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Abstract
Data-driven machine learning models, compared to numerical models, demonstrated promising improvements in detecting 
damage in structural health monitoring (SHM) applications. In such approaches, sensors’ data are used to train a model either 
in a centralized model (server) or locally inside each sensor unit node (client). The centralized learning model often leads 
to computing and privacy issues such as wireless transmission costs and data-sensitive vulnerability, especially in real-time 
settings. The decentralized model also poses different challenges such as feature correlations and relationships loss in decen-
tralized learning settings. To handle the shortcomings of both models, we propose a new Personalized federated learning (FL) 
model augmented with tensor data fusion to learn and detect damage in SHM. Our approach employs FL which enables the 
central machine learning model to gain experience from diverse datasets located at different sensor locations. Furthermore, 
our proposed model addresses the problems associated non-i.i.d. data by employing the Moreau envelopes as a regularized 
loss function in the learning process of client’s models. Our methods help in decoupling the client models from the central 
one which improves personalized in FL. Our experimental evaluation on real structural datasets demonstrates promising 
damage detection accuracy without the need to transmit the actual data to the centralized learning model. The results also 
show that the data correlations and relationships from all participating sensors are preserved.
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1  Introduction

There has been an exponential growth of data generated 
from sensors and computing devices connected to the 
Internet known as the Internet of Things (IoT). The IoT has 
penetrated pervasively into most aspects of human life eve-
rywhere such as civil infrastructures, health-care centres, 
transportation, etc., wherein smart services are utilized to 
continuously monitor every activity at all times and in real-
time. In the field of civil infrastructures, IoT has provided 
flexibility and added value to Structural Health Monitoring 
(SHM) applications to generate actionable insights.

The applications of SHM aim to provide an automated 
process for damage detection in complex structures such as 
bridges using sensing data collected through multiple net-
worked sensors attached to it [1]. This data is then utilized 

to gain insight into the health of a structure and make 
timely and economic decisions about its maintenance. One 
of the traditional approaches for structural damage detec-
tion is known as model-driven which constructs a numeri-
cal model for the structure based on finite element analy-
sis [2]. However, a numerical model can be impractical as 
it cannot always sensibly capture the behavior of the real 
structure. On the other hand, a modern technique known as 
the data-driven approach has been successfully adopted in 
SHM and its applications. The data-driven approach uses 
machine learning algorithms to construct a model from 
measured data and then makes predictions for new meas-
ured responses to detect structural damage. This approach 
has brought a concrete aspect to IoT in SHM and enabled 
IoT smart applications. Bridges are critical to our society 
as they connect various separated locations to allow the 
flows of people and goods within cities. Bridges are influ-
enced by several factors such as environmental conditions 
(wind, ambient temperature change,..etc) and various loads 
(constant and temporary loads), which makes them prone 
to damage and potential failures. Any problem with such a 
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structure from small damage to catastrophic failures would 
result in significant economic and life losses. Most of the 
structural maintenance approaches are time-based, visual 
inspections are carried out at a predefined regular schedule 
which can be either too early or too late to detect damage. 
However, SHM is a condition-based approach; it uses data 
sensed continuously to provide real-time monitoring so that 
necessary maintenance actions can be taken once damage, or 
abnormal change in the structure behaviour, occur.

There are two data-driven mechanisms that have been 
commonly known for damage detection in complex struc-
tures. The first mechanism relies on a centralized machine 
learning model which requires transmitting the generated 
sensing data from the deployed sensors to a central process-
ing unit to assess the structural condition. The data then is 
either aggregated or fused in one data structure to capture 
the correlation and relations between the measured variables 
from all sensors, and to learn the different aspects of the 
data (temporal, spatial, and feature) at the same time [3, 4]. 
This mechanism allows capturing the underlying structural 
aspects using multi-way sensing data which has made it suc-
cessful as it achieved good accuracy in terms of damage 
detection. However, the use of such centralized model has 
its drawbacks, especially for SHM. It is not practical in the 
context of real-time monitoring and resource-constrained 
environment since sensors collect vibration measurements 
using accelerometers at high frequency during a time period, 
thus, contain a sequence of thousands of data points to be 
transmitted very frequently to the central model. Moreover, 
wireless transmission costs more energy than local process-
ing, thus poses several challenges for battery-powered wire-
less nodes.

The alternative mechanism to handle the centralized 
model restrictions is to perform the learning from the sensed 
data in a distributed environment similar to the promising 
edge or distributed computing paradigms [5]. The distrib-
uted learning approach has a number of benefits including 
reducing the intensive data transmission over the network, 
conserving the energy of sensor nodes and, reducing the 
workload overhead on the central server on which data pro-
cessing (learning) occurs.

