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Abstract
Engineers can today capture high-resolution video recordings of bridge movements during routine visual inspections using 
modern smartphones and compile a historical archive over time. However, the recordings are likely to be from cameras of 
different makes, placed at varying positions. Previous studies have not explored whether such recordings can support moni-
toring of bridge condition. This is the focus of this study. It evaluates the feasibility of an imaging approach for condition 
assessment that is independent of the camera positions used for individual recordings. The proposed approach relies on the 
premise that spatial relationships between multiple structural features remain the same even when images of the structure are 
taken from different angles or camera positions. It employs coordinate transformation techniques, which use the identified 
features, to compute structural displacements from images. The proposed approach is applied to a laboratory beam, subject 
to static loading under various damage scenarios and recorded using multiple cameras in a range of positions. Results show 
that the response computed from the recordings are accurate, with 5% discrepancy in computed displacements relative to 
the mean. The approach is also demonstrated on a full-scale pedestrian suspension bridge. Vertical bridge movements, 
induced by forced excitations, are collected with two smartphones and an action camera. Analysis of the images shows that 
the measurement discrepancy in computed displacements is 6%.

Keywords Computer vision · Image processing · Displacement · Signal processing · Condition assessment · Damage 
detection · Laboratory beam · Suspension bridge

1 Introduction

In the past decade, smartphones with their integrated sen-
sor and software technologies have undergone tremendous 
enhancements. Smartphone applications for civil infra-
structure monitoring have been widely researched [1, 2]. 
Literature also covers a range of case studies when smart-
phones have been employed for bridge SHM [3, 4]. The 
cameras supported in smartphones have improved at such 
a rapid pace that today’s smartphones have the capability 
to capture images comparable to professional cameras. For 
example, Samsung S20 can record ultra-high-definition 4 K 
(3840 × 2160 pixel) and 8 K (7680 × 4320 pixel) videos at 

60 and 24 frames per second (fps), respectively, and high-
definition (1280 × 720 pixel) videos at 960 fps. These fea-
tures are sufficient to capture static and dynamic response of 
bridges [5, 6]. Consequently, smartphones can be deployed 
during periodic visual inspections, with minimum cost and 
effort, to collect objective video data that can complement 
the subjective information typically recorded by bridge 
engineers. For example, Zhao et al. [7] concluded that cable 
forces of cable-supported structures can be estimated equally 
accurately from videos of fixed and handheld smartphones 
after processing measurement. The collected data can be 
archived forming a historical record of bridge responses to 
loading, and when complemented with suitable data inter-
pretation tools, engineers can use the collected data to track 
and detect changes in structural conditions.

There are three broad steps in processing videos for struc-
tural displacement [8]—camera calibration, target tracking 
and displacement calculation. Many studies have developed 
image processing algorithms for measuring the motion of a 
single target on the structure and capturing structure’s static 
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or dynamic response [9–15]. Accurate multi-point displace-
ment measurements of different parts of large structures have 
been obtained using time-synchronized camera systems [16, 
17]. Although such systems enhance spatial resolution with 
accurate measurements, their applications are also more 
expensive than using a single camera. Multi-point displace-
ment measurements for the desired accuracy have been 
obtained also using a single camera [3, 18–20]. In a labo-
ratory environment, accurate full-field static displacements 
of beams have been obtained with a single camera using a 
photogrammetric measurement approach [21] and tracking 
deformation contour [22], a robotic camera system with a 
single camera [23], and a holographic visual sensor consist-
ing of two cameras [24]. However, the aforementioned stud-
ies focused on short-term measurement campaigns where the 
camera location is fixed in a single position. This is however, 
almost impossible to ensure when vision-based measure-
ments are collected during bridge inspections that are spaced 
several months or possibly years apart. Consequently, there 
is a need to investigate data interpretation techniques that 
can transform data collected using different camera posi-
tions to a common coordinate system for bridge condition 
assessment.

Previous studies have not examined the feasibility of 
using data collected with different camera positions for 
damage detection. Particularly, studies have not investi-
gated whether the accuracy of structural response data may 
be compromised when images are collected in this manner. 
This paper will investigate and address this. Thermal effects 
on response can be an important factor in measurements 
collected at discrete time instants. Previous studies have 
shown that the influence of temperature variations on bridge 
dynamic response can mask early signs of damage [25]. Also 
bridge response to seasonal changes in temperature may be 
much larger than its response to traffic loads [26]. Thermal 
effects can, however, be neglected if the measurements dur-
ing individual campaigns (i.e. inspections) are collected over 
a short duration [27, 28] and if the emphasis of the data 
interpretation is on the immediate response to static loading 
rather than the quasi-static and dynamic response, as is the 
case in this study. This is supported by previous studies that 
have demonstrated the use of static load tests to assess the 
condition of the structure and obtain bridge load ratings. For 
example, Klaiber et al. [29] employed trucks to load a con-
crete girder bridge before and after damages were repaired. 
Vertical deflections of girders were observed to reduce by 
almost 20% after repair. Also, Dong et al. [17] used portable 
cameras and computer vision technology to perform bridge 
load rating.

