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Abstract
A marked Prym curve is a triple (C, α, Td) where C is a smooth algebraic curve, α is a
2−torsion line bundle on C , and Td is a divisor of degree d . We give obstructions—in
terms of Gaussian maps—for a marked Prym curve (C, α, Td) to admit a singular model
lying on an Enriques surface with only one ordinary singular point of multiplicity d , such
that Td is the pull-back of the singular point by the normalization map. More precisely, let
(S, H) be a polarized Enriques surface and let (C, f ) be a smooth curve together with a
morphism f : C → S birational onto its image and such that f (C) ∈ |H |, f (C) has exactly
one ordinary singular point of multiplicity d . Let α = f ∗ωS and Td be the divisor over
the singular point of f (C). We show that if H is sufficiently positive then certain natural
Gaussian maps on C , associated with ωC , α, and Td are not surjective. On the contrary, we
show that for the general triple in the moduli space of marked Prym curves (C, α, Td), the
same Gaussian maps are surjective.
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1 Introduction

The article deals with the problem of finding obstructions—in terms of Gaussian maps—for
a Prym curve (C, α) to admit a singular model (with prescribed singularities) in a polarized
Enriques surface (S, H). Let us briefly introduce the setting. Let X be a smooth complex
projective variety, and let L and M be two invertible sheaves on X . Denote by R(L, M) the
kernel of the multiplication map �0

L,M : H0(X , L) ⊗ H0(X , M) → H0(X , L ⊗ M). The
first Gaussian map associated with L, M is the map

�X ,L,M : R(L, M) → H0(X ,�1
X ⊗ L ⊗ M)

locally defined as�X ,L,M (s⊗ t) = sdt− tds. If L = M one usually writes�X ,L and since it
vanishes on symmetric tensors, it is equivalent to study its restriction to ∧2H0(L). Gaussian
maps were introduced byWahl who showed, in [41], that if (S′, H ′) is a polarized K3 surface
and C ′ ∈ |H ′|, then the Gaussian map (also called Wahl map) �ωC is not surjective (see also
[6] for a different proof). On the other hand Ciliberto, Harris and Miranda proved in [10]
that the Wahl map is surjective as soon as it is possible by counting dimensions, with the
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exception g = 10 i.e. g ≥ 11. The converse also holds. In [1] Arbarello, Bruno and Sernesi
proved that a Brill–Noether–Petri general canonical curve with non-surjective Gaussian map
lies in a K3 surface or on a limit thereof. See also [9] for a result relating the corank of the
Gaussian map and r -extendibility. Analogous problems for Enriques surfaces have also been
studied by some authors. Indeed, let (S, H) be a polarized Enriques surface and let C ∈ |H |
be a smooth curve and α := ωS|C . In [3] it is proven that the Gaussian map �ωC ,ωC⊗α is
not surjective, whereas in [14] it is shown that for the general Prym curve (C, α) of genus
g ≥ 12, g 	= 13, 19 the map is surjective. Gaussian maps have been studied and used by
many authors, either in relation to extendibility questions, we mention e.g. [3–38] (see also
[33] for a complete survey), or in relation to the second fundamental form of Torelli-type
immersions, e.g. [16–18, 20, 24]. The result of Wahl was generalized by some authors, e.g.
Zak-L’Vovsky, who proved the following theorem, that we are going to use.

Theorem 1.1 ([32]) Let C be a smooth curve of genus g > 0 and let A be a very ample line
bundle on C, embedding C in P

n for n ≥ 3. If C ⊂ P
n is a hyperplane section of a smooth

surface X ⊂ P
n+1, then the Gaussian map �ωC ,A is not surjective.

Similar questions for singular curves on K3 surfaces are discussed and solved by Kemeny
in [27]. In the article the author asks whether one can give an obstruction in terms of suitable
Gaussian maps for a curve to have a nodal model lying on a K3 surface. Following the author
notations, denote by M̄h,2l the stack of smooth curve of genus h with 2l marked points and
by ˜Mh,2l = M̄h,2l/S2l the stack of curves with unordered marking. Let h, l be two positive
integers and [(C, T )] ∈ ˜Mh,2l . The author introduces the marked Wahl map:

WC,T :
2

∧

H0(C, ωC (−T )) → H0(C, ω⊗3
C (−2T )). (1.1)

Then the following theorems are proven.

