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Abstract
In railway engineering, monitoring the health condition of rail track structures is crucial to prevent abnormal vibration issues 
of the wheel–rail system. To address the problem of low efficiency of traditional nondestructive testing methods, this work 
investigates the feasibility of the computer vision-aided health condition monitoring approach for track structures based on 
vibration signals. The proposed method eliminates the tedious and complicated data pre-processing including signal map-
ping and noise reduction, which can achieve robust signal description using numerous redundant features. First, the method 
converts the raw wheel–rail vibration signals directly into two-dimensional grayscale images, followed by image feature 
extraction using the FAST-Unoriented-SIFT algorithm. Subsequently, Visual Bag-of-Words (VBoW) model is established 
based on the image features, where the optimal parameter selection analysis is implemented based on fourfold cross-validation 
by considering both recognition accuracy and stability. Finally, the Euclidean distance between word frequency vectors of 
testing set and the codebook vectors of training set is compared to recognize the health condition of track structures. For the 
three health conditions of track structures analyzed in this paper, the overall recognition rate could reach 96.7%. The results 
demonstrate that the proposed method performs higher recognition accuracy and lower bias with strong time-varying and 
random vibration signals, which has promising application prospect in early-stage structural defect detection.

Keywords  Rail track structure · Health condition monitoring · Vibration signal processing · Image feature extraction · 
Visual Bag-of-Words model

1  Introduction

With the rapid development of urban rail transportation, 
ballastless track has been widely used in many metro lines 
because of its advantages of low periodic maintenance and 
greater vehicle stability [1]. For metro shield tunnels, the 
track structures consist of rail, fasteners, track slab, sub-
grade and tunnel lining. The track slab and subgrade are 
usually constructed as monolithic cast-in-place concrete 
structures on the tunnel lining. However, under continuous 

cyclic trainloads, cracks often occur at the interface between 
the subgrade and the tunnel lining near the expansion joints 
of track slab [2]. Over time, this type of cracks will further 
propagate along the cross-sectional interface, ultimately 
affecting damage to other vehicle components or track struc-
tures [3]. Before such damage issues can be detected visu-
ally, the track structures have not been able to achieve nor-
mal service performance, which will endanger the operation 
of trains. Therefore, health condition monitoring and dam-
age detection of rail track structures, especially the early-
stage damage identification, is critically important [4–6].

As the vibration properties (e.g., the natural frequency, 
amplitude, and damping ratio) of structural system vary with 
the mechanical parameters and boundary conditions, many 
researchers attempted to utilize the variation of vibration 
properties to detect the structural health condition [7–10]. 
And, the commonly used methods for vibration signal analy-
sis included empirical mode decomposition (EMD) [11, 12], 
short-time Fourier transform (STFT) [13, 14], wavelet trans-
form (WT) [15, 16], etc. In general, the traditional vibration 

Shaohua Wang and Hao Zheng have contributed equally to this 
work and share first authorship.

 *	 Lihua Tang 
	 l.tang@auckland.ac.nz

1	 Department of Mechanical and Mechatronics Engineering, 
The University of Auckland, 1010 Auckland, New Zealand

2	 School of Civil Engineering, Southwest Jiaotong University, 
Chengdu 610031, China

http://orcid.org/0000-0001-9031-4190
http://crossmark.crossref.org/dialog/?doi=10.1007/s13349-022-00616-x&domain=pdf


2	 Journal of Civil Structural Health Monitoring (2023) 13:1–14

123

signal-based health condition evaluation in the frequency 
domain required pre-processing of the raw signals. Hence, 
complex mapping and transformations were performed to 
filter out noise and redundant information to highlight the 
information related to the damage. Finally, eigenvalues 
or feature vectors that best characterize the damage were 
extracted.