This study will evaluate thus a vision-based approach that 
analyses image recordings from cameras in different posi-
tions to accurately compute structural displacements. The 
premise of this study is that the spatial relationships between 

multiple structural features such as bolts in cast iron bridges 
remain the same even when images of the structure are taken 
from different angles or camera positions. This premise is 
true as long as these features are located on the same struc-
tural plane. The study employs smartphone technologies to 
investigate (i) if structural features can be accurately located 
from images collected from different camera positions, and 
(ii) if structural response can be accurately estimated. A tim-
ber beam with artificial structural features served as a test-
bed. While the beam is undergoing load tests, smartphones 
are used to collected images, from which target locations are 
obtained and transformed to the structural reference plane. 
The proposed measurement collection approach is also vali-
dated on a full-scale pedestrian bridge subjected to forced 
excitations.

2  Methodology

An approach to vision-based deformation monitoring that 
is independent of camera positions used to collect the data 
for the condition assessment of bridges is developed in this 
paper. Figure 1 illustrates the proposed approach, which 
includes the following steps:

1. Image collection and processing
2. Structural response generation
3. Structure’s condition assessment

The initial set of collected responses may be taken as 
representative of the structure’s baseline (normal) condi-
tions. A change in structure’s conditions can be detected 
from new measurements by comparing these against the 
baseline response. This can enable the asset owner to plan 
an intervention such as a detailed inspection to ascertain the 
underlying reason for the change. The following sections 
describe the above-mentioned steps in further detail.

2.1  Image collection and processing

Successful image processing relies on multiple factors, one 
of them being reliable data collection. In short-term (i.e., 
lasting from a few seconds to a few minutes) measurement 
collection events, camera stability and accurate camera focus 
are easily ensured. However, positioning cameras to ensure 
exactly the same field of view during all measurement col-
lection events, which may be separated by months, is very 
difficult. Consequently, to ensure measurements taken at 
different events are comparable, all data need to be trans-
formed to the same coordinate system. This can be done 
in two stages: (i) generate a planar homography matrix 
to transform coordinates in the current bridge coordinate 
plane (i.e., as captured in the image) to a defined reference 
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plane (i.e., as provided in structural plans) and (ii) apply the 
matrix to convert target locations in the collected images to 
the defined reference plane. The planar homogrophy can be 
applied when targets on the structure move within a single 
plane. The projection relationship between two dimensional 
(2D) structural and image planes is given in Eq. 1 [8].

where XP is a 2D structural plane ( XP = [X,Y , 1]T ), � is a 
2D image plane ( � = [u, v, 1]T ), P is the planar homography 
matrix and � is an arbitrary coefficient. The two stages (and 
their respective steps) are described below in further detail.

Stage 1: Generation of the planar homography 
matrix

1. Define reference points These points, also called control 
points, are essentially visual patterns that can be clearly 
discerned from images of the structure. The coordinates 
for these points are defined from a 2D structural drawing 
of the bridge or by physical measurement in the field. As 
a minimum four reference points are needed for planar 
homography, in which 2D points in the structural surface 
plane are mapped to their corresponding points in the 
image plane [9, 18, 30].

2. Generate a transformation matrix The reference points 
defined in the previous step are located in the reference 
image collected during the monitoring event. This may 

(1)�{�} = [P]3×3
{

XP

}

,

be done using feature detection algorithms as outlined 
in the next stage. The reference points and image points 
can be input to a geometric transformation algorithm 
such as fitgeotrans in MATLAB [31] to compute the 
geometric transformation matrix.

Stage 2: Computation of structural response at tar-
get locations

1. Select targets Targets can be selected either manually 
or using an automated feature finding algorithm. Those 
with multiple and distinctive features (e.g., corners, 
edges, surface patterns) can be located easier, quicker 
and with higher accuracy than targets that are blurry and 
have unclear boundaries.

2. Derive target features An appropriate feature detection 
algorithm such as Harris–Stephens algorithm [32] or 
speeded-up robust feature detection [33] algorithm is 
selected. Detected features (interest points) are assigned 
to the targets that they describe and are sought in con-
secutive image frames.

3. Specify region of interest (ROI) Tracking targets with 
small, predictable movements (such as in deformation 
monitoring of bridges) can be much easier than other 
tracking tasks (e.g. moving people) if a ROI, within 
which a target is expected to move, is specified. This 
can reduce computational time and avoid errors arising 

Fig. 1  Flowchart of the proposed bridge monitoring approach
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from similar targets being present in the same image 
frame.

4. Track and record coordinates of the selected targets The 
coordinates of the targets in each image frame are identi-
fied. The target coordinates, which are indicative of tar-
get movements, along with the time and target number 
are stored in an array for computing structural response.

5. Transform target locations to reference plane The geo-
metric transformation matrix (generated in Stage 1) is 
multiplied by image coordinates of targets to evaluate 
the coordinates for the targets in the reference coordi-
nate plane. This step is repeated for all image frames. 
The coordinates can then be used to compute structural 
movements.

The first stage could also include an optimization step, in 
which (i) multiple targets, and their numbers and combina-
tions, and/or (ii) transformation algorithms (e.g., perspec-
tive, affine, polynomial) are chosen for the matrix generation. 
The matrix accuracy can be evaluated using targets that are 
found on the structure but not included in the generation of 
the matrix. The main drawback of the optimization step is 
that increasing the number of reference targets and using com-
plex algorithms can result in overtraining, i.e. generation of a 
matrix that works well only for the reference image in which 
the structure is not subject to loading [34]. However, when a 
load is applied and image reference points change locations, 
the locations of targets may become erroneous due to the over-
training of the transformation matrix.