One challenge that emerges with the distributed learning 
approach is that the measured data in SHM are often multi-
way and highly redundant and correlated, i.e., many sensors 
at different locations simultaneously collect data over time. 
Therefore, a single sensor node analysis cannot capture all 
of these correlations and relationships together in a distrib-
uted learning model. In contrast, the centralized learning 
analysis allows learning from such data in multiple modes 
at the same time. The work proposed by Mehri et al. [5] 
has thoroughly investigated and compared the performance 
of the centralized prediction models versus a single sensor 
node model (decentralized) prediction. Their experimental 

results show that the centralized model was able to success-
fully detect the presence of very small damage in a structure 
and to monitor its progress over time. On the other hand, the 
distributed learning models which were constructed for each 
sensor not only reduced the sensitivity of the models but also 
failed to monitor the progress of damage in the monitored 
structure.

Therefore, developing an effective and efficient damage 
detection model for SHM applications requires information 
derived from many spatially-distributed locations throughout 
large infrastructure covering various points in the monitored 
structure. However, consolidating this data in a centralized 
learning model can often be computationally complex and 
costly. This motivates for developing a more advanced 
model that utilizes the centralized learning model but with-
out the need to transmit the frequently measured data to a 
single processing unit. In this study, we propose a novel 
approach to overcome the above-discussed challenges of 
centralized and decentralized learning mechanisms in SHM. 
Our approach is developed based on federated learning (FL) 
augmented with Tensor Data Fusion for damage detection in 
complex structures such as bridges.

Our approach is derived from an auto-encoder neural 
network (ANN) as a damage detection model and employs 
tensor data analysis to perform data fusion for a wired con-
nected sensor in SHM applications to reduce the communi-
cations in the FL network. The emerging Federated Learning 
(FL) concept was initially proposed by Google for improving 
security and preventing data leakages in distributed environ-
ments [6]. FL allows the central machine learning model to 
build its learning from a broad range of data sets located 
at different locations. It aims to train a shared centralized 
machine learning model using datasets stored and distrib-
uted across multiple devices or sensors. In the context of our 
study, we devise an FL-approach that enables multiple IoT 
devices (sensors) to collaborate on the development of a cen-
tral learning model, but without needing to directly share or 
pool all data measured from several sensors with each other. 
Our approach can work efficiently and effectively by shar-
ing the model coefficients of each client model only rather 
than the whole data collected by all participating sensors at 
each period of time. The effectiveness of the model learn-
ing continues to improve over the course of several train-
ing iterations during which the shared models get exposed 
to a significantly wider range of data than what any single 
sensor node possesses in-house. Our proposed FL-based 
approach decentralizes machine learning by removing the 
need to pool data into a single location and through training 
the centralized model in multiple iterations at different loca-
tions (where sensors are deployed).

Although FL results in reducing data transmission and 
improving data security, it raises significant challenges 
in how to deal with non-IID (Independent and Identically 
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Distributed) data distribution and statistical diversity. In fact, 
Stochastic Gradient Descent (SGD), which is widely used 
in training models, may lean towards one distribution than 
the other leading to a non-generalized model. The work pro-
posed in [7, 8] has thoroughly investigated the performance 
of the global model on clients’ local data by showing how 
the accuracy decreases when the data diversity increases. To 
address the non-IID challenge in FL, we employed Moreau 
envelopes [9] as a regularized loss function in the learning 
process of the clients’ models. The rationale idea behinds 
Moreau envelope is to leverage the central model in optimiz-
ing the clients’ models not only using Federated Averaging 
(FedAvg), but personalize it w.r.t its local data distribution. 
The contribution of the work in this study is twofold.

•	 This paper addresses the problem of non-IID distribu-
tion of data in FL for better generalization of the clients’ 
models.

•	 We extensively evaluated the performance of personal-
ized FL augmented with tensor data fusion method to 
demonstrate the effectiveness of the proposed method in 
constructing generalized clients’ models

The remaining of this paper is organized as follows. Sec-
tion 2 reviews the related work and Sect. 3.1 provides a 
short overview of the original Auto-encoder Neural Net-
work method. Our novel online personalized FL with tensor 
algorithm is described in Sect. 4. Section 6 then presents 
experimental results. Finally, we summarize our contribu-
tions and conclude this paper in Sect. 7.

2 � Related work

Federated learning gained a lot of interest in recent years and 
as a result, it has attracted AI researchers as a new and prom-
ising machine learning approach [10, 11]. This federated 
learning approach attracts several well-suited practical prob-
lems and application areas due to its intrinsic settings where 
data needs to be decentralized and privacy to be preserved. 
However, only a few applications, that have been reported 
in the literature, utilized the federated learning approach to 
construct a global model. For instance, Bonawitz et al.[12] 
adopted the federated learning settings to develop a system 
that solves the problem of next-word-prediction in mobile 
devices. On the other hand, several other studies focused on 
addressing the training challenges of a central model to sup-
port all local data training especially when the distribution of 
data across clients is highly non-IID (independent and iden-
tically distributed). For example, Hanzely et al. [13] claim 
that a central model is still too far mature from the typical 
usage of one client. Similarly, Kairouz et al. [10] discuss the 

broad challenges and open problems in the field of applying 
federated learning to different problems.

