due to the 
spherical shape of the Earth.

3.2 � Stage 1

3.2.1 � Step 1. IR imagery pre‑processing

In Step 1, a separation of the single IR channel was per-
formed in QGIS 3.10 software as explained in the Meth-
odology. The obtained binary black and white images from 
previous step, had very low contrast and could not be used 
directly as an input to CNN. Therefore, additional colouring 
was required to achieve a higher contrast. Several palettes 
(spectral, magma, viridies) were considered in this study 
(see pallets comparison in Fig. 6a, b, c, c, d, e).

As shown in Fig. 6, it was found that the viridies pal-
ette could keep more contrast data than the other palettes, 
which helped the YOLOv3 algorithm to detect objects 
more efficiently. More than that, it was also able to high-
light peak heat leakages over the surface of the buildings. 
Even though the performed colouring process produced 
excellent results in terms of heat leakage values, addi-
tional contrast enhancement was still required to define 

Table 1   Weather history at 
observation dates

No. City Weather history

2014–2015 2015–2016 2016–2017 2017–2018

1 Almaty (8.61 sq.km.) − 11C
50%
Cloudy day

− 12C
Clear sky day

− 12C
50%
Cloudy day

− 11C
50%
Cloudy day

2 Karaganda (3.62 sq.km.) − 25C
Clear sky day

− 10C
Clear sky
day

− 12C
50%
Cloudy day

− 16C
Clear sky
day
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the edges of the buildings. This was performed at a later 
stage during the histogram matching process (Step 3).

3.2.2 � Step 2. Pan sharpening

In Step 2, a dataset of coloured low-resolution IR images 
was combined with a dataset of high-resolution panchro-
matic images. As a result, four high-resolution IR images 
of Almaty with resolution of 4148 × 2121 pixels and four 
images of Karaganda with resolution of 1874 × 1866 pix-
els were obtained.

3.2.3 � Step 3. Image normalisation (histogram matching)

A process of peer-to-peer building’s heat leakage assess-
ment required pixel intensities to be matched and aligned 
with each other. To perform this process, a cumulative 
distribution histogram matching was implemented. Fig-
ure 7 row-I presents the outcomes of this process for a 
set of images from Karaganda for the years 2015–2018. 
A reference image from Karaganda (year 2016, image A) 
was chosen as a benchmark due to its best contrast and 
better visualisation of the peak heat leakage values. How-
ever, if a reference image was chosen year 2017 (image 
B), then image artifacts tended to appear. Please refer to 
Fig. 7 row-II. These visual artifacts appeared due to the 

Fig. 6   Different pallets comparison: a—original multispectral image, b–B/W IR channel, c–spectral palette, d–magma palette, e–viridies palette. 
Karaganda city 2016. Courtesy of JSC “Kazakhstan Gharysh Sapary”

Year 2015 Year 2016 Year 2017 Year 2018 

Original images. 
Before 

normalisa�on.

I
A�er 

normalisa�on
using year 2016 

as reference. 

II
A�er 

normalisa�on
using year 2017 

as reference. 

A B

Fig. 7   Cumulative distribution histogram matching process for an area of Karaganda city. Rows-I, II are two sets of normalised images with dif-
ferent reference images, year 2016 and 2017, respectively
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large difference in colours between the source and refer-
ence images. This would have implied a too high value of 
the calculated statistical distribution of the intensities of 
the pixels for the correction. Thus, a difference between 
pixel intensities forced the algorithm to bring magenta 
colour to the matched image (Fig. 8c). Therefore, in this 
step, it is crucial to make a proper decision in terms of 
reference image selection.

3.3 � Stage 2

3.3.1 � Step 4.1 Training of the YOLOv3 object detection 
model

A YOLOv3 deep learning object detection model was 
trained for automatic PC buildings detection [46, 53] 
based on a manually prepared dataset of images of PC 
buildings. The prepared dataset had in total: training 
(3200) and validation (300) images. In this study, the 
authors were limited by such number of IR satellite 
images of the PC building. Therefore, to increase the 
accuracy of the model, it was decided to increase the size 
of the dataset through a data augmentation process. It 
was used to increase the diversity of the training dataset 
by applying random but realistic changes to the existing 
images, like rotation or rescale, skewing, blurring, mir-
roring, cropping. After the data augmentation, the set of 
training images (90% of total number of images) and vali-
dation images (10%) increased to 6800 images and 630 
images, respectively. The dataset was manually labelled 
with LabelIMG software [54] in a Pascal VOC format.