2.2  Response generation

Movement of a target in the image frames is referred to as a 
target displacement. This displacement is a projection of the 
real in-situ movement onto the x–y plane of the defined (refer-
ence) coordinate system. Note that a target may move along 
the longitudinal axis of the bridge as well as the vertical direc-
tion. For this reason, target movements are referred to as target 
displacements rather than deflections, which correspond to the 
vertical deflection of a bridge along its length. The vertical 
deflection ( �V ) of the structure at a specific location can be 
calculated from the change in its y coordinates as follows.

where T0 and Tn are target coordinates before load is applied 
and at nth measurement, respectively.

Consecutively collected target displacements or deflections 
form response time histories or signals. Signals may be noisy 
(e.g. change in light conditions) or contain outliers (e.g., a 
moving obstacle in ROI at the image capture) thus, requir-
ing applications of signal pre-processing techniques such as 
denoising (e.g., with moving average filter) and outlier removal 

(2)�V = T0{y} − Tn{y},

(e.g., inter-quartile range analysis). Another signal pre-pro-
cessing option is the selection of a known stable location in an 
image frame to correct camera movements [13].

2.3  Measurement accuracy and structural condition 
assessment

Measurement residual ( e ) for a response parameter ( r ) such 
as vertical deflection at ith and jth measurement events is 
expressed in Eq. 3. The measurement events can be referred 
to both response collection from the same or different 
camera(s) and camera position(s).

Measurement residuals can be used to assess (i) the 
accuracy of the structural response generated at different 
camera positions or measurement discrepancy/deviation (ii) 
and changes in conditions of the structure. The threshold 
for measurement residuals can be case specific and based 
on the judgement of an engineer. For example, e ≫ ±5% 
may indicate that the condition of the structure has changed 
sufficiently to warrant further measurement analyses or 
inspections. Similarly, distinct troughs (or drops) in e val-
ues of targets along the length of a bridge can be indicators 
of damage locations.

3  Laboratory experiments

In this section, the performance of the proposed vision-based 
approach is evaluated on a laboratory beam.

3.1  Laboratory test setup

A simply supported timber beam subjected to static loads 
serves as a testbed. The beam is 1100 mm long, 25 mm wide 
and 45 mm deep (see Fig. 2). 43 artificial targets (Ti, i = 1,…, 
43), in a form of full circles, are drawn on the surface of the 
beam following a template shown in Fig. 2b. Only names of 
a few representative targets are provided in Fig. 2c. Targets 
are named sequentially from left to right, starting from the 
top left target. Previous studies by Kromanis et al. [35] dem-
onstrate that structural deformations computed from target 
displacements deviate by utmost 2.5% from those evaluated 
using contact sensors. Therefore, in this study, beam defor-
mations are captured only with smartphones.

3.2  Measurement scenarios

The experimental procedure consists of manual application 
and removal of a load (100 N) at the centre of the beam 

(3)e =
ri − rj

ri
.
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in the absence of and presence of damage. In experimental 
studies, beam structures have been damaged with section 
cuts up to 62% of the section area at cut locations [36–40]. 
In this study, there are three 20 mm deep and 45 mm long 
section cuts at the top (compression) side of the beam simu-
lating damage. Tight-fit wooden blocks (Bs) fill the section 
cuts. The blocks are used to reassure the repeatability of 
the damage scenarios for multiple events at multiple cam-
era positions. The blocks can be removed without the beam 
being disturbed. Although the blocks fit tightly the beam 
is not expected to perform as a solid beam, i.e., with no 
cut-outs. When all blocks are in place, the beam is healthy 
(no damage) and corresponding measurements represent 
baseline conditions. When a block is removed, a damage 
is created. The damage severity is regulated by the number 
of removed blocks. Measurements are taken for 20 s after 
loading or un-loading to allow for any vibrations to damp 
out. Smartphones are employed to capture images of the 
laboratory setup at 1 Hz. They are fixed on sturdy tripods, 
which can be assumed to be perfectly still.

Two scenarios are considered:

• Scenario 1 This consists of a single damage event being 
measured using a number of cameras set up in different 
positions. The sequence of events involves loading of the 
undamaged beam, unloading, introduction of damage (by 
removal of a wooden block) within the beam and loading 
to measure deformations.

• Scenario 2 This is similar to Scenario 1 but with mul-
tiple damage events that gradually increase the level of 
damage (by removing multiple wooden blocks). In this 
scenario, each sequence of events is measured using 
only one camera but with the camera position changing 
between the events.

The laboratory setup, image processing steps, response 
generation and damage detection for both scenarios are 
described in below sections.

3.3  Single event—multiple camera positions

The proposed monitoring approach is initially evaluated on 
a single event during which three smartphones collect beam 
deformations. Smartphone makes and camera specifications 
are given in Table 1. Smartphones are placed at different 
angles, heights and distances to the beam (see Fig. 3). The 
distance of each smartphone camera to T13 ( dT13 ), T28 
( dT28 ) and T36 ( dT36 ), and camera plan ( � ) and side ( � ) 
view angles to T36 are given in Table 2. Negative � and � 
indicate that the camera is positioned right and above T36, 
respectively. Figure 4 illustrates the distances and angles of 
the camera to the structure (beam). Images of the beam are 
collected at no load and 100 N load, both before and after 
damage, which is introduced by removing B2 (see Fig. 2).

3.3.1  Image collection and processing

A semi-supervised image processing process is adopted to 
analyse collected images and calculate target displacements 
following the three stages in Sect. 2.1.