McMahan et al. [14] propose the first federated learning-
based algorithm named FedAvg. It uses the local Stochastic 
Gradient Descent (GSD) updates to build a global model 
by taking average model coefficients from a subset of cli-
ents with non-IID data. Subsequently, Guha et al. [15] pro-
pose a new method to learn a global model in one single 
round of communication between the client and the central 
model. Other studies such as [16, 17] address the limitations 
of communication among distributed models in federated 
learning settings by performing periodic averaging, partial 
device participation, and quantized message-passing. Mean-
while, other research studies such as [18–20] suggest multi-
ple local optimization rounds before reporting the learning 
from the distributed models to the central server.

Several other methods have been proposed to achieve per-
sonalization in federated learning. Recently, Smith et al. [21] 
propose a new algorithm named MOCHA based multi-task 
learning (MTL) framework to address the non-IID challenge 
in federated learning. However, the author in [13] proposes 
an L2GD algorithm that combines the optimization of the 
local and global models. Similarly, Dng et al. [8] develop an 
adaptive personalized federated learning (APFL) algorithm 
which mixes the user’s local model with the global model. 
Another rationalization method called FedPer proposed by 
[22] which divides the layers in a neural network into a base 
and personalized, while both layers are trained by clients but 
only the base layers are trained by the server.

In this paper, we address the communication problem 
that arises in a federated learning environment where sev-
eral distributed models (clients) communicate with the cen-
tral model to report its learning to the central model (the 
sever). Our approach is centered around employing a tensor 
as a data fusion method for wired connected clients in SHM 
applications. Tensor analysis has been successfully applied 
in many application domains such as civil engineer, social 
network analysis, and computer vision [23–25], and pro-
duced promising results. In our proposed approach, we also 
address the non-IID challenge in federated learning settings 
by developing a personalized model which is optimized for 
each distributed data model. To the best of our knowledge, 
our federated-based approach and its application the struc-
tural health monitoring (SHM) domain create new research 
contributions.

3 � Background

3.1 � Autoencoder neural network

Autoencoder neural network (ANN) is an unsupervised 
learning process which has the ability to learn from one 
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class data. It is an extension of the traditional neural net-
work which basically designed for supervised learning 
when the class labels are given with the training examples. 
The rational idea of an autoencoder is to force the network 
to learn a lower dimensional space for the input features, 
and then try to reconstruct the original feature space. In 
other words it sits the target values to be approximately 
equal to its original inputs. In this sense, the main objec-
tive of autoencoders is to learn reproducing input vectors 
{x1, x2, x3,… , xm} as outputs {x̂1, x̂2, x̂3,… , x̂m} . The archi-
tecture of ANN is made up of L layers ( L = 3 for simplifi-
cation) denoted by input, hidden and output layers. Each 
layer consists from a set of nodes. Layer l1 is the input 
layer represents features which encoded into the hidden 
layer l2 , and then decoded into the output layer l3 . The 
learning process of ANN starts by successively comput-
ing the output of each node in the network. For a node i in 
layer l it calculates the output value z(l)

i
 by computing the 

total weighted sum of the input values which also includes 
the bias term using the following equation:

where � is the coefficient weight written as �ij when associ-
ated with the connection between node j in layer l − 1 , and 
node i in layer l, and a(l−1)

j
 is the output value of node j in 

(1)z
(l)

i
=

n∑

j=1

�
(l−1)

ij
a
(l−1)

j

layer l − 1 . The resultant output denoted by a(l)
i

 is then pro-
cessed through an activation function as follows:

where F() is the activation functions. The most common 
activation functions in the hidden layers are sigmoid and 
hyperbolic tangent. However, in autoencoder settings a lin-
ear function is used in the output layer since we don’t scale 
the output of the network to a specific interval.

The autoencoder uses back propagation algorithm to 
learn the parameters � which approximate x̂ ≈ x . In each 
iteration of the training process, we calculate the cost error 
L(�

(l)

ij
;xi) using Eq. (3) and then propagate it backward to 

the network layer.

In this setting, we perform a stochastic gradient descent step 
to update the learning parameters �(l)

ij
 . This is done by com-

puting the partial derivative of the cost function L(�(l)
ij
;xi) 

(defined in Eq.  3) as follows:

The complete steps are summarized in Algorithm 1.
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Algorithm 1 Autoencoder training algorithm

Require: A set of n positive samples X = {x(i)}ni=1

Ensure: Initialize θij(l) to a small random value N (0, ε2)
while not converged

• for i ← 1 to n
• Perform a feedforward pass to compute all nodes activations using

Equations 1 and 2.
• Compute the cost function L(θlij ; xi) using Equation 3
• Update θlij using Equation 4

return θlij

Once we successfully trained the autoencoder, the net-
work will be able to reconstruct an new incoming positive 
data, while it fails with anomalous data. This will be judged 
based on the reconstruction error (RE) which is measured 
by applying the Euclidean norm to the difference between 
the input and output nodes as shown in Eq. (5).

The measured value of RE is used as anomaly score for a 
given new sample. Intuitively, examples from the similar dis-
tribution to the training data should have low reconstruction 
error, whereas anomalies should have high anomaly score.