Theorem 1.2 ([27]) Fix any integer l ∈ Z. Then there exists infinitely many integers h(l),
such that the general marked [(C, T )] ∈ ˜Mh(l),2l has surjective marked Wahl map.

Now denote by Vn
g,k the stack parametrizing morphisms [( f : C → X , L)]where (X , L) is a

polarized K3 surface with L2 = 2g−2, C is a smooth connected curve of genus p(g, k)−n
with p(g, k) := k2(g − 1) + 1, f is birational onto its image and f (C) ∈ |kL| is nodal.
Theorem 1.3 ([27]) Assume g − n ≥ 13 for k = 1 or g ≥ 8 for k > 1, and let n ≤ p(g,k)−2

5 .
Then there is an irreducible component I 0 ⊆ Vn

g,k such that for a general [( f : C →
X , L)] ∈ I 0 the marked Wahl map WC,T is non surjective, where T ⊆ C is the divisor over
the nodes of f (C).

The same markedWahl maps have been studied by Fontanari and Sernesi in [34], where they
proved, using very different methods from [27], the following theorem.

Theorem 1.4 ([34])Fix an integer g ≥ 9Let (S, H)be a polarized K3 surfacewith Pic(S) =
ZH and H2 = 2g − 2. Let C be a smooth curve of genus g − 1 endowed with a morphism
f : C → S birational onto its image and such that f (C) ∈ |H |. If T = P + Q ⊆ C is
the divisor over the singular point of f (C), then the Gaussian map �ωC (−T ),ωC (−T ) is not
surjective.

Our paper deals with a similar problem for singular curves on Enriques surfaces. Let (S, H)

be a polarized Enriques surface and C a smooth curve having a morphism f : C → S
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birational onto its image and such that f (C) ∈ |H | has exactly one ordinary singular point
of multiplicity d . Denote by Td the divisor over the singular point and set α = f ∗KS . Then
(C, α, Td) is a marked Prym curve. We investigate the behaviour of the following mixed
Gaussian-Prym maps:

�C,ωC (−Td ),ωC (−Td+α) : R(ωC (−Td), ωC (−Td + α)) → H0(C, ω⊗3
C (−2Td + α)) (1.2)

and
�C,ωC ,ωC (−Td+α) : R(ωC , ωC (−Td + α)) → H0(C, ω⊗3

C (−Td + α)). (1.3)

More precisely we have the following.

Theorem 1.5 Let (S, H) be a polarized Enriques surface with H2 = 2g − 2. Fix an integer
d ≥ 2, and suppose that either

(i) S is a very general Enriques surface and ϕ(H) ≥ √
2(d + 2), or

(ii) S in unnodal and ϕ(H) ≥ 2(d + 1).

Set g′ = g − (d
2

)

and let C be a smooth curve of genus g′ having a birational morphism
f : C → S onto its image and such that f (C) ∈ |H |, f (C) has exactly one ordinary singular
point of multiplicity d. Set α = f ∗KS|C and let Td = p1 + ... + pd be the divisor over the
singular point. Then the Gaussian maps�C,ωC ,ωC (−Td+α) and�C,ωC (−Td ),ωC (−Td+α) are not
surjective.

Here ϕ is a measure of the positivity of line bundles on the Enriques surface S, and it is
defined as:

ϕ(H) := min{|H · F | : F ∈ Pic(S), F2 = 0, F 	≡ 0}.
In the statement of Theorem 1.5, with “general", we mean in a non empty Zariski-open
subset of the moduli space , with “very general" we mean outside a countable union of
proper Zariski-closed subsets. The proof is along the same lines of Theorem 1.4.

On the contrary, when one considers a general marked Prym curve, the aforementioned
maps are “tendentially" surjective. Indeed, let S be the following set:

S := {(g1, d1, d2) : g1 ≥ 3, d2 ≥ 4, d2(g1 − 2) > d1 ≥ g1 + 5, d1 > d2}, (1.4)

and denote by Rg,d the coarse moduli space of d−marked Prym curves. We prove the fol-
lowing.