Fig. 2  Laboratory beam setup: a a beam sketch with dimensions, b idealized distance between targets and c a photo of the beam with removable 
blocks (Bi, i = 1, 2, 3) and some targets (Ti, i = 1,…, 43)

Table 1  Smartphone makes and camera specifications

Name Make Camera and lens specifications

S1 Samsung A3 8 MP, f/2.4 aperture, 31 mm (wide)
S2 Samsung A5 13 MP, f/2.0 aperture, 28 mm (wide)
S3 Samsung S8 12 MP, f/1.7 aperture, 26 mm (wide)
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Generation of the geometric transformation matrix 
Target locations are known. The horizontal distance from 
T13 to the left support is 100 mm (as measured and shown in 
Fig. 2c). The vertical distance from T29, T30,…, T43 to the 
bottom of the beam is 10 mm. Four reference points on x–y 
reference plane, which correspond to T1, T12, T29 and T43, 
are selected for the generation of the geometric projection 
matrix. Target locations on the image plane are calculated 
using image processing analysis in the previous stage. The 
projective transformation has been shown to generate accu-
rate planar homography matrices in previous studies [30, 34, 
41] and, therefore, it is selected.

Computation of target locations Figure 5 illustrates the 
steps using a cropped region of the first image captured with 
S1 as an example. The steps are discussed below.

(a) The Hough transform method for finding circles is 
suitable for the target detection and location [42]. A 
search region, which is the beam surface facing the 
camera, is specified to optimize the search area and 
time, and reduce the number of circles found in the 
image. The range of search radii is the main criteria 
in the Hough transform method. It is expressed in the 
number of pixels. The farther a camera is positioned 
from the centre of the beam the larger must be the range 
of radii. The circle detection method sorts targets based 
on parameters such as detection sensitivity and circle 
size. Figure 5a shows that the order of the detected 
circles is random and does not follow the numbering 
sequence defined in Fig. 2c. A sorting algorithm is used 
to arrange circles in rows and then columns to ensure 
that the identified targets are numbered as in Fig. 2c.

(b) The size of ROI assigned to a target is derived from the 
size of the detected radius of the circle and its position 
along the length of the beam. The targets located closer 
to the supports are expected to move less in the vertical 
direction during the application of the load than the 
targets closer to the centre of the beam. The range of 
a target displacement is found by comparing the first 
image, in which no load is applied to the beam, to an 

Fig. 3  Locations of smartphones (Si, where i = 1, 2, 3) (left) and smartphone views (right)

Table 2  Camera distances and angles relative to the beam

Smartphone d
T13

 (mm) d
T36

 (mm) d
T28

 (mm) � (°) � (°)

S1 1095 1000 1095 0.4 0
S2 965 1105 1385 5.6 30.1
S3 1365 1115 1025 10.3 − 24.2

Fig. 4  The position of the camera relative to the structure
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image, in which the maximum vertical displacement 
is expected. In this scenario, maximum displacements 
of targets are when the load is applied to the damaged 
beam. Figure 5b illustrates ROIs, which are numbered 
according to the target numbers (see Fig. 2c), for targets 
located on the left side of the beam.

(c) The DeforMonit application technique developed at 
Nottingham Trent University by R Kromanis [43] is 
then used to evaluate target displacements. The tech-
nique is demonstrated in Fig. 5c, where (i) shows the 
original image as obtained from ROI, (ii) shows a gray-
scale image, in which the number of pixels is increased 

by a factor of four and the sharpness and contrast are 
adjusted, (iii) is a binary image, in which regions of 
pixels form blobs, and (iv) shows only the target (other 
blobs are removed) with an ellipse drawn around its 
boundary. The centre of the ellipse represents the centre 
of the target, which is recorded and passed to the next 
image processing stage.

Transformation of target locations The computed geo-
metric transformation matrix is applied to all target locations 
(centres of blobs) found in the first image processing stage. 
An example of target transformation from S2 is shown in 

Fig. 5  Image processing steps: a automatic detection of targets, b setting regions of interest, c detection of target location in ROI1: (i) before 
processing, (ii) adjusted image, (iii) binary image, and (iv) binary image with the identified target (green ellipse) and its location (green ‘+’)
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Fig. 6  Targets for S2 before (top) and after (bottom) the projective transformation
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Fig. 6. Although a slight ‘bow effect’ [blue line in Fig. 6 
(bottom)] is discernible for the targets closer to the middle 
of the beam, this can be neglected since target displacements 
range only between a few millimetres/pixels. The camera 
intrinsic and lens distortion parameters were deliberately 
not considered for the camera calibration. Calibration in 
this study relies solely on the generation of the geometric 
transformation matrix for the following reasons: (1) differ-
ent cameras might be employed during bridge monitoring 
events by inspectors, thus requiring a simple-to-use and 
robust approach, and (2) studies have shown that there is a 
negligible difference (< 0.6% of the vertical displacement 
range) between results obtained from raw and undistorted 
smartphone images [14, 35].

3.3.2  Response generation

Target displacements are converted to vertical deflections 
( �V  ) and used as a damage sensitive structural response 
parameter. Raw and pre-processed vertical deflections at 
T36 are shown in Fig. 7. Noisy deflections with an upward 
drift are observed from images collected with S3. This may 
be due to the specific smartphone or its make. Deflections 
collected with the other two smartphones are less noisy and 
do not drift. The drift from S3 deflections can be removed 
either using a stationary reference target in the background 
or signal processing techniques. A signal processing tech-
nique, in which a 2nd order polynomial curve generated for 
the no-load period, is selected to remove the measurement 
drift. A moving averaging filter of 6 measurements is applied 
to deflections. Final (processed) vertical deflections at T36 
derived from all smartphones are similar. The beam deflec-
tion continues to increase marginally with the presence of 
the load. For each target, a single deflection value, which is 
the average value between load application and removal [see 

amber shaded periods in Fig. 7 (right)], is taken forward to 
the condition assessment stage.