However, the noise is a challenging issue to deal with. In 
practical engineering, wheel–rail impact vibration contains 
multiple excitation sources, with time-varying and random 
characteristics, which means that there are numerous envi-
ronmental noises in the vibration signals. These strong envi-
ronmental noises tend to mask the subtle variations caused 
by damage in the vibration signals [7, 17]. For such complex 
signals, traditional signal processing methods have shown 
shortcomings with low efficiency and poor generality. To 
address these issues, researchers developed some signal vis-
ualization methods by converting the vibration signals into 
two-dimensional grayscale images for analysis. The image 
features could then be extracted directly for damage detec-
tion and recognition without noise reduction [18–20]. These 
analysis methods demonstrated better robustness in strong 
noises environments [21, 22]. Specifically, Do et al. [23] 
used the scale invariant feature transform (SIFT) algorithm 
to extract the local feature vector of 2D images based on 
vibration signals for the detection and diagnosis of asynchro-
nous motor faults. Zheng et al. [24] proposed a novel FAST-
Unoriented-SIFT algorithm for extracting planetary gear 
fault feature values, which was more efficient and had more 
extracted features compared to SIFT algorithm. Meanwhile, 
bag-based representations have been widely used to com-
pute the similarity between digital objects by characterizing 
the frequency of occurrence of object features [25]. Among 
them, Visual Bag-of-Words (VBoW) models have been 
effectively used for image feature clustering and classifica-
tion tasks [26]. Qi et al. [27] used VBoW model to extract 
surface features of soil to efficiently characterize textural 
information. Yang et al. [28] extracted the vibration signal 
features of rotating machinery based on the VBoW model 
for detection and achieved good results. Zheng et al. [29] 
found that VBoW model had good recognition efficiency 
and accuracy when training small datasets of planetary gear 
fault features.

Inspired by the aforementioned research, in this work, 
a vibration-based and computer vision-aided health condi-
tion evaluation method for rail track structures is proposed. 
Different from the other traditional methods, this method 
could evade the noise reduction process, directly extract 
numerous redundant features, and use the redundancy of 

features to achieve a more robust signal description. The rest 
of the paper is organized as follows. Section 2 focuses on 
the methodology used in this work. It consists of three parts: 
grayscale image processing of rail vibration signals, image 
feature extraction and the establishment of VBoW model 
with optimal parameters. Section 3 describes the vibration 
signal acquisition during field test. Section 4 analyzes and 
discusses the experiment results. Specifically, the optimal 
parameters are first obtained from the training dataset by 
fourfold cross-validation. Then, the reliability and real-
time of the proposed method are verified using the testing 
dataset. Finally, the advantages of the method used in this 
work is highlighted by performance comparison. Conclusive 
remarks are given in Sect. 5. By employing the vibration 
signal visualization, encoding and classification methods, 
the feature information of different track structural health 
conditions could be effectively identified.

2 � Methodology

2.1 � Vibration signal visualization

This section introduces the method to convert the raw vibra-
tion signals to the pixels of the grayscale image [30]. Firstly, 
the amplitude of one-dimensional time-domain vibration 
signal s is normalized to the range of [1, 255], and the nor-
malized signal snorm is obtained according to Eq. (1).

where s = [s1, s2,⋯ , sn] is the raw vibration signal, n repre-
sents the length of the signal, and sn is the magnitude of the 
n-th value of the signal.

Then, the normalized signal �norm is sequentially mapped 
to one pixel of the two-dimensional grayscale image G as 
the grayscale value. The grayscale value of each pixel of the 
grayscale image G is listed according to Eq. (2).

where G(x, y) denotes the grayscale value of the pixel 
in the x-th row and y-th column of the grayscale image G. 
snorm(i) denotes the i-th value of �norm . The obtained gray-
scale image G has M × N pixel points (i.e., M and N represent 
the numbers of the rows and columns of the grayscale image, 
respectively). The conversion method is shown in Fig. 1.

(1)snorm =
127

max(|s|) ⋅ s + 128

(2)
G(x, y) = snorm(N ⋅ (x − 1) + y), x ∈ {1, 2,… ,M}, y ∈ {1, 2,… ,N}
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2.2 � Image feature extraction

The image feature extraction method utilized in this work 
combines the features from Accelerated Segment Test 
(FAST) algorithm [31] and the excellent feature description 
capability of the Unoriented Scale Invariant Feature Trans-
form (SIFT) algorithm [32]. The FAST-Unoriented-SIFT 
algorithm has shown good performance and robustness in 
noisy environment [24].

2.2.1 � FAST feature point detection

The pixel points with large difference in grayscale value 
from the surrounding pixels are indicated as feature points 
[31]. The status Sp→q of center pixel p with respect to pixel 
q is calculated according to Eq. (3). p is a candidate feature 
point. q is any pixel on a circle around p with r being the 
radius, as shown in Fig. 2.

where G is the grayscale value of pixel point, nc is the 
corner detector on this circle and tp is the threshold value. 
The status dq or bq represents that the point pixel on this 
circle is darker or brighter than the center pixel respectively, 
and sq represents that the point pixel is similar to the center 
pixel. In other words, if the number of statuses dq and bq in 
Sp→q is greater than the corner detector nc, the center pixel p 
of this circle is considered as a feature point.