Theorem 1.6 Let (g1, d1, d2) be in S (1.4), and g = (g1 − 1)d2 + d1(d2 − 1) + 1. Let d be
an integer such that 2 ≤ d ≤ d2. If (C, α, Td) is a general point in Rg,d , then the Gaussian
maps

�C,ωC (−Td ),ωC (−Td+α)

and

�C,ωC ,ωC (−Td+α)

are surjective.

In case d = 2, 3 or d = 4 (see Example 1) we obtain the surjectivity for all genera greater
than or equal to 76. More generally, for every d ≥ 2, we obtain infinitely many genera for
which the marked Gaussian maps (we are considering) are surjective. We expect our result
far from being sharp (see Remark 6.3).
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We briefly explain how the paper is organized. In Sect. 2 we recall the definition of
Gaussian maps and prove Proposition 2.2, which is a slight generalization of Theorem 8,
[34] (see also Theorem 9). This is a result relating the cokernels of Gaussian maps associated
with different line bundles. In Sect. 3 we prove Theorem 1.5, following the same strategy
of the proof of Theorem 1.4 ([34]). More precisely, one of the main technical tool is an
ampleness result for line bundles on the blow-up at a point of an Enriques surface. This is
Proposition 3.2. The study of very ample line bundles on the blow-up at a point of an Enriques
surface, gives in turn the existence of curves with exactly one ordinary singular point of any
given multiplicity. This is Corollary 3.4. In Sect. 4 we prove the surjectivity of the marked
Prym-Gaussian maps for a certain class of d− marked Prym curves living in the product of
two curves. In Sect. 5 we give a lower bound for the gonality of curves living in the product of
a curve with P1 (see Proposition 5.1), and we prove a lemma about very ample line bundles
on curves. The results contained in Sects. 4 and 5 are then used in the proof of Theorem 1.6,
which can be found in Sect. 6.

2 Cokernels of Wahl maps

We briefly recall the definition of Gaussian maps, and their different interpretations, which
will be used in the sequel. See for example [39] or [40] for the details. Let X be a smooth
complex algebraic variety. Let L and M be two line bundles on X . Let qi : X × X → X ,
i = 1, 2 be the two projections. Let I�X×X be the ideal of the diagonal �X×X in X × X .
Consider the short exact sequence given by the inclusion I 2�X×X

→ I�X×X , and tensor it with
q∗
1 L ⊗ q∗

2M , which we denote by L � M .

0 → I 2�X×X
⊗ q∗

1 L ⊗ q∗
2M → I�X×X ⊗ q∗

1 L ⊗ q∗
2M → I�X×X /I 2�X×X

⊗ q∗
1 L ⊗ q∗

2M → 0.
(2.1)

The first Gaussian map associated with L and M is defined as the map induced at the level
of global sections:

�L,M : H0(X × X , I�X×X ⊗ q∗
1 L ⊗ q∗

2M) → H0(X × X , I�X×X /I 2�X×X
⊗ q∗

1 L ⊗ q∗
2M).

Now let �0
L,M : H0(X , L) ⊗ H0(X , M) → H0(X , L ⊗ M) be the multiplication map and

denote by R(L, M) its kernel. Using standard identifications, �L,M can be thought as a map

R(L, M) → H0(X ,�1
X ⊗ L ⊗ M).

If α = ∑

li ⊗mi ∈ Ker(�L,M ), li = fi S,mi = si T , where S and T are two local generators
of L and M , respectively, �L,M is locally given by �L,M (α) = ∑

( fi dgi − gid fi )S ⊗ T .
Another useful description of the first Gaussian map associated with two line bundles L

and M is obtained when L is a very ample line bundle giving an embedding ϕL : X ↪−→ P
r .

Denote by ML the kernel of the evaluation map of sections of L , i.e.:

0 → ML → H0(C, L) ⊗ OC → L → 0.