(5)RE(x) = ‖xi − x̂i‖2
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4 � Personalised federated learning 
framework for SHM

Our approach comprises of a number components which are 
detailed in this section. First, we described how the sensor 
data is monitored and modelled in distributed environment 
(in SHM such as bridges).Second, we define how the person-
alized federated learning is formulated as distributed models 
(clients and central server) and the communication among 
them. In our approach, we also propose aggregating the data 
points measured from multiple sensors into one client node.
Third, we present our tensor data fusion method to perform 
this step. Fourth, describe our formal model of updating 
the learning experienced by the clients and server to detect 
structural damage.

4.1 � Data modelling

Consider a set of sensor nodes S mounted on different 
locations of a bridge to measure and transmit sensing data 
related to a structural event. Each sensor node S can per-
form computation on sensed acceleration data to detect the 
damage in their vicinity. The data points collected concern-
ing to the vibration responses are assumed to be a vector 
as Xi =

[
x1, x2,… , xn

]
 ; where n is the total number of data 

points sensed by a sensor node S over a time duration. Due 
to the lack of available data from the damaged state of the 
structure in most cases, the acceleration measurements we 
collect from a bridge is often corresponding to the healthy 
condition of the bridge. This data covers various environ-
mental and ambient conditions as well as operational con-
ditions, such as traffic loading. Therefore, in the training 
phase, we construct a one-class model by extracting the 
statistical features from raw acceleration data in the healthy 
condition of the bridge. The trained model will be used later 
to classify the raw acceleration measurement from unknown 
conditions of the bridge as either healthy or damaged. Each 
healthy training sample xi ∈ {Xi}

n
i=1

 is an m-dimensional 
feature vector xj = x1, x2,… , xm , where j = 1,… ,m are the 
statistical features extracted from sensed acceleration data in 
healthy condition of the bridge. The total number of features 
j depends on the sampling frequency and sampling window, 
and the total number of data points (n) in Xi depends on the 
number of events. In our approach, we use an auto-encoder 
neural network as an anomaly detection method to fit a one-
class model using healthy data. However, we need now to 
formulate this model in a federated learning (FL) setting 
with the help of tensor data analysis as a data fusion method.

4.2 � Problem formulation in personalized federated 
learning

In FL setting, a set of clients S are connected to a central server 
to solve the following problem:

where fs is the expected loss over the data distribution corre-
sponding to a sensor node client S which defined as follows:

where Ls(�;xi) measures the error of model � given the input 
xi defined in Eq. (3).

The stochastic gradient descent (SGD) method solves the 
above problem defined in Eq. (7) by repeatedly updates � to 
minimize Ls(�;xi) . It starts with some initial value of �(t) and 
then repeatedly performs the update as follows :

In FL, each client performs a number of E epochs at each 
round to compute the gradient of the loss over its local data 
and send the model parameters �t+1

s
 to the server. The cen-

tral sever aggregates these gradients and applies the global 
model parameters update by taking the average of the result-
ing models parameters as follows:

The server then sends w(t+1) to all clients in which each 
one performs another round to update �(t+1) but with set-
ting �(t) = w(t+1) as defined in traditional FL-FedAvg. How-
ever, such simple averaging method may not be practical in 
real world applications where some clients may have very 
few local data points. Therefore, we propose an ensemble 
learning method to combine multiple learners by selecting 
a random subset of clients under the condition that clients 
will only share their local models if they reach a minimum 
accuracy performance on their local validation data.

We further investigate the problem of non-i.i.d in FL set-
tings. In fact, our current approach may work well when 
clients (sensors) have similar i.i.d. data. However, it is unre-
alistic to assume that since data may come from different 
environments and contexts in FL settings thus have non-
i.i.d. Therefore, we employ Moreau envelope (ME) [9] as 

(6)min
w∈ℝd

f (w) ∶=
1

S

S∑

s=1

fs(�),

(7)fs(�) ∶= �xi
[Ls(�;xi)]

(8)�(t+1) ∶= �(t) − �
�L

��
(x

(t)

i
, �(t)).

(9)w(t+1) ∶=
1

S

S∑

s=1

�(t+1)
s

.



300	 Journal of Civil Structural Health Monitoring (2023) 13:295–308

123

a regularized loss function which helps decouple personal-
ized model optimization from the global model learning in 
a bi-level problem stylized for personalized FL. With this 
scheme, instead of updating the clients’ models �(t+1) entirely 
based on the server model w(t+1) , we force the clients to pur-
sue their own models based on �(t+1) but with adding an l2
-norm regularized loss function i.e ME based on w(t+1) so 
that �s will not deviate far from w. Geometrically, the global 
model can be considered as a “central point”, where all cli-
ents agree to meet, and personalized models are the points 
in different directions that clients follow according to their 
heterogeneous data distributions. In this setting, the client 
model update will be as follows:

where � is a regularization parameter controls the penalty 
of l2-norm.