In this work, r = 4 and nc = 12 were taken according to 
Ref. [31]. The threshold value tp determines the number of 
extracted feature points, and the related analysis is shown 
in Sect. 4.1.1.

2.2.2 � Unoriented‑SIFT feature description

After detecting the feature points, 16 × 16 window around 
one feature point p is firstly taken, and then the gradient 
modulus and direction of each pixel point within this win-
dow are calculated according to Eqs. (4) and (5).

(3)Sp→q =

⎧
⎪⎨⎪⎩

dq,Gq ≤ Gp − tp

sq,Gp − tp ≤ Gq ≤ Gp + tp

bq,Gp + tp ≤ Gq

(4)
m(x, y) =

√
(G(x + 1, y) − G(x − 1, y))2 + (G(x, y + 1) − G(x, y − 1))2

(5)θ(x, y) = arctan
G(x,y+1)−G(x,y−1)

G(x+1,y)−G(x−1,y)

Fig. 1   Conversion of vibration signal to grayscale image

Fig. 2   A diagram of FAST feature point detection
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where m(x, y) and θ(x, y) denote the modulus and direction 
of the gradient, respectively.

After that, the window is divided into 16 cubes of 4 × 4, 
and the modulus of the gradient in each cube in 8 direc-
tions (45 degrees in each direction) is counted. An 8-dimen-
sional description vector is then obtained for each cube, and 
a 128 (16 × 8) dimensional description vector d is finally 
obtained for the whole window, which is the Unoriented-
SIFT description vector of feature point p. The process of 
Unoriented-SIFT feature description is shown in Fig. 3, 
where the direction of the arrow represents the gradient 
direction of the pixel, and the length of the arrow represents 
the modulus of the gradient.

2.3 � VBoW modeling

In the VBoW model, each image feature (i.e., the 128-dimen-
sional description vector d mentioned in Sect. 2.2.2) is quan-
tized as one word, and each grayscale image is viewed as a 
bag full of words. Then, similar image features are clustered 
into one class by k-means algorithm, and the vector of the 

clustering center is quantized as one keyword. Therefore, the 
VBoW modeling process includes keywords acquisition and 
grayscale image representation.

2.3.1 � Keywords acquisition

By assuming that N image features DN=
{
d1, d2,… , dN

}
 are 

extracted from one grayscale image, the k-means algorithm 
eventually partitions DN into � clusters 

{
Ci|i = 1, 2,… , �

}
 

by minimizing the squared error according to Eq. (6).

where Ci� ∩ Ci��≠i� = � and DN = ∪�

i=1
Ci . dj denotes one 

image feature in Ci . μi denotes the cluster center in Ci . The 
smaller the value of e is, the better the clustering result is. 
The calculation process is shown in Algorithm 1.

(6)e=

�∑
i=1

∑
dj∈Ci

‖‖‖dj − μi
‖‖‖
2

Fig. 3   The process of Unori-
ented-SIFT feature description
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2.3.2 � Grayscale image representation

After the keyword acquisition, the frequency of keywords 
in each grayscale image is counted to obtain the word fre-
quency vector. In the training set, the codebook vector is 
obtained by averaging the word frequency vectors repre-
sented by all grayscale images related to the same health 
condition, i.e., each codebook vector describes one health 
condition of the track structure. By calculating the Euclidean 
distance between the word frequency vector extracted from 
each grayscale image in the testing set and the codebook 
vectors of three health conditions in the training set, each 
word frequency vector is categorized to one health condi-
tion according to the minimum Euclidean distance to the 
codebook vector. The process is shown in Fig. 4.

2.3.3 � Algorithm of selecting optimal number of keywords

The number of keywords � is a critical hyper-parameter of 
VBoW model. To optimize the recognition accuracy and 
stability of the proposed health condition evaluation method, 
fourfold cross-validation is used to select the optimum of � 
during training step. Also, the value function �(�) , positively 
correlated with recognition rate and negatively correlated 
with standard deviation, is constructed to evaluate the merit 
of the selection of � (see Eq. (7)).

where P
�
 and S

�
 denote the overall recognition rate and 

standard deviation of the fourfold cross-validation results. 
The smaller the value of �(�) is, the better the recognition 

(7)�(�)=1 −
P
�

eS�
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accuracy and stability of the model corresponding to this 
hyper-parameter are.