Then ϕ∗
L�1

Pr
(1) = �1

Pr
(1)|X � ML . Consider indeed the Euler sequence

0 → �Pr → OPr (−1)r+1 → OPr → 0,

and tensor it with OPr (1):

0 → �1
Pr (1) → H0(Pr ,OPr (1)) ⊗ OPr → OPr (1) → 0.
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Pulling it back by ϕL we obtain

0 → ϕ∗
L�Pr (1) → H0(C, L) ⊗ OC → L → 0,

and so we conclude. Now consider a twist by L ⊗ M of the conormal exact sequence:

0 → N∨
X/Pr ⊗ L ⊗ M → ML ⊗ M → �X ⊗ L ⊗ M → 0, (2.2)

One can show that under the aforementioned identification,

�L,M : H0(X , ML ⊗ M) → H0(X ,�X ⊗ L ⊗ M),

i.e. �L,M is the map induced at the level of global sections in 2.2. Now we recall a very
useful construction of Lazarsfeld.

Proposition 2.1 (Lemma 1.4.1, [36])) Let p1, ..., pn ∈ X be distinct points such that
L(−∑n

i=1 pi ) is generated by global sections, and h1(L(−∑n
i=1 pi )) = h1(L). Then one

has an exact sequence:

0 → ML(− ∑n
i=1 pi ) → ML →

n
⊕

i=1

OC (−pi ) → 0. (2.3)

We nowobserve that a slightmodification of [34],Theorem8, gives the following result which
relates the cokernels of Gaussian maps in different embeddings. In the following X = C will
be a smooth complex algebraic curve.

Proposition 2.2 Let C be a smooth complex projective algebraic curve. Let Tn = p1+...+ pn
be an effective divisor of degree n on C with pi 	= p j for i 	= j . Let L and M be two very
ample line bundles such that L − Tn is very ample and h1(L) = h1(L − Tn). Then there
exists a surjection between the cokernels of the Gaussian maps:

coker(�L−Tn ,M ) → coker(�L,M ).

The proof follows the same steps of [34],Theorem 8. We present it for completeness.

Proof Consider the following commutative diagram with exact rows and columns. The first
two rows are (2.2) for the line bundles L and L − Tn , the second column is (2.3) twisted by
M , and the third column is just the restriction modulo the identification ωC ⊗ L ⊗ OT �
⊕n

i=1 Opi (−pi ), and then twisted by M .

0 0 0

0 N∨
C/Pr−n ⊗ L(−Tn) ⊗ M ML(−Tn ) ⊗ M ωC ⊗ L(−Tn) ⊗ M 0

0 N∨
C/Pr ⊗ L ⊗ M ML ⊗ M ωC ⊗ L ⊗ M 0

0
⊕n

i=1 M(−2pi )
⊕n

i=1 M(−pi )
⊕n

i=1 M|pi (−pi ) 0

0 0 0

g

Passing to cohomology we obtain
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0 coker(�L(−Tn ), M) H1(N∨
C/Pr−n ⊗ L ⊗ (−Tn) ⊗ M) H1(ML(−Tn )) ⊗ M) 0

0 coker(�L,M ) H1(N∨
C/Pr ⊗ L ⊗ M) H1(ML ⊗ M) 0

0 ker(H1(g)) H1(
⊕

M(−2pi )) H1(
⊕

M(−pi )) 0
H1(g)

Being M very ample we have that h1(
⊕

M(−2pi )) = h1(
⊕

M(−pi )). Then
ker(H1(g)) = 0. ��

3 Non surjectivity

In this section we are going to prove Theorem 1.5. We proceed in a similar way as in [34]: we
will obtain the non-surjectivity result applying Theorem (1.1), together with a result about
very ampleness of line bundles on the blow-up at a point of an Enriques surface.

Let S be an Enriques surface. First we recall the definition of twomeasures of the positivity
of line bundles on S: the ϕ−function and the Seshadri constant of a big and nef line bundle
H on S. The first one is defined as

ϕ(H) := min{|H · F | : F ∈ Pic(S), F2 = 0, F 	≡ 0},
where ≡ denotes the numerical equivalence relation. Now set ε(H , x) := inf

x∈C
H ·C

multxC
, where

the infimum is taken over all curves C passing through x . The Seshadri constant ε(H) of H
is defined as

ε(H) := inf
x∈X ε(H , x).