4.3 � Tensor data fusion

Our proposed approach also incorporates a data fusion step 
that merges data from a set of connected sensor nodes S 
into one client node. In fact, sensors’ measurements usu-
ally have a high redundancy and correlation, which two-way 
matrix analysis may fail to capture all of these correlations 
and relationships together. A naive approach would simply 
concatenate the features obtained from different connected 
clients. However, unfolding the multi-way data and analyz-
ing them using two-way methods may result in information 
loss and misinterpretation since it breaks the modular struc-
ture inherent in the data. Therefore, we present a method 
for data fusion using a tensor data structure that arranges 
the data from a set of connected sensor nodes as one single 
client node T  we call it a tensor node. This tensor node T  
has data in a form of a three-way tensor X ∈ ℝ

I×J×K where I 
represents the number of connected clients, J represents the 
number of features in each client, and K is the total number 

(10)�(t+1) ∶= �(t) − �
�L

��
(x

(t)

i
, �(t)) + �‖�(t) − w(t+1)‖2,

of data points sensed by a sensor node S . The structure of 
this tensor is shown in Fig. 1

Once we arrange the data in a tensor form, we apply a 
tensor decomposition to extract latent information in each 
dimension of tensor X  . This work adopts the CP decompo-
sition (CANDECOMP/PARAFAC decomposition) method 
for tensor decomposition due to its ease of interpretation 
compared with the Tucker method [26]. CP decomposes 
X ∈ ℝ

I×J×K into three matrices A ∈ ℝ
I×R , B ∈ ℜJ×R and 

C ∈ ℜK×R where R is the latent factors. Each matrix repre-
sents latent information for each mode or dimension. It can 
be written as follows:

where “ ◦ ” is a vector outer product.
We formulate the problem as follows:

where ‖X‖2
f
 is the norm value which is the sum squares of 

all elements of X  , and the subscript f denotes the Frobenius 
norm. Ar,Brand Cr are rth columns of component matrices 
A ∈ ℝ

I×R , B ∈ ℝ
J×R and C ∈ ℝ

K×R.
We applied the alternating least square (ALS) technique 

to solve the CP decomposition problem. It iteratively solves 
each factor matrix by fixing the other two matrices using a 
least-square technique until it meets a convergence criterion 
[27]. The ALS technique is described in Algorithm 2.

(11)X(ijk) ≈

R∑

r=1

Air◦Bjr◦Ckr

(12)min
A,B,C

‖X −

R�

r=1

�r Ar◦Br◦Cr‖2f ,

Fig. 1   Connected clients fused in a tensor
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Algorithm 2 CP Decomposition Using Alternating Least Squares

Require: : Tensor X ∈ RI×J×K , latent factors R
Ensure: : Initialize A,B,C
repeat

A ← argmin
A

1
2‖X(1) −A(C �B)T ‖2

B ← argmin
B

1
2‖X(2) −B(C �A)T ‖2

C ← argmin
C

1
2‖X(3) −C(B�A)T ‖2 → � is the Khatri-Rao

product and X(i) is an unfolding matrix of X in mode i
until convergence criterion is met return Matrices A ∈ RI×R, B ∈ RJ×R,
and C ∈ RK×R

4.4 � The client–server learning phase

Based on the FL problem formulation and tensor data 
fusion described above, we present our structural dam-
age detection approach. Our method uses the FL approach 
which is augmented with a tensor data fusion method, and 
an auto-encoder neural network model for structural dam-
age detection. Each tensor node T  on the client-side will 

Fig. 2   The architecture of the federated learning network with deep auto-encoder model

Once the convergence criteria are met, the ALS algo-
rithm returns the three matrices A, B, and C. As mentioned 
before, the matrix C ∈ ℜK×R , which is associated with the 
time mode, will be used later for constructing the central 
model. This matrix has K rows, each of which represents 
a data instance aggregated from all the clients given in a 
tensor node T  at a specific time.
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initially fuse the sensors data in a tensor X  and apply CP 
algorithm using ALS to decompose X  into three matrices 
A, B,   and C. The matrix C, which represents the time 
mode, will be then used in the learning process. Our 
auto-encoder neural network uses the stochastic gradient 

descent algorithm to learn reconstructions Ĉ that is close 
to its original input C. At each round, each client T  per-
forms a number of E epochs to update the model param-
eters and report them to the central server. Algorithm 3 
explains the learning phase at given a tensor node T .

Fig. 3   Side view of the cable-
stayed bridge from our first case 
study, Western Sydney, Aus-
tralia  (source: Google Earth)

Algorithm 3 Client Side Learning

Require: I, E, η, λ,R and XI
i=1 ∈ RK×J

Ensure: Initialize A,B,C and X ∈ RI×J×K

Ensure: Get w(t+1) from the server and initialize θ(t)

for i ← 1 to I

• Append Xi ∈ RK×J to X ∈ RI×J×K

Compute A,B, and C using Algorithm 2

for i ← 1 to E

• Compute Ĉ using Equations 1 and 2.