3.3.2 � Step 4. Object detection

After completion of YOLOv3 model training, a process of 
automatic PC buildings detection was done. The size of the 
sliding window was selected to be 150 × 200pixels. Each 
pixel corresponded to 1 m of a real size. Thus, to ensure that 
a standard building (rough size = 33.6 × 11.52 m) would fit 
in an area of 150 × 200 m [55], it was also decided to use a 
threshold value for IoU equal to 10%.

3.3.3 � Steps 5 and 6

In Step 5, the heat leakage evaluation of PC buildings was 
performed based on their pixel intensities. Two CSV files 
were obtained, one for each case study city. These files 
contained information of global coordinates for individual 
buildings obtained in Step 4. For each global coordinate, a 
set of peak and mean pixel intensities values was recorded. 
After that, in Step 6, a classification algorithm was applied 
to the pixel intensities values of the buildings. After the clas-
sification, a damage class was assigned for every building. 
Based on the obtained damage classes, a classification map 
was created for every studied area.

4 � Results and discussion

4.1 � Automatic PC building detection

Table 2 summarises the overall accuracy of the CNN trained 
model at detecting the existing PC buildings for the study 
areas. The results show that the average accuracy of the 

Fig. 8   Comparison: a—YOLOv3 detection map with b—ground truth map for part of Almaty city (year 2015). Courtesy of JSC “National com-
pany “Kazakhstan Gharysh Sapary”
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model is high and equal to 85%. Accuracy was calculated 
as a ratio between the number of true detected buildings 
(automatically detected–false detected) and the overall num-
ber of existing buildings. For Almaty city, the number of 
PC buildings successfully detected by the CNN model was 
equal to 436 out of 451, whereas such figures were 150 out 
of 161 for Karaganda city. It should be highlighted that the 
tolerance in the accuracy of predictions for other study areas 
can be higher or lower than that achieved here, depending 
on the amount and quality of data. Despite the minor issues 
found during the automatic PC building detection process, 
the outcomes were suitable for heat leakage evaluation.

Figure 8a, b compares the YOLOv3 detection map with 
the PC buildings and the ground truth map (exact position 
of the buildings) for a part of Almaty (year 2015). It should 
be noted that the boundary of the buildings in Fig. 8b was 
defined manually. As can be seen from Figs. 9a–-b and 
Table 2, the framework performed well and detected the 
majority of the existing PC buildings in the study area.

Whilst the automatic CNN detection algorithm was 
highly effective at detecting and highlighting the existing 
PC buildings within a study area of more than 8 sq. km 
(Fig. 8a), some features are worth discussing:

–	 Boundaries overlapping and close appearance for some 
buildings (Fig. 8a(1)). Due to the limitations of the NMS 
algorithm and sliding window techniques, some of the 
sliding windows cut buildings into smaller parts, thus 
resulting in small boundary boxes. Therefore, the IoU of 
these boundary boxes was much smaller than the thresh-
old value.

–	  Some buildings were wrongly detected, as shown 
in Fig. 8a(2), where the roof of one storey house was 
predicted as a PC building. The wrong detection of 
the buildings shows that more data is still required to 
increase the accuracy.

–	  Few buildings were not recognised as PC buildings, as 
can be seen in Fig. 8a(3). Not-recognised buildings are 
highlighted on the ground truth map (Fig. 8b).

4.2 � Damage detection and classification

Figure 9A, B compares the classification maps of a part 
of Karaganda city obtained based on peak values (Fig. 9a) 
and mean values (Fig. 9b) of pixel intensities. As shown 

in Table 3, for Karaganda city, 35 buildings were found to 
have “Low damage probability” for both peak and mean 
values of pixel intensities. 13 out of those 35 buildings 
actually matched (e.g. compare building 31 in Fig. 9a 
and b), and thus were confirmed to have “Low damage 
probability” by both approaches. At the same time, 108 
and 97 buildings had “Minor damage probability” if peak 
and mean pixel intensities were used in the calculations, 
respectively. 73 buildings duplicated in both approaches 
and were, therefore, flagged as having “Minor damage 
probability” (e.g. compare building 46 in Fig. 9a and b). 
It was also found that 4 and 15 buildings had a “Moderate 
damage probability” class for peak and mean pixel intensi-
ties, correspondingly, but only three of them matched in 
both maps. Finally, “High damage probability” was found 
by both peak and mean approaches in three buildings, but 
only one matched in both maps (e.g. compare building 33 
in Fig. 9a and b).