The beam deflection at 100 N load for all target locations 
is shown in Fig. 8 (left). The deformed shape represents the 
anticipated beam deflection. There is a target missing at the 
centre of the beam in the top row (T1–T12), where B2 is 
located; this is reflected in the plot. Taking the bottom row 
of targets (T29–T43) as representative of the beam deflec-
tion curve, Fig. 8 (right) plots the vertical deflections at the 
targets for all camera positions for undamaged and damaged 
beam. Deflection curves differ slightly for camera positions. 
The measurement residual for camera positions and damage 
detection are analysed in the next section.

3.3.3  Condition assessment

The beam is grade C16 timber, which has a mean elastic 
modulus ( E ) of 8.0 kN/mm2 [44]. The maximum deflection 
is at mid-span when the point load ( P ) is applied at the mid-
dle of the simply supported beam. Assuming linear elastic 
behaviour and small deformations, the mid-span deflection 
can be calculated using Eq. 4.

where l is the length of the beam and I is the second moment 
of area. Rearranging terms in the equation, the overall E for 
the experimental beam at a healthy state is 4.5 kN/mm2, 
which is 44% smaller than the given value. This indicates 
that the beam at its healthy state, when the cut-out blocks are 
in place, already does not perform as a solid timber beam.

The condition of the beam is analysed using response 
(vertical deflection) measurements computed in the response 
generation step. The residual e�V between vertical deflections 

(4)� =
Pl3

48EI
,

Fig. 7  Vertical deflections ( �
V
 ) at T36 before (left) and after (right) pre-processing and removal of the drift
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computed from ith and jth cameras at a selected target is 
derived as follows:

e�V values for targets distributed along the length of the beam 
can be graphically plotted. For example, eS1S2 represents the 
line of residuals for cameras S1 and S2. In the plots of eS1S2 
and eS1S3 at no damage (Fig. 9a) and damage (Fig. 9b) states, 
the assumption is that measurements from S1 represent 
beam baseline conditions. At no damage state, e�V values 
do not exceed ± 5% confirming that the image processing 
and response generation steps provide an accurate structural 

(5)e�V =
�V .i − �V ,j

�V ,i
,

response in multiple camera positions. For targets with small 
vertical displacements (i.e., targets near the supports) e�V 
values are higher. At damage state, all e�V values surpass 
− 20% and e�V through at − 34% is at the damage location 
(midspan of the beam). Figure 9c plots eS1 , eS2 and eS3 , which 
are measurement residuals computed between deflection 
measurements from the same camera for the undamaged and 
damaged beam with loading. Measurement residuals drop at 
the mid-span of the beam and the overall results demonstrate 
the reliability of using measurement residual as a damage 
sensitive parameter for damage detection and location.

Fig. 8  Vertical deflections of the beam captured with S1 at different heights (left) and S1–S3 (left) at no damage (solid lines) and damage 
(dashed lines)

200 400 600 800 1000

-30

-20

-10

0

e
v

[%
]

e
S1S2

e
S1S3

200 400 600 800 1000

Beam length [mm]

-30

-20

-10

0
e
S1S2

e
S1S3

200 400 600 800 1000

-30

-20

-10

0
e
S1

e
S2

e
S3

(A) (B) (C)

Fig. 9  Measurement error ( e�
V
 ): a no damage, b damage, c for all smartphones individually undamaged–damaged



670 Journal of Civil Structural Health Monitoring (2021) 11:661–678

123

3.4  Multiple events—multiple camera positions

This section provides results of multiple events captured at 
six camera positions (Pi, i = 1,…,6). A single camera (Sam-
sung S5) is used. A ghost image showing all the camera 
positions and their corresponding views is given in Fig. 10. 
Table 3 provides camera distance to the three targets on the 
beam and two camera angles with respect to T36. At P1 
the beam represents baseline conditions. The other camera 
positions capture the following damage scenarios: D1 (B1 
removed), D2 (B1 and B2 removed) and D3 (B1, B2 and B3 
removed). For brevity, this section omits the image process-
ing and response generation steps, which are the same as 
those described and demonstrated in Sect. 3.3.

3.4.1  Condition assessment

Vertical deflections at the mid-span of the beam measured 
at T36 during experimental testing for all six camera posi-
tions are shown in Fig. 11. Discrepancies are observed in 
deflections for periods when load is applied at both healthy 
and damaged state of the beam. Due to the nature of the 
experimental setup, the duration of load application for 
some events is shorter/longer than for other events. A vis-
ible change in deflections is observed between no damage 
and D2. Between no damage and D1, and D2 and D3 the 
deflection difference is small requiring a closer assessment.

Vertical deflections along the length of the beam for all 
camera positions at no damage and D1 are given in Fig. 12 
(left). Although the figure is saturated with beam deflections 
from all camera positions for two scenarios, a discernible 
change can be observed in beam deflections for D1 (dashed 
lines). It is also noticeable that deflections at P6 for no dam-
age scenario are even larger than deflections measured at 
different locations for D1, especially for the right side of the 
beam. Figure 12 (right) plots e�V for all positions using P1 
as the baseline. The plot shows that measurements from P6 
( eP1P6 ) deviate the most and eP1P2 has the smallest measure-
ment residual.