• L(θ(l)ij ; x) =
1
v

∑v
i=1

(
1
2‖x

i − x̂i‖2
)

• θ(t+1) := θ(t) − η ∂L
∂θ (x

(t)
i , θ(t)) + λ‖θ(t) − w(t+1)‖2

return θ(t+1)
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Each client with a tensor node T  will report the model 
parameters �(t+1) back to the central server. Once the updates 
are received, the central server will aggregate them using 
Eq. (9) and send them back to all client tensor nodes T  . Fig-
ure 2 gives an overview architecture of our federated learn-
ing network and Algorithm 4 explains the learning phase at 
the central server.

Fig. 4   The locations on the bridge’s deck of the 24 Ai accelerometers used in this study. The cross girder j of the bridge is displayed as CGj [4]

Fig. 5   Evaluated joints on the 
arch bridge

Table 1   Number of samples in each joint of the arch bridge dataset

Dataset Number of samples Training Test

Joint 1 6329 4430 1899
Joint 2 7237 5065 2172
Joint 3 4984 3488 1496
Joint 4 6886 0 6886
Joint 5 6715 4700 2015
Joint 6 4801 3360 1441

Algorithm 4 Server side learning

Require: K number of client nodes T while not converged

1. for s ← 1 to S in parallel
(a) Read θ

(t+1)
s which is calculated in Algorithm 3

2. w(t+1) := 1
S

∑S
s=1 θ

(t+1)
s

return w(t+1)

5 � Experimental setup

5.1 � Data collection

We conducted experiments on two case studies using struc-
tural vibration based datasets acquired from a network of 
accelerometers mounted on two bridges in Australia, cable-
stayed bridge (see Fig. 3) and Arch Bridge. For all experi-
ments, three hidden layers were used in our ANN and the 
accuracy values were obtained using the F-Score (FS), 

def ined as F − score = 2 ⋅
Precision × Recall

Precision + Recall
 where 

Precision =
TP

TP + FP
 and Recall = TP

TP + FN
 (the number of 

true positive, false positive and false negative are abbrevi-
ated by TP, FP and FN, respectively). The core consistency 
diagnostic technique (CORCONDIA) technique described 
in [28] was used to determine the number of rank-one ten-
sors R when it decomposed using CP-ALS method described 
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in 2. The CORCONDIA suggests R = 2 for all experimented 
data sets.

5.1.1 � The cable‑stayed bridge

This bridge is 46 m long carries one traffic lane and one 
pedestrian lane. It is composed of single deck which is 0.16 
m thick and 6.3 m wide. This deck is supported by four 
I-beam steel girders, and 16 stay cables. These cables are 
connected to the 33 m mast of the cable-stayed bridge. Fig-
ure 3 shows a side view of this bridge. We instrumented the 
Cable-Stayed Bridge with 24 uniaxial accelerometers and 
28 strain gauges. However, we only used accelerations data 
collected from sensors Ai with i ∈ [1;24] . Figure 4 shows 
the locations of these 24 sensors on the bridge deck. These 
sensors are connected to a HBM Quantum-X data logger 
attached to an embedded computer on one side of the bridge. 
This embedded device provides time synchronization to the 
data, and stores them temporarily before forwarding via 
WiFi to a gateway on a nearby building. This gateway then 
forwards the data over a VPN to our laboratory. The accel-
eration data are collected at 600 Hz, with a range of 2G and a 
sensitivity of 2 V/G. Each set of sensors on the bridge along 
with one line (e.g A1: A4) is connected to one client node 
and fused in a tensor node T  to representing one client in 
our FL network. It results in six tensor nodes T .

For the sake of experiments, we emulated two different 
types of damage on this bridge by placing a large static load 
(vehicle) at different locations of a structure. Thus, three 
scenarios have been considered which includes: no vehicle 
is placed on the bridge (healthy state), a light vehicle with 
the approximate mass of 3 t is placed on the bridge close to 
location A10 (“Car-Damage”) and a bus with the approxi-
mate mass of 12.5 t is located on the bridge at location A14 
(“Bus-Damage”). This emulates slight and severe damage 
cases which were used in our evaluation Sect. 6.1.

This experiment generates 262 samples (a.k.a events) 
each consists of acceleration data for a period of 2 seconds 
at a sampling rate of 600 Hz. We separated the 262 data 
instances into two groups, 125 samples related to the healthy 
state and 137 samples for the damage state. The 137 damage 
examples were further divided into two different damaged 
cases: the “Car-Damage” samples (107) generated when a 
stationary car was placed on the bridge, and the “Bus-Dam-
age” samples (30) emulated by the stationary bus.

For each reading of the uni-axial accelerometer, we nor-
malized its magnitude to have a zero mean and one standard 
variation. The fast Fourier transform (FFT) is then used to 
represent the generated data in the frequency domain. Each 
event now has a feature vector of 600 attributes representing 
its frequencies. The resultant data at each sensor node T  has 
a structure of 4 sensors × 600 features × 262 events.