The study area for Almaty city had 451 PC buildings, and 
436 of them were automatically detected with the YOLOv3 
algorithm. It was found that 13 and 67 buildings had “Mod-
erate damage probability” for peak and mean pixel inten-
sities, respectively, and eight of them actually matched. 
Finally, the most critical category of “High damage prob-
ability” was found to have two and four buildings, and two 
of them duplicated between the two approaches.

All “High damage probability” classified buildings in 
Fig. 9a, b for both classification approaches showed a 
gradual increase in terms of heat leakage over 4 years 
of observation. However, not all of them had a uniform 
increase in heat leakage intensity. For example, Fig. 10 
illustrates an example of heat leakage intensities for 
building #33 in Karaganda city. The framework identi-
fied a consecutive heat leakage increase throughout the 
4 years of observations and, consequently, building #33 
was labelled as having a “high damage probability”. The 
increase in mean values of pixel intensities was consider-
able between 2015 and 2016 (almost 2%), thus indicating 
progress of the damage. However, in the last 3 years of 
observations (2016–2018), the average increase in pixel 
intensities was less than 0.5% per year on average. At 
the same time, the peak values calculation approach of 
the first three years (2015–2017), led to a value of heat 
leakage intensity increase of 13%. While, between 2017 
and 2018, the heat leakage peak value changed drastically 

Table 2   Accuracy of the CNN 
model at detecting existing PC 
buildings

City Size of study area Number of buildings Accuracy

Existing
buildings

Automatically
detected

False
detections

Average 
accuracy

Almaty 8.61 sq.km 451 436 37 88% 85%
Karaganda 3.62 sq.km 161 150 18 82%
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Fig. 9   Damage classification 
map created based on: a—peak 
values of pixel intensities, b—
mean values of pixel intensities. 
Karaganda city
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from 130 to 229 (i.e., an increase of 76%). Despite of this 
discrepancy, the overall trend of heat leakage increase 
was observed for both classification approaches.

Based on the results of this section, it is evident that 
the vast majority of the buildings (approximately 83% for 
Almaty and 88% for Karaganda) are in good structural 
condition, and they do not require immediate retrofit-
ting actions. (See Table 3). However, there are still a few 
buildings in the study areas that are in a critical state, and 
therefore, it is proposed to do further urgent assessment.

To further validate the results obtained in this step, 
an on-site visual inspection of the studied buildings was 
carried out to assess their actual level of damage. None-
theless, as it is explained further, both classification 
approaches performed well and showed almost 50% of 
identical results in terms of damage classification.

4.3 � Validation of results. On‑site visual inspection

An on-site investigation found that most of the existing PC 
buildings in the case study areas have the following similar 
features:

–	 5 storeys
–	 PC sandwich panels as wall systems and facades
–	 Floor height – 2.5 m
–	 Average area in plan – 800-850m2
–	 Average Length and Width – 13 × 65 m
–	 Average number of apartments per building—70

Figure 11a shows examples of three existing PC build-
ings in Karaganda city. These buildings were identified as 
having “Minor damage probability”, “Moderate damage 

Table 3   Damage classification table

City No. of 
detected 
buildings

Classification approach Low
(c = 0)

Matched Minor
(c = 1)

Matched Moderate
(c = 2)

Matched High
(c = 3)

Matched

Almaty 436 Mean values 108 48 313 172 13 8 2 2
Peak values 104 261 67 4

Karaganda 150 Mean values 35 13 108 73 4 3 3 1
Peak values 35 97 15 3

Fig. 10   Heat leakage intensity 
change over four years for 
Building 33 (Karaganda city). 
Mean and peak values of pixel 
intensities

Year Year 2015 Year 2016 Year 2017 Year 2018
Mean value 91.5 93.2 93.4 94.1
Peak value 113 115 130 229
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probability”, and “High damage probability” in the analy-
ses presented in the previous section. The visual inspection 
of such buildings was performed in December 2020 at 
an outdoor temperature of − 23˚C. The images in Fig. 11 
were taken with a DSLR Camera Canon 5d mark IV and 
with an IR Camera FLIR model C3, with a spectral range 
of 7.5—14.0 µm. In addition, during the investigation, 
it was also found that most of the PC buildings in the 
research areas had not undergone any retrofitting works 
for the last 8 years. Therefore, the risk of heat loss due to 
the renovation works was minimal.