We have the following inequalities:

0 ≤ ε(H)2 ≤ ϕ(H)2 ≤ H2. (3.1)

For background and proofs see for example [21]. Now let σ : S′ → S be the blow-up at
a point p, and let E be the exceptional divisor. We will now give, in terms of ϕ, sufficient
conditions for a line bundle of the form σ ∗H − l E to be big and nef.

In the following, when we say a “very general" Enriques surface, we mean that as a point
in the moduli space of Enriques surfaces, it lives outside a countable union Zariski-closed
subsets. We also recall that a nodal Enriques surface is one which contains −2 curves. In the
moduli space of Enriques surfaces these correspond to a divisor. An Enriques surface which
does not contain any −2 curves is usually called unnodal.

Proposition 3.1 Let S be an Enriques surface and l ≥ 1 be an integer. Let H be a big and
nef line bundle on S and suppose that one of the following holds:

i) S is a very general Enriques surface, ϕ(H) = l and H is not of the type H ≡ l
2 (E1+E2)

with Ei , i = 1, 2, effective isotropic divisors such that E1 · E2 = 2.
ii) S is a very general Enriques surface and ϕ(H) ≥ l + 1.
iii) S is unnodal and ϕ(H) ≥ 2l.

Then σ ∗H − l E is big and nef.
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Proof First we show that σ ∗H − l E is nef. From [37], Proposition 5.1.5., it follows that
σ ∗(H) − l E is nef if and only if ε(H) ≥ l. In [26], Theorem 1.3, it is shown that if S is a
very general Enriques surface then ϕ(H) = ε(H). Then, in case i) or i i) we conclude. Now
suppose we are in situation i i i). From [26], Corollary 4.5, it follows that ε(H) ≥ 1

2ϕ(H) ≥ l
and we immediately conclude.

From 3.1 and the hypothesis l ≥ 1, in case i i) and i i i) we get H2 ≥ ϕ(H)2 > l2 and
hence σ ∗H − l E is also big. Consider now the situation i) and suppose that σ ∗H − l E is
not big, i.e. H2 = l2. Then, again by 3.1, we have H2 = ϕ(H)2 = l2. By [29], Proposition
1.4, we must have H ≡ l(E1 + E2), where Ei , i = 1, 2 are isotropic effective divisors such
that E1 · E2 = 2. ��
The proof of the next result is a direct application of Reider’s Theorem (see [42], Theorem
1, or [21], Theorem 2.4.5).

Proposition 3.2 Let l ≥ 1 and let (S, H) be a polarized Enriques surface. Suppose that
either

(i) S is a very general Enriques surface, l ≥ 1 and ϕ(H) ≥ √
2(l + 2), or

(ii) S in unnodal, l = 1 and ϕ(H) ≥ 3
√
2, or l ≥ 2 and ϕ(H) ≥ 2(l + 1).

Let σ : S′ → S be the blow-up at a point and E the exceptional divisor. Then σ ∗H − l E is
a very ample line bundle on S′.

Proof First observe that σ ∗H − l E = σ ∗(H +KS)− (l+1)E +KS′ . Set H ′ = H +KS . By
Proposition 3.1, σ ∗H ′ − (l+1)E is big and nef. Indeed ϕ(H ′) = ϕ(H) ≥ √

2(l+2) ≥ l+2
in case (i) and ϕ(H ′) ≥ l+2 in case (i i). Observe that it is also effective. Indeed suppose by
contradiction it is not. Then, byRiemann-Roch andSerre duality, KS′ ⊗(σ ∗H ′−(l+1)E)∨ =
−(σ ∗H−(l+2)E) is effective. Now take a nef effective divisor L in S. Since σ ∗L is also nef
we obtain 0 ≤ σ ∗L ·(−(σ ∗H−(l+2)E)) = −L ·H < 0, where the latter inequality follows
from the fact that H is ample and L effective. We conclude that σ ∗H ′ − (l+1)E is effective.
Now suppose by contradiction that σ ∗H − l E is not very ample. Since σ ∗H ′ − (l + 1)E is
an effective, big and nef divisor and H2 ≥ ϕ(H)2 ≥ 9 + (l + 1)2 in both cases (i) and (i i),
we can apply Reider’s theorem. Then there exists a non trivial effective divisor D in S′ such
that either one of the following holds:

(a) D2 = 0 and (σ ∗H ′ − (l + 1)E)D ≤ 2;
(b) D2 = −1 and (σ ∗H ′ − (l + 1)E)D ≤ 1;
(c) D2 = −2 and (σ ∗H ′ − (l + 1)E)D = 0;
(d) (σ ∗H ′ − (l + 1)E)2 = 9, D2 = 1 and (σ ∗H ′ − (l + 1)E) ≡ 3D in Num(S′).

Now we show that none of these can happen.
Let D ∼ σ ∗L − aE , for some L ∈ Pic(S) and a ∈ Z. Suppose we are in case (a). Then

we have H ′L ≤ (l + 1)a + 2 and L2 = a2. Therefore we obtain the following inequalities:

ϕ(H ′)2a2 ≤ H ′2a2 = H ′2L2 ≤ (H ′ · L)2 ≤ ((l + 1)a + 2)2, (3.2)

where the second inequality follows by the Hodge index theorem. If |a| ≥ 2 we obtain

ϕ(H ′) ≤ | (l + 1)a + 2

a
| ≤ (l + 1) + |2

a
| ≤ (l + 1) + 1,

which contradicts the hypothesis. If |a| = 1 from 3.2 we get ϕ(H) = ϕ(H ′) ≤ (l + 1) + 2
which again is not possible.
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If a = 0 we get D = σ ∗L with L effective, not numerically trivial and such that L2 = 0
and H ′L ≤ 2. This gives ϕ(H) ≤ 2 and we conclude.

Suppose now we are in case (b). As before one have L2 = a2 − 1, H ′L ≤ a(l + 1) + 1.
Therefore we obtain

ϕ(H ′)2(a2 − 1) ≤ H ′2(a2 − 1) = H ′2L2 ≤ (H ′ · L)2 ≤ (a(l + 1) + 1)2.

If |a| ≥ 2 we find ϕ(H ′) <
√
2(l + 2). If a = 1 then L is an effective divisor such that

L2 = 0 and H ′L ≤ l +2. Moreover observe that L is not numerically trivial since otherwise
D ≡ −E , which is not possibile because D is an effective non trivial divisor. Therefore we
obtain ϕ(H ′) ≤ l + 2. a = −1 cannot happen if l ≥ 1 because H ′ is nef and L is effective
and L · H ′ = −l. If a = 0 then L2 = −1. This is not possibile for Enriques surfaces.

Suppose now we are in case (c). Then H ′L = a(l+1) and L2 = a2 −2. Then, as before,

ϕ(H ′)2(a2 − 2) ≤ H ′2(a2 − 2) = H ′2L2 ≤ (H ′ · L)2 ≤ a2(l + 1)2.

Observe that if |a| ≥ 2 this gives ϕ(H ′) ≤ √
2(l + 1) and hence we conclude. Observe that

|a| = 1 cannot happen because otherwise L2 = −1 and this, again, is not possible. If a = 0
then L is a effective divisor such that L2 = −2 and H ′L = 0. This cannot happen because
H ′ · L = (H + KS) · L , H is ample and L is effective.

Suppose we are now in case (d). Then H ′2 = 9 + (l + 1)2 which is not possible since
H ′2 ≥ ϕ(H)2 > 9 + (l + 1)2 by hypothesis. ��

Corollary 3.3 With the same hypothesis of the previous result we have σ ∗H − l E + σ ∗KS =
σ ∗(H + KS) − l E is very ample on S′.

Proof Apply Proposition 3.2 with H + KS instead of H . ��

We observe that Proposition 3.2 has the following corollary.