5.1.2 � The arch bridge

This case study used acceleration data captured by a network 
of accelerometers deployed on the Arch Bridge. It has 800 
jack arches to support its joints, which were each instru-
mented by three tri-axial accelerometers mounted on the 
left, middle and right side of the joint, as shown in Fig. 5. 
We conducted two different experiments using this data. 
The first experiment uses six joints (named 1–6) where only 
one joint (number four) was known as a cracked joint. The 
data used in this study contains 36,952 events as shown in 
Table 1 which were collected for three months. Each event 
is recorded by a sensor node when a vehicle passes by a 
jack arch for 1.6 s at a sampling rate of 375 Hz resulting in 
a feature vector of 600 attributes in the time domain. All the 
events in the datasets (1, 2, 3, 5, and 6) are labelled positive 
(healthy events), where all the events in dataset 4 (joint 4) 
are labelled negative (damaged events). For each reading of 
the tri-axial accelerometer (x, y, z), we calculated the mag-
nitude of the three vectors and then the data of each event 
is normalized to have a zero mean and one standard varia-
tion. Since the accelerometer data is represented in the time 
domain, it is noteworthy to represent the generated data in 
the frequency domain using Fourier transform. The resultant 
six datasets (using the middle sensor of each joint) have 300 
features that represent the frequencies of each event. The 
data collected from the three sensors are fused in one tensor 
node T  which represents one client node in our FL network.

The second experiments involve a large set of 85 joints 
located on different structural locations on the bridge. In 
addition to the event responses, each node at the joint also 
collects continuous ambient vibration data at 1500 Hz dur-
ing midnight. This data is filtered to a 1-min continuous 
record of ambient responses i.e. a period where no vehi-
cle was driving over the joint. Note that for ambient data 

Table 2   Comparison of the TP, the FP, and the F-score between our 
FL-Tensor and FL-FedAvg

PFL-Tensor FL-Tensor FL-FedAvg

Cable
   TP  0.96 ± 0.01 0.91 ± 0.02 0.93 ± 0.04
   FP  0.12 ± 0.01 0.16 ± 0.02 0.29 ± 0.04
   F-score  0.92 ± 0.01 0.87 ± 0.02 0.81 ± 0.04

Arch: six-joints
   TP  0.92 ± 0.02 0.82 ± 0.03 0.83 ± 0.06
   FP  0.18 ± 0.02 0.21 ± 0.03 0.32 ± 0.06
   F-score 0.88 ± 0.02 0.81 ± 0.03 0.78 ± 0.06

Arch: 85-joints
   TP  0.93 ± 0.02 0.85 ± 0.03 0.80 ± 0.05
   FP  0.20 ± 0.02 0.25 ± 0.03 0.36 ± 0.05
   F-score 0.87 ± 0.02 0.80 ± 0.03 0.71 ± 0.05
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collection, only one sensor (middle one) in each node col-
lects data. In the scheme of the FL network, we want to use 
this ambient data to group bridge substructures with similar 
behavior into one client and then see whether our personal-
ized FL-tensor with ME method can learn from non-i.i.d. 
This study leads us to apply k-means clustering technique 
which is described in the following section.

5.2 � Substructure grouping using k‑means

k-means clustering is a popular clustering technique. It par-
titions data into k clusters so that the within-cluster sum of 
squares are minimized. This optimization problem is typi-
cally addressed using an iterative technique. Convergence is 
reached when the centroids no longer change. The k-means 
algorithm is sensitive to the centroids initialization and the 
algorithm may converge to a sub-optimal solution. We used 
k-means++ method proposed by Arthur and Vassilvitskii 
[29] to optimize centroids initialization before applying the 
standard k-means technique. For selecting the number of 
clusters k we use the Silhouettes coefficient proposed by 
[30]. For each cluster group, we obtain from this process, 
we fuse all the events data for each joint exits in the same 
cluster in one tensor node T  which represents one client 
node in our FL network.
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6 � Experimental results and discussions

In this section, we present the performance evaluation of our 
proposed federated learning method in terms of detecting 
damage in civil structural. Our experimental valuation is 
based on the two real datasets; the cable-stayed bridge and 
the Arch bridge.

6.1 � The cable‑stayed bridge

We separated the 262 data instances into two groups, 125 
samples related to the healthy state and 137 samples for 
the damage state. The 137 damage examples were further 
divided into two different damaged cases: the“Car-Damage” 
samples (107) generated when a stationary car was placed 
on the bridge, and the “Bus-Damage” samples (30) emulated 
by the stationary bus.

‘We randomly selected eighty percent of the healthy 
events (100 samples) from each tensor node T  to form train-
ing multi-way of X ∈ ℝ

4×600×100 (i.e. training set). The 137 
examples related to the two damage cases were added to 
the remaining 20% of the healthy data to form a testing set, 
which was later used for the model evaluation.