Fig. 10  Camera positions (left) and images captured at camera positions (right)

Table 3  Camera distances and angles relative to the beam

Position d
T13

 (mm) d
T36

 (mm) d
T28

 (mm) � (°) � (°)

P1 1095 1000 1095 0.4 0.0
P2 1010 1165 1450 0.4 31.0
P3 1080 1205 1465 10.0 27.6
P4 1230 1025 990 − 12.4 − 17.5
P5 1410 1170 1085 12.3 − 23.2
P6 1370 1285 1370 35.3 − 5.7
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Fig. 11  The vertical beam deflection at T36 for all camera positions
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Measurement residuals for target deflections computed 
using P1 and jth camera positions for various damage sce-
narios are plotted in Fig. 13. Although the measurement 
residuals between camera positions (from eP1P4 to eP1P6 ) 

show a degree of variation for a specific scenario, the extent 
of change is much larger for a damage scenario than for an 
undamaged scenario. Maximum e�V values are observed to 
be in the region of damage. For example, at D1 a damage 

200 400 600 800 1000

Beam length [mm]

-3.5

-3

-2.5

-2

-1.5

v
[m

m
]

P1

P2

P3

P4

P5

P6

200 400 600 800 1000

Beam length [mm]

-30

-25

-20

-15

-10

-5

0

5

e
v

[%
]

e
P1P2

e
P1P3

e
P1P4

e
P1P5

e
P1P6

Fig. 12  Left: vertical deflections of the beam at no damage (solid lines) and D1 (dashed lines). Right: measurement error for the ‘no damage’ 
scenario

200 400 600 800 1000

-20

-10

0

e
v

[%
]

200 400 600 800 1000

Beam length [mm]

-50

-40

-30

-20

200 400 600 800 1000

-60

-50

-40

e
P1P2

e
P1P3

e
P1P4

e
P1P5

e
P1P6

(A) (B) (C)

Fig. 13  Measurement error along the length of the beam: a D1, b D2, and c D3

No damage D1 D2 D3
0
5

20

40

60

R
M
S
D
e
an
d
|e

v

|[
%
]

@
91
0m

m @
13
0m

m

@
55
0m

m @
67
0m

m

@
97
0m

m

@
13
0m

m

@
55
0m

m @
67
0m

m

@
97
0m

m

@
25
0m

m

@
55
0m

m @
55
0m

m

@
13
0m

m

@
13
0m

m

@
55
0m

m

@
55
0m

m

@
97
0m

m

@
13
0m

m

@
55
0m

m @
79
0m

m

e
P1P2

e
P1P3

e
P1P4

e
P1P5

e
P1P6

Fig. 14  Measurement error statistics for all scenarios (color figure online)



672 Journal of Civil Structural Health Monitoring (2021) 11:661–678

123

is created close to the left side support. Peak measurement 
residuals in Fig. 13a plots are correspondingly concentrated 
on the left side. When the damage is created at the mid-span 
of the beam (i.e., D2) and right to the mid-span measure-
ment residual throughs shift.

Root-mean square deviation (RMSD) is derived from 
measurement residuals between P1 and jth position for a 
number of targets ( n ) along the bottom of the beam using 
Eq. 6; RMSD gives an overview of the overall measurement 
residual or discrepancy in computed displacements relative 
to the mean. Figure 14 provides a bar plot of RMSD of 
measurement residuals, together with the maximum resid-
ual and their locations for a corresponding camera position. 
Only RMSD of eP1P6 exceeds 5% threshold (a thick red line 
in Fig. 14) at no damage scenario. The measurement residual 
and RMSD residual analysis in Fig. 14, show that measure-
ments from P6 are erroneous and exceed the damage thresh-
old even when the structure is not damaged. This could be 
related to the camera angle � , which is almost three times 
larger than that for other positions.

Damage can be accurately located, when analysing 
measurement residuals for each camera position separately 
between two consecutive events. Figure 15 plots these meas-
urement residuals between (i) no damage and D1, (ii) D1 
and D2, (iii) and D2 and D3 scenarios. The average residual 
for each scenario is superimposed on the residuals for each 
camera position with thick lines. The damage is located in 
the position where residuals are the lowest, for example, for 

(6)RMSD =

√

√

√

√

n
∑

k=1

(

eP1,k − ej,k
)2

n
.

No damage—D1 combination the residual drops at around 
a 250 mm mark. Damage locations are shown in Fig. 2a.

4  Wilford Suspension Bridge monitoring

The accuracy of the proposed measurement collection 
approach is investigated on the Wilford Suspension Bridge. 
The bridge spans 69 m linking Nottingham to West Bridg-
ford over the River Trent. It is both a pedestrian bridge and 
a water aqueduct. The bridge is subjected to a range of 60 s 
long forced excitations (i.e., students jumping on the deck). 
The experiment is organized by the University of Notting-
ham as part of a student assignment. In this study, a sce-
nario when students are jumping on the side of the deck 
that is closer to the camera positions is considered. Two 
smartphones (Samsung S8 (S1) and Samsung S9 (S2) with 
12 MP camera, and f/1.5–2.4 aperture and 26 mm (wide) 
lens) and a modified GoPro (GP) Hero 5 action camera with 
a varifocal zoom lens (25–135 mm) are positioned on the 
left river bank. All cameras record 4 K videos at 30 fps. 
Figure 16 (top) shows the monitoring set-up. The region 
of interest (ROI) contains approximately 14 m of the deck 
length at the middle of the bridge. The ROI has the same 
size as the frame of the GP. Seven targets ( Ti, i = 1,… , 7 ) 
are selected in the ROI. These are shown in a sketch of the 
bridge in Fig. 16 (bottom). Distances of the cameras to T1, 
T4 and T7 together with camera angles to T4 (as shown in 
Fig. 10) are estimated and listed in Table 4.