To improve the computational efficiency, firstly the rec-
ommended data ranges of � are obtained by equal-interval 
down-sampling method. Next, the value function for each 

� in these ranges are calculated, and the � with the mini-
mum value function is the optimum �opt . The overview of 
the algorithm to seek the optimal number of keywords is 
shown in Algorithm 2.

Fig. 4   The process of grayscale images representation (Notes: ◆,☆,★ … denote keywords)

Fig. 5   The proposed rail track structural health condition evaluation method
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Fig. 6   Cross-sectional layout of rail track structure

2.4 � Rail track structural condition identification

In this work, the proposed method of rail track structural 
health condition consists of the following steps: Firstly, the 
raw vibration signals are subsampled and converted into 
grayscale images using the method in Sect. 2.1, which are 
divided into two parts, i.e., the training set and the testing 
set. Then, the FAST-Unoriented-SIFT algorithm in Sect. 2.2 
is used to extract features from the two datasets. After that, 
the VBoW model is built, respectively for the training set 
and the testing set using the method in Sect. 2.3. Specifically, 
based on vibration signals conversion and feature extraction, 
the optimum of keywords �opt is obtained by the algorithm 
described in Sect. 2.3.3. By calculating the Euclidean dis-
tance between the word frequency vector extracted from 
each grayscale image in the testing set and the codebook 
vectors of three health conditions in the training set, each 
word frequency vector is categorized to one health condi-
tion according to the minimum Euclidean distance to the 

codebook vector. The proposed rail track structural condition 
evaluation process is summarized in Fig. 5.

3 � Field test and vibration signal acquisition

The tested metro line has a total length of 80 km and the 
maximum operating speed is 80 km/h. To be specific, the 
tested rail track system is located in a single-hole, single-line 
circular shield tunnel. Two rails of approximately 60 kg/m 
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are supported by rail fasteners system spaced at 0.6 m inter-
vals on both sides along the line. Clips and anchor bolts of 
rail fastening system are used to hold the rails firmly on 
the track slab. Both the track slab and the subgrade are laid 
on the tunnel lining with cast-in-place reinforced concrete, 
with 20 mm expansion joints at every 12.5 m track slab. 
The cross-sectional layout of the railway track structures is 
shown in Fig. 6.

In this work, the damage type of rail track structure is 
the separation crack between concrete subgrade and tunnel 
lining, which mainly occurs near the expansion joint at the 
end of the track slab. Therefore, the entire field test includes 
the measurement of geometrical parameters of the separation 
crack and the vibration signal acquisition.

3.1 � Separation crack measurement

First, the geometric parameters of the separation crack in the 
same straight track were measured, including the penetration 
depth along the direction perpendicular to the tunnel lining 
and crack opening displacement, which were measured by 
feeler gauge and steel ruler, respectively. With the expan-
sion joint being the center (denoted as location of “0”), the 
geometrical parameters of the separation crack at a few loca-
tions on both sides of the center along the direction of the 
rail track were measured and recorded. The locations and 
geometric parameters of cracks are shown in Table 1.

With the continuous periodic loading from passing trains, 
the separation crack between concrete subgrade and tun-
nel lining will further propagate along the cross-sectional 
interface. The crack propagation is affected by the compo-
nent of the train loading normal to the propagation direction. 
When the direction of the train loading is close to 90º to the 
crack propagation direction (i.e., close to penetration), the 

Fig. 7   Schematics of rail tracks in different structural health condi-
tions (top view): a normal; b minor damage; c severe damage

Fig. 8   Accelerometer for rail track vibration measurement
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train loading influences the crack propagation significantly 
[33, 34]. Once the crack is fully penetrated, the concrete 
subgrade above the cracked area lacks the connection with 
the tunnel lining, leading to the significant decrease in the 

bearing capacity of the subgrade and the rapid crack propa-
gation along the longitudinal direction of the track. There-
fore, the penetration status is crucial in terms of crack propa-
gation. The classification criteria for the rail track structural 

Fig. 9   Vibration signals: a normal; b minor damage; c severe damage
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health conditions is therefore based on whether penetration 
is reached, i.e., the minor damage corresponding to the pre-
penetration status and the severe damage to the fully pen-
etrated status, as indicated in Fig. 7b and c, respectively.