The outcomes from the visual inspection confirmed the 
findings from the damage probability classification maps. 
Indeed, the main structural components of building #25 on 
Erubayeva street (Fig. 11a) had minor signs of deteriora-
tion. Overall, the condition of the joints between PC pan-
els was very good (Fig. 11d), as was the overall condition 
of the building considering its age. This was confirmed 
by minimal traces of heat leakage, as shown in Fig. 11j. 
At the same time, building #26 (Fig. 11b) had noticeable 
signs of joints spalling (Fig. 11e) and poorer comparing to 

Minor damage probability Moderate damage probability High damage probability

(a) (b) (c)

(d) (e) (f)

(j) (h) (k)
54, Erubayeva.
#25 Classifica
on map

30/2, Nurken Abdirova str.
#26 Classifica
on map

26/2, Nurken Abdirova str.
#33 Classifica
on map

Fig. 11   Examples of structural condition of three existing PC buildings in Karaganda city December 2020: a–c—general view, d–f—PC panel 
joints condition, j, k—IR images
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building #25 overall condition. It also showed more traces 
of heat leakage with IR camera (Fig. 11h).

Building #33 (Fig. 11c) had the highest class of damage 
probability in the analysis (see Fig. 10). The on-site inspec-
tion revealed that building #33 had multiple localized defects 
that (as a whole) were sufficient to be successfully identified 
by the proposed framework. It was confirmed that the plas-
tering at the joints between PC panels had spalled severely 
(Fig. 11f). As a result, deep gaps were visible, and these 
could communicate with the interior of the building. Such 
condition is causing freeze–thawing cycles and corrosion of 
the internal reinforcement and metal joints between panels 
as shown in Fig. 12a, b. The thermal images revealed that 
building #33 had a higher heat leakage than buildings #25 
and #26, which was evidenced by the heat leakage patterns 
on the surface of the building (Fig. 11k). Overall, the aver-
age surface temperature of building #33 was 0.8 °C higher 
than that of the other two buildings. The overall condition of 
the building was deemed as poor, and a furthermore detailed 
inspection is recommended.

The results reported in this article should be considered in 
the light of some limitations. The damage assessment frame-
work proposed here can only be applied to PC buildings 
without an outer insulation layer. This is because this cat-
egory of PC buildings experience heat leakage (through their 
damaged elements) that can be observed by an IR camera. It 
is worth mentioning that, in this study, there is no direct cor-
relation between the nadir direction of the satellite imagery 
and the façade damage of buildings, especially as the facades 
of many of them cannot be observed by KazSat 1 and 2 sat-
ellites. However, images or data from other satellites could 
provide an insight into such correlation. The proposed dam-
age assessment framework can only be applied to countries 
with an extreme continental climate so that the highest level 
of heat leakage can be observed during winter. It should 

be also noted that this article focused on large-scale dam-
age assessment. Accordingly, the proposed damage assess-
ment tool is unsuitable to identify individual small-scale 
damage (e.g. cracks, concrete spalling, etc.), which can be 
much smaller than the resolution of satellite images used in 
civil applications. Despite of that, the proposed framework 
successfully detects increments in heat leakage as damage 
(either small or large-scale) progresses in a building, and this 
can be used to suggest further on-site inspections.

The proposed framework can also be trained and extended 
to identify potential changes in emissivity (i.e., changes in 
pixel intensity) resulting from roof renovations (solar panels, 
etc.), should this be necessary. Even though the proposed 
automatic damage assessment framework showed promising 
results, more conventional non-destructive testing (NDT) 
methods will be required to assess the buildings’ structural 
condition for further retrofitting or engineering decisions. 
Ongoing research is examining the use of additional results 
from NDT to further optimise the classification algorithm. 
However, the framework proposed in this article is deemed 
as readily applicable for large-scale damage assessment.