Frames from S1, S2 and GP, and ROIs with the targets are 
shown in Fig. 17. Harris method [32] for detecting corner 
features is employed to detect features characterizing targets. 
The camera motion is removed using the displacements of a 
stationary target in the background [41]. The four reference 
points for the generation of the planar homography matrix 
correspond to the top and bottom ends of the balusters at T1 
and T7 locations. The coordinates of the reference points are 
obtained from structural drawings of the bridge. Then pixel 
displacements are converted to structural displacements. 
Vertical displacements are pre-processed with a 5-s moving 
average filter, removing remaining camera movements. A 
2 Hz high-pass filter is applied to remove the high-frequency 
noise. Measurement histories are manually synchronized 
giving a set start time. Vertical deflection time histories 
from all cameras for the entire excitation period and 21 s 
are shown in Fig. 18. The bridge first vertical mode at the 
studied excitation is at 1.63 Hz, which is the same as com-
puted from measurements with Global Navigation Satellite 
System (GNSS) employed during the experiment.

The measurement accuracy is evaluated with RMSD of 
vertical deflections ( �V ) for each target computed between 
two cameras k and l using Eq. 7. In Eq. 8 measurement resid-
uals ( e ) for each target is derived from the sum of RMSE 
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values and range of vertical (or peak-to-peak) displacements 
( r�V ) from the three cameras ( k = 1, 2, 3 ). RMSE together 
with e values are plotted in Fig. 19. The measurement dis-
crepancy in computed displacements is 5.9%, which is 0.9% 
higher than the set ± 5% damage indicating threshold in the 

Fig. 16  The Wilford Suspension Bridge experimental setup (top) and a sketch of the bridge’s elevation (bottom)

Table 4  Camera distances and angles to the bridge

Camera d
T1

 (m) d
T4

 (m) d
T7

 (m) � (°) � (°)

S1 32.90 39.60 46.30 6.8 78.3
S2 38.05 44.40 50.90 7.1 70.1
GP 38.85 45.25 51.80 5.7 70.6

From S1 From S2 From GP

ROI ROI

T1 T2 T3 T4 T5 T6 T7

T1 T2 T3 T4 T5 T6 T7

ROI S1

T1 T2 T3 T4 T5 T6 T7

ROI S2

Fig. 17  Camera frames and regions of interest. Yellow ‘x’ are reference points for the matrix transformation
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laboratory studies, therefore suggesting that the threshold 
may need adjusting according to in-situ measurements.

A single period of the bridge vertical motion (from 8.4 to 
9 s) is analysed further to demonstrate the accuracy of the 
vision measurement and its relevance to the bridge condition 
assessment within the proposed approach. Figure 20 shows 
the vertical displacements of all target in the ROI of GP for 
the selected period. The range of displacements for each 

(7)RMSDk,l =

√

√

√

√

n
∑

i=1

(

�V ,k,i − �V ,l,i
)2

n
.

(8)e =

∑

RMSDk
∑

r�V ,k

target is related to their position on the bridge. The target 
at the midspan of the bridge (T4) has the largest range. The 
range of vertical displacements reduces targets away from 
the mid-span of the bridge. The range of displacements of 
each target along the length of the bridge is given in Fig. 21. 
GP measurements are according to expected deflections of 
the superstructure, considering its geometry. The ranges of 
target displacements computed from S1 and S2 do not follow 
as accurately the anticipated deflection patter as those from 
GP. Setting the GP measurements as the reference, the larg-
est deviation for S1 and S2 are 5.4% and 9.1%, respectively, 
and for both cameras it is for T6. The relative mean deviation 
of S1 and S2 is 3.1% and 3.9%, respectively. The difference 
in measurements can be related to the scaling ratio, because 
in this study the same image processing algorithm was used 
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to compute target displacements. Higher pixel number per 
engineering unit (e.g., millimetre) gives higher measure-
ment accuracy. In this study, one millimetre in S1 and S2 
frames at T4 location is approximately 0.06 px (i.e., 0.88 px 
in 13.3 mm), which is six-time smaller than for GP frames. It 
is also noticeable that e values in Fig. 19 are smaller for the 
targets with larger �V such as T4 than for targets with lower 
�V such as T1 and T7.

5  Discussion

Semi-automated target detection significantly reduces user 
input and time. The laboratory beam had painted features 
(blobs) on its surface. In full-scale bridges, such as the Wil-
ford Suspension Bridge, connections (e.g., hanger to deck 
connection) can be considered as targets. Machine learn-
ing can be employed to automate their detection—similar 
to what has been achieved in the laboratory study. For user 
convenience, targets have to have a unique identifier such 
as a number, which indicates the location of the target on 
the reference and image planes. For the beam, a sorting 
algorithm was employed. Targets were first sorted in rows 
and column, and then a unique number was assigned. When 
targets with similar features are sought, assigning a ROI 
for each target helps reducing (i) a likelihood of incorrectly 
detecting similar targets and (ii) computational time.