3.2 � Vibration signal acquisition

After determining the damage types of the rail track struc-
tures, vibrations of the rail track with passing trains were 
measured. Three accelerometers were installed on the rail 
flange at the location of the expansion joints under three 
structural health conditions respectively, as shown in Fig. 8.

The vibration signals are acquired by the dynamic signal 
test and analysis system (model: DH5902N, DongHua Test-
ing Technology Co., Ltd), with 16 data acquisition chan-
nels. The accelerometers used in the test is piezoelectric 

Table 1   Locations and geometric parameters of cracks

Left hand Right hand

Location (m) Penetration depth (m) Crack opening dis-
placement (mm)

Location (m) Penetration depth (m) Crack opening 
displacement 
(mm)

Minor damage 0 2.9 1 0 2.9 1
 + 1.2 2.9 1  + 1.2 2.9 0.7
 + 2.4 2.2 0.75  + 2.4 1.0 0.7
− 1.2 2.9 0.8 − 1.2 2.9 1
− 2.4 1.0 0.8 − 2.4 / /

Severe damage 0 Fully penetrated 1.7 0 Fully penetrated 3.3
 + 1.2 1.45 1.3  + 1.2 1.45 1.5
 + 2.4 0.9 0.6  + 2.4 0.2 0.8
− 1.2 2.5 1.5 − 1.2 Fully penetrated 3
− 2.4 1.7 1.2 − 2.4 2.0 1.5

Table 2   Specification of 
accelerometer

Sensitivity Sensing range Sampling frequency Weight

Accelerometer 1 mV/m·s−2  ± 1000 m·s−2 0.5 ~ 10,000 Hz (± 10%) 5.5 g
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type (Model: DH1A108E, DongHua Testing Technology 
Co., Ltd) and the specification is listed in Table 2.

In this field test, the vehicle operating speed was 
35 ~ 50 km/h. When one train passed through a section of rail 
track, the vibrational displacement of that section was very 
significant within about 7.5 s. While the sampling frequency 
of vibration signals in this field test was 1000 Hz, consider-
ing that the rail would vibrate freely for a short time after 
the train passes, the corresponding time for vibration signal 
truncation in this work was 8.1 s, i.e., 8100 points for each 
segmented vibration signal. The time-domain acceleration 
signals of rail vibrations under three health conditions are 
shown in Fig. 9.

Overall, compared with the normal case, the vibration 
amplitude of minor damage has a slight increase when the 
same train passing, but the change is not obvious. However, 
the signal amplitude has a relatively obvious increase in the 
severe damage case than the other two cases. It shows that 
there are differences in vibration signals under different rail 
track structural health conditions, but the vibration signal is 
not sensitive to this early-stage structural damage.

4 � Results and discussion

In this work, 100 datasets corresponding to each health con-
dition (totally 100 × 3 datasets for three health conditions) 
are utilized for identification. Specifically, 80 datasets from 
each health condition (80 × 3 datasets totally) are utilized for 
training and fourfold cross-validation to ensure the robust-
ness of the algorithm in Sect. 4.1. Then, the remaining 20 
datasets from each health condition (20 × 3 datasets totally) 
are utilized for testing to verify the accuracy and effective-
ness in Sects. 4.2 and 4.3. Finally, in Sect. 4.4, the perfor-
mance of the proposed method is compared with other meth-
ods using the same 100 × 3 datasets.

4.1 � Optimal parameter selection

The selection of two parameters is important to build the 
VBoW model, i.e., the threshold value for feature extraction 
and the optimal number of keywords.

4.1.1 � Selection of threshold value

The selection of the threshold value tp (see Eq. (3)) will not 
only affect the number of extracted features, but also can 
affect the clustering in the VBoW model. The calculation 
results of number of extracted features and value function 
with varying tp are shown in Fig. 10, where � is 167, and 
this parameter is selected optimally as shown in Sect. 4.1.2.

It is found that as tp increases, fewer features are extracted, 
and the value function increases accordingly. Also, obvi-
ously, when tp = 5, the value function is lower and more fea-
tures could be extracted as compared to the other selected 
values. Therefore, tp = 5 is selected for further analysis.