At each client node T  , we initially applied Algorithm 2 
to decompose the tensor X  into three matrices A, B, and C 
which was used to construct learn the ANN model at each 
client as well as the central model using Algorithms 3 
and 4. Although no data from the damaged state has been 
employed to construct the central model, each personal-
ized local client model was able to identify the damage 
events related to “Car-Damage” and “Bus-Damage” with 
an average F-score accuracy of 0.92 ± 0.01 . We compared 
the results of our PFL-tensor with tensor FL-tensor [31]) 
and traditional FedAvg [14]. Table 2 show the resultant 
FP, TP and F-score accuracies. As can be seen, PFL-ten-
sor produced better results than FL-tensor and FedAvg. 
Furthermore, the personalized client’s model was also 
able to separate the two damage cases (“Car-Damage” 
and “Bus-Damage”) where the reconstruction error values 
were further increased for the samples related to the more 
severe damage cases related to “Bus-Damage”. This is 
what we anticipated discovering from tensor which can 
extract damage-sensitive features. Moreover, it reduces 
the time communication by reducing the number of cli-
ents in our FL network.

6.2 � The arch bridge

6.2.1 � Six joints experiments

For each dataset, we randomly selected 80% of the posi-
tive events for training and 20% for testing in addition to 

the unhealthy events in dataset 4. At each client/joint T  , 
we fused data from the three sensors in a multi-way tensor 
of X ∈ ℝ

3×300×n where n represents number of the training 
samples defined in Table 1. Similar to the last case study, we 
applied the three Algorithms 2, 3 and 4 to decompose the 
tensor X  and to learn the ANN model at each client as well 
as central model, respectively. Each personalized client’s 
model was able to identify its local healthy samples with an 
average F-score equal to 0.88 ± 0.02 . The model at client/
joint 4 was also able to identify 0.86 of the damage sam-
ples. These results demonstrate that the PFL-tensor approach 
without data sharing is still able to identify damage events 
even-though these events were not involved in the training 
process. There is no doubt that this work also demonstrates 
that learning from massively decentralized data is still chal-
lenging and needs improvement especially in the prediction 
accuracy of damage events at joint 4. Table 2 shows the 
resultant FP, TP, and F-score accuracies of PFL-tensor com-
pared to FL-tensor and FedAvg methods. Similarly, PFL-
tensor outperformed these two methods in damage predic-
tion accuracy with less false alarm rates (Table 2).

6.2.2 � 85 joints experiments

Our initial experiments here were to perform substructure 
grouping of the 85 joints using k-means++ method with 
Silhouette coefficient to select the best values of k. We run 
k-meanse++ at different values of k in the range of [2, 12]. 
This selection was guided by domain knowledge of SHM 
applications. In practice, the maximum k value could be 
set equal to the number of structural spans of a bridge (see 
Fig. 8). For example, k could be set to 12 for a bridge that 
has 12 different structural spans. Our experimental results 
suggest that joints can be clustered into 9 groups with the 
highest Silhouette coefficient of 0.71 as shown in Fig. 6. 
By analyzing these clusters, we found that joints with simi-
lar substructure such as joints located on the middle of the 
bridge were clustered in one group and most of the substruc-
tures located on the edges were clustered in another group 
as shown in Fig. 7.

For each resultant cluster, we fuse all the events vibra-
tion data of each joint in one tensor node T  to represent one 
client node in our FL network, and we randomly selected 
80% of the positive events for training and 20% for testing 
in addition to the unhealthy events related to joint 4 which 
was grouped with other joints in cluster 1. Each client/clus-
ter now exists in a form of multi-way tensor X ∈ ℝ

J×300×n 
where n represents the smallest number of the training sam-
ples among joints within the same cluster, and J  is the num-
ber of joints within the same cluster. We applied here again 
the three Algorithms 2, 3 and 4 to decompose the tensor X  
and to learn the ANN model at each client as well as central 
model, respectively. Our personalized client model was able 
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to identify its local healthy samples with an average F-score 
equal to 0.87 ± 0.02 . The model at client 1 which contains 
damage data related to joint 4 was also able to identify 0.85 
of the damage samples (Fig. 8).

7 � Conclusions

In this paper, we present a novel machine learning approach 
for detecting damage in structural health monitoring. Our 
method employs a Federated Learning (FL) approach and 
tensor data fusion technique. We model the damage detec-
tion as a FL problem where data collected from several dis-
tributed sensors attached to a complex structure (clients) 
learn continuously in local settings without the need to 
share the data into a centralized learning model (server). 
Furthermore, our approach models the correlations and 
relationships among the various sensor nodes and shares 
the learning with a central model. Our experimental evalua-
tion on two real bridge structure datasets showed promising 
damage detection accuracy by considering different damage 
scenarios. In the “Cable-Stayed Bridge” dataset, our FL-
based method achieved an accuracy of 94–97%. Our central-
ized model based on shared models learning also showed 
that we were able to monitor the progress of damage in the 
structure by providing increasing reconstruction error values 
for the samples related to “Bus-damage” events. In the Arch 
Bridge dataset, our FL-based method achieved 86% damage 
detection accuracy. The experimental results of these case 
studies demonstrated the capability of our FL-based dam-
age detection approach with the incorporation of tensor data 
fusion method to improve the damage detection accuracy 
and to avoid the problems of transmitting sensed data over 
the network (network traffic, the low energy consumption of 
the sensor nodes and vulnerability of the data). Our future 
work aims to improve our prediction accuracy and better 
optimisation of the personalized federated learning approach 
in our FL network, and further to apply it onto different 
application domains.
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