5 � Conclusions

This article presents a novel framework for damage assess-
ment and classification based on satellite IR imagery. The 
effectiveness of the framework is demonstrated using two 
case study areas of Almaty and Karaganda cities in Kazakh-
stan. The framework is further verified with on-site visual 
inspections of actual buildings that the framework flagged 
as having “Minor damage probability”, “Moderate damage 
probability”, and “High damage probability”. Based on the 
results of this study, the following conclusion can be drawn:

Fig. 12   Examples of metal joints corrosion in PC damaged buildings. a/b – signs of concrete colour change due to corrosion
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•	 Satellite IR images can be effectively used for rapid 
damage assessment and suitable to produce damage 
classification maps of the PC buildings in the study 
areas. The results showed a gradual increase of heat 
leakage for PC buildings that were classified as having 
“High damage probability” by the proposed framework.

•	 In combination with the YOLOv3 algorithm, the pro-
posed framework successfully detected 85% of the PC 
buildings. Specifically, it detected 88% and 82% of the 
PC buildings in Almaty and Karaganda cities, respec-
tively. The proposed framework is suitable to detect 
buildings in large-scale study areas of up to 8.0 sq. km.

•	 On-site visits confirmed the findings from the clas-
sification maps. Most of the PC buildings classified 
as having “Moderate damage probability” and “High 
damage probability” by the framework were visually 
inspected. PC buildings with “High damage probabil-
ity” showed clear evidence of progressive damage and 
had an overall poor structural condition. The most com-
mon issue was the spalling of joints at the edges of the 
PC panels, which is leading to corrosion of the internal 
reinforcement and metal joints between panels.

•	 The use of a peak pixel intensities classification 
approach is more conservative and therefore predicts 
more PC buildings as having “Moderate damage prob-
ability” or “High damage probability”. Therefore, it is 
proposed to use a peak pixel intensities classification 
approach for rapid spatial scanning of large study areas.

This article contributes to the development of an effective 
long-term damage assessment tool for existing PC buildings 
and provides the basis for large urban thermal analysis. This 
framework can also be used as core data for the energy effi-
ciency analysis of large urban areas.

Appendix A

YOLOv3 structure

Figure 13 shows the YOLOv3 deep learning model used in 
this study. YOLOv3 is a single-stage CNN consisting of a 
backbone (DarkNet 53 Network) and a head subnet (Feature 
Pyramids Networks)[46]. The backbone computes the con-
volutional feature maps over an input image. A head subnet 
is constructed on top of the backbone to perform classifica-
tions and bounding box regressions. The large, medium and 
small detected objects (output) are merged into one image of 
predictions.

C2

C1

C0

Feature Pyramids NetworkDarkNet 53Network
Type Filters Size Output
Convolutional 32 3x3 256x256
Convolutional 64 3x3/2 128x128
Convolutional 32 1x1

1x Convolutional 64 3x3
Residual 128x128
Convolutional 128 3x3/2 64x64
Convolutional 64 1x1

2x Convolutional 128 3x3
Residual 64x64
Convolutional 256 3x3/2 32x32
Convolutional 128 1x1

8x Convolutional 256 3x3
Residual 32x32
Convolutional 512 3x3/2 16x16
Convolutional 256 1x1

8x Convolutional 512 3x3
Residual 16x16
Convolutional 1024 3x3/2 8x8
Convolutional 512 1x1

4x Convolutional 1024 3x3
Residual 8x8
Avgpool Global
Connected 1000
Softmax
Connected 1x1

Convolutional set

Convolutional + Up Sampling

Concatenation

Convolutional set

Convolutional + Up Sampling

Concatenation

Convolutional set

1 Detection. Low 
resolution for 
large objects

2 Detection. 
Medium resolution 
for medium 
objects

3 Detection. High 
resolution for 
small objects

Merged image 
with detected 
objects

Fig. 13   YOLOv3 model architecture
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Appendix B

Data augmentation

Figure 14 presents an example of data augmentation pro-
cedure. The data augmentation procedure is commonly 
used to increase a dataset of images (Fig. 14a) by apply-
ing random changes such as: scaling (Fig. 14b), rotation 
(Fig. 14c), skewing (Fig. 14d), blurring (Fig. 14e), mir-
roring (Fig. 14f), or cropping (Fig. 14g).
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