4.1.2 � Selection of the optimal number of keywords

In this work, the data range of � is initially set to [10, 300], 
the minimum of value function �min is set to 0.05, the mini-
mal difference of two adjacent value functions �adj is set 
to 0.001 and the interval M is set to 30 by considering the 
computational cost. To ensure that the overall trend of the 

00300

κ
20010

0.00

0.02

0.04

0.06

0.08

0.5

0.6

0.7

0.8

0.9

1.0
S

ta
n
d
a
rd

 d
e
v
ia

ti
o
n

(167, 0.02165)

(167, 0.971)

O
v
e
ra

ll
 r

e
c
o
g
n
it

io
n
 r

a
te

Fig. 13   The overall recognition rate and standard deviation of train-
ing set with varying �

0 20 40 60

Testing set

S
e
v

e
re

 d
a
m

a
g

e
M

in
o

r 
d

a
m

a
g

e
N

o
rm

a
l

Normal Minor damage Severe damage

— Real output

— Target output

Fig. 14   The recognition result of testing set

Table 3   Real-time analysis of testing set

Signal 
conversion 
(s)

Feature 
extraction 
(s)

Identification (s) Total (s)

Normal 0.043 0.039 0.063 0.145
Minor damage 0.042 0.028 0.067 0.137
Severe damage 0.042 0.040 0.055 0.137
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value function varying with the number of keywords is less 
affected by local fluctuations, it is necessary to employ 
average filtering on the results of each value function. Spe-
cifically, the value function corresponding to each keyword 
is the averaged value function of five adjacent keywords. 
The calculated result is shown in Fig. 11. Overall, the �(�) 
decreases as the value of � increases. When � is greater 
than 150, the change of the value function tends to level off. 
Moreover, to obtain the recommended data ranges of the 
value function, the difference between two adjacent value 
functions is further analyzed. According to the algorithm 
described in the Sect. 2.3.3, the recommended data ranges 
of � are [160, 190] and [190, 220].

By comparing all the value function in above recom-
mended data ranges (Fig. 12), the minimum value function 
is lower than �min when the � is taken as 167, 190 and 210. 
By considering the computational cost, �opt = 167 is selected 
and regarded as the optimum.

4.1.3 � Training results validation

To further illustrate the recognition accuracy and stability 
of the proposed health condition evaluation method under 
�opt taken in Sect. 4.1.2, the overall recognition rate ( P

�
 in 

Eq. (7)) and standard deviation ( S
�
 in Eq. (7)) when � is set 

to [3, 300] are shown in Fig. 13. Although value-sweeping 
calculation is not used in our method, here it is used to dem-
onstrate the algorithm performance and to show the validity 
of the proposed method for selecting �opt.

In general, with the increase of � , the P
�
 of the algorithm 

increases and S
�
 decreases. As can be seen in Fig. 13, when � is 

greater than 150, the algorithm can maintain a high recognition 
rate and low standard deviation, indicating that the algorithm is 
suitable for the recognition of rail track structural health condi-
tion and had high stability. The overall recognition rate of four-
fold cross-validation on the training set reaches 97.1% when � 

is 167 as selected in the previous work. Although the overall 
recognition rate could reach 97.9% when � is taken as 298, it 
does not improve much, and the computational cost is signifi-
cantly increased. Therefore, the �opt selected by the proposed 
method can ensure the recognition accuracy and stability of the 
proposed health condition evaluation method.

4.2 � Testing results

To verify the applicability of the recognition performance of 
the method used in this work, the remaining 20 × 3 signals are 
tested and analyzed here. The test result is shown in Fig. 14. 
Specifically, the horizontal axis represents the 60 signals in the 
testing set while the vertical axis represents the actual three rail 
track structural health conditions. Moreover, the solid points 
represent the real output of each sample, and the circles repre-
sent the target output of the test samples. The test results show 
that 58 of the 60 testing samples are correctly identified, with 
an overall recognition rate of 96.67%.

4.3 � Real‑time analysis

The operating efficiency of this recognition method directly 
affects its practical engineering value. To illustrate the effec-
tiveness of the proposed method, the real-time performance 
of test set is analyzed. The computational platform consists of 
an i7-10750H CPU and a NVIDIA GeForce RTX 2060 graph-
ics processing unit. The whole recognition process based on 
VBoW model is implemented with Matlab R2020 under Win-
dows 10. In addition, the recognition process has three steps, 
i.e., signal conversion, image feature extraction and health con-
dition identification. The average time for completing each step 
is shown in Table 3.