The choice and selection of reference points and projec-
tion transformation algorithms can be set as an optimization 
task, in which the set of points providing the highest accu-
racy are chosen [34]. Selecting a large number of reference 
points increases a chance of the geometric transformation 
matrix to become overstrained and provide very accurate 

results only at no load conditions. The accuracy of the 
matrix transformation can also be attributed to the accuracy 
of target locations that are chosen as reference points. The 
centre of a target could be calculated at a slightly different 
location than in images taken from different angles, resulting 
in larger measurement discrepancies. For example, vertical 
deflections at P6 in Fig. 12 are distinctively different from 
other camera positions. This can be attributed to setting 
slightly different coordinates of the reference point for the 
generation of the planar homography matrix or/and camera 
side view angle � being significantly larger than for all other 
camera positions.

5.1  Full‑scale applications

There are challenges that need to be addressed for field 
applications of the approach. Already known issues related 
to camera drift and stability, and lighting conditions are 
important. However, it is more important to have a very 
high measurement resolution. The vertical deflection of the 
laboratory beam at no damage at its mid-section was 3.3 mm 
when converted to a convenient form for the assessment of 
deformation limits, it is the length of the span ( L ) over 330 
or L/330. The vertical deflection serviceability limit states 
for short to medium span bridges are no larger than L/500. 
In normal operational conditions, bridges would seldom 
have deflections close to their design limits. Therefore high 
sub-pixel resolution up to 1/500th of a pixel [45] is desir-
able. Measurement limitations related to resolution can be 
overcome by reducing the camera field of view and by using 
multiple cameras such as GoPro connected to synchroniza-
tion hardware [16]. The measurement accuracy can also be 
improved using distributed targets of a known pattern [20] 
and image processing algorithms robust to light-induced 
image degradation [11]. In such task, the inspecting team 
need to find the relationship between (i) image resolution, 
(ii) scale factor (pixel to mm), which is related to the field of 
view, (iii) and sub-pixel resolution from an image process-
ing algorithm. For example, the horizontal field of view of 
the GoPro camera is set at 18 m for the Wilford Suspen-
sion Bridge monitoring. The camera is set at an angle to 
the bridge, therefore the closest side (to the camera) has 
less millimetres per pixel (mm/px) than the far side, which 
has 3 mm/px (in a vertical direction). Assuming 1/50th of 
a pixel resolution, which is already high and more realistic 
than 1/500th of a pixel in the field deployment, gives meas-
urement resolution of 0.06 mm. The required measurement 
resolution needs to be estimated either before or after the 
first measurement collection event to define either a suitable 
field of view or target tracking algorithm.
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6  Conclusions

This study introduced a multiple camera position approach 
for condition assessment of bridges. The premise is that the 
targets (e.g., surface markers with known dimensions and 
bridge connections) are located on a single measurement 
plane, which can be transformed to a 2D reference plane. 
Movements of targets are tracked when the structure is sub-
jected to known loads (e.g., load truck, train passage). Refer-
ence points at a set x–y coordinate plane and corresponding 
points on the structure from a selected image frame are used 
to generate a geometric transformation matrix, which con-
verts pixels (of targets) to engineering units such as millime-
tres. Structural response is then computed from target move-
ments at any camera position. The approach is demonstrated 
on a laboratory beam with artificial targets and a pedestrian 
suspension bridge with natural targets. Results show that:

• Semi-supervised detection and tracking of targets with 
known features in a defined region of interest (ROI) 
for each target provides target locations quickly and 
accurately. The user has to specify (i) search window 
of targets in the image, (ii) target features (full circles 
in laboratory studies) and their corresponding ROI, and 
(iii) target tracking algorithm.

• 5% discrepancy in computed displacements relative to 
the mean measurement can be achieved using the geo-
metric transformation at multiple events and multiple 
camera positions. Such accuracy proved to be suffi-
cient for damage detection and location in the labora-
tory environment when setting vertical deflections as a 
damage sensitive parameter.

• The preliminary study on the full-scale bridge dem-
onstrates the capability of the proposed monitoring 
approach to generate an accurate structural response 
from multiple camera positions using different cam-
eras and fields of view. The measurement discrepancy 
in computed displacements is 5.9%. The discrepancy 
could be reduced by using cameras with zoom lenses 
(such as GoPro in this study), increasing millime-
tres per pixels (mm/px) ratio (monitoring part(s) of a 
bridge) and applying algorithms that offer superpixel 
resolution.

Measurement discrepancies may increase from cam-
era positions that are significantly different from the ini-
tial/reference camera position (such as P6 in Sect. 3.4, 
see Table 4). A further research is needed to evaluate 
this statement in a quantitative way. Possibly establish-
ing a training phase for damage identification applica-
tions could be included to reduce measurement discrep-
ancy between cameras/camera positions. The developed 

monitoring approach needs to be further investigated 
on an event-based measurement collection of full-scale 
bridges. Bridges that are subjected to known loads such as 
rail bridges would fit well. Synchronized action cameras 
with suitable filed of views focusing on small regions of 
the bridge would give fine measurement accuracy, which 
should be suitable for the validation of the approach on 
full-scale bridges. When collecting static response over 
different seasons, bridge temperature also needs to be 
measured, even using thermal imaging, to compensate for 
temperature-induced movements.
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