As shown in Table 3, for all the three health conditions of 
the rail track structures in this work, the average time for the 
whole recognition process using VBoW model is relatively 
small, within 0.15 s. In Sect. 3.2, each segmented vibration 
signal sample is 8.1 s. Therefore, VBoW model is very efficient 
and has the ability to meet the real-time requirement.

4.4 � Performance comparison by different methods

To further illustrate the superiority of the proposed health con-
dition evaluation method, it is compared with the representa-
tive traditional learning-based classification algorithms and the 
deep learning models. Specifically, the traditional learning-
based classification algorithms are selected as: Support Vector 
Machine (SVM) [35, 36] and K-Nearest Neighbor algorithm 
(KNN) [37, 38], and the deep learning models are selected 
as: AlexNet [39], ResNet-18 [40], and DarkNet-53 [41]. To 
be more detailed, Grid Searching (GS) technique is adopted 
to optimize the parameters (e.g., penalty coefficient and the 
kernel function parameter) of the SVM model, and the number 
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Fig. 15   Comparison of recognition results with different algorithms 
and models
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of nearest neighbors in this work is set to be 1 for KNN, which 
is optimal.

All the above six comparison methods are run in the same 
MATLAB environment, accepting other default parameter 
values. In addition, all methods are subjected to fourfold cross-
validation on 80 × 3 training signals and performance validation 
on 20 × 3 testing signals. The calculation results are shown in 
Fig. 15. The overall recognition rate and standard deviation are 
taken to reflect the reliability and stability, respectively.

As shown in Fig. 15, the overall recognition rates of KNN 
and SVM algorithms for wheel–rail vibration signals are only 
about 60% and 77%, respectively. Although the overall recogni-
tion rates of AlexNet, ResNet-18 and DarkNet-53 algorithms 
exceed 80%, this is insufficient to meet the requirements of 
real-time monitoring in real-life applications. It can be found 
that our method has a higher recognition rate of 97.1% as com-
pared to the other five models and algorithms. Furthermore, our 
method obtains a lower standard deviation, demonstrating more 
stable recognition behavior. In addition, the overall recognition 
result by 96.7% from the testing set also revalidates the better 
performance of the proposed method.

5 � Conclusions and future work

In this work, a novel computer vision-aided method to 
evaluate the nondestructive health condition of rail track 
structures based on vibration signals has been proposed. 
Specially, the method used in this work does not require 
tedious noise reduction processing and redundant feature 
elimination. By directly converting the raw vibration signals 
into grayscale images, we have adopted multi-dimensional 
feature vectors of images instead of one-dimensional feature 
array of traditional signal processing methods. To quickly 
extract numerous features from the vibration signals, the 
FAST-Unoriented-SIFT algorithm has been utilized. Mean-
while, the VBoW model with optimal keyword has been pro-
posed for well describing and identifying grayscale images 
features. Finally, the overall recognition rate of the proposed 
model in the testing set is 96.7% (i.e., 58 out of 60). In addi-
tion, by comparison to the traditional learning-based clas-
sification algorithms and the representative deep learning 
models, it is found that the proposed method is more suitable 
for the effective identification of strong time-varying and 
random vibration signals and has promising prospects for 
practical structural health monitoring applications.

Although the proposed method can achieve satisfactory 
results in this work for the damage identification under dif-
ferent rail track structural health conditions, due to the learn-
ing capacity, all these popular algorithms based on Visual 
Bag-of-Words model are restricted to relatively short signal 
segments. However, high-dimensional signals and features 
can better capture the valuable information of dynamic 

system under a more complex environment. On the other 
hand, in rail track structural health monitoring, to obtain 
more spatial information, numerous sensors need to be 
fixed along the track line for real-time monitoring, which 
not only results in data overload but also increases operation 
and maintenance costs. In contrast, placing mobile sensor 
networks on vehicle components (e.g., axlebox) for health 
monitoring of rail track structures have greater potential for 
low-cost monitoring applications. However, the rail track 
vibration signal data collected by the mobile sensor net-
works is spatio-temporal, and is subjected to vehicle inter-
ference noise. Recent researches [42, 43] proposed some 
methods where sparse vibration data based on mobile sensor 
networks were used to successfully achieve feature identi-
fication of bridge structures. Therefore, future work can be 
focused on investigating a more robust extraction method 
of the high-dimensional feature information of wheel–rail 
dynamic system around the method of VBoW model and 
sparse representation using vehicle mobile sensor networks.
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