Corollary 3.4 Let l ≥ 2 and let (S, H) be a polarized Enriques surface. Suppose that either

(i) S is a very general Enriques surface and ϕ(H) ≥ √
2(l + 2), or

(ii) S is unnodal and ϕ(H) ≥ 2(l + 1).

Then there exists a curve C in the linear system |H | with an ordinary singular point of
multiplicity l.

Now we conclude with the proof of Theorem 1.5.

Proof of theorem 1.5 Let σ : S′ → S be the blow-up at a point, and E the exceptional
divisor. By the universal property of normalization we can suppose that C ∈ |σ ∗H − dE |
and α = σ ∗KS|C . From Proposition 3.2 it follows thatOC (C) = ωC (−Td +α) is very ample.

Observe that h0(C,OC (C)) = h0(S′,OS′(C)) − 1. Applying Theorem 1.1 we obtain that
�ωC ,ωC (−Td+α) is not surjective.

Now we want to prove that also �ωC (−Td ),ωC (−Td+α) is not surjective using Proposition
2.2 with L = ωC , M = ωC (−Td + α) and n = d . Observe that since OS′(C + KS′) �
OS′(σ ∗(H + KS) − (d − 1)E), ωC � OC (C + KS′) is very ample by Corollary 3.3.
Analogously OC (C + σ ∗KS) � ωC (−Td) is very ample. It remains to show that h1(ωC ) =
h1(ωC (−Td)), or equivalently that h0(ωC (−Td)) = h0(ωC )−d . Consider then the following
commutative diagram:
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0 0 0

0 OS′(K ′
S − E) OS′(KS′) OE (KS′) 0

0 OS′(C + KS′ − E) OS′(C + KS′) OE (C + KS′) 0

0 ωC (−Td) ωC
⊕d

i=1 Opi 0

0 0 0

and the one induced at the level of global sections:

0 0 0

0 H0(OS′(C + KS′ − E)) H0(OS′(C + KS′)) C
d 0

0 H0(ωC (−Td)) H0(ωC ) C
d

0 0

where we are using that H0(OS′(KS′)) � H0(OS(KS)) = 0, E � P
1 and OE (KS′) is

a divisor of degree −1 in E � P
1, h1(OS′(C + KS′ − E)) = 0 by Kawamata vanishing

theorem sinceOS′(C−E) = OS′(σ ∗H−(d+1)E) is big and nef. H1(KS′) � H1(OS′) = 0
because S is anEnriques surface and S′ is a blow-up.Hencewe conclude that h0(ωC (−Td)) =
h0(ωC ) − d. ��

4 Surjectivity for special curves

The results contained in this section will be used in the proof of Theorem 1.6. We start with
a proposition giving sufficient conditions for the surjectivity of mixed Gaussian maps on a
surface X which is the product of two curves. The central idea to study Gaussian maps on
X is to relate them with Gaussian maps on the curves. This idea dates back to Wahl ([40],
Lemma 4.12). See also Colombo-Frediani ([18], Theorem 3.1) for the second Wahl map."

Proposition 4.1 Let X = C1 ×C2. Let pi : X = C1 ×C2 → Ci , i = 1, 2 be the projections.
Let Li and Mi be line bundles on Ci , i = 1, 2, such that deg(Li ), deg(Mi ) ≥ 2gi + 2 and
deg(Li )+deg(Mi ) ≥ 6gi +3, for i = 1, 2. Let L = p∗

1L1⊗ p∗
2L2 and M = p∗

1M1⊗ p∗
2M2.

Then �X ,L,M is surjective.

Proof Wewant to relate the Gaussianmap�X ,L,M with someGaussianmaps onCi , i = 1, 2.
Let qi : X × X → X , i = 1, 2, be the two projections. Recall that �X ,L,M is given by:

�X ,L,M : H0(X × X , I�X×X ⊗ q∗
1 L ⊗ q∗

2M) → H0(X × X , I�X×X /I 2�X×X
⊗ q∗

1 L ⊗ q∗
2M)

Let qi,1 : C1 ×C1 → C1, i = 1, 2, be the projections and analogously qi,2 : C2 ×C2 → C2.
Let (ϕ1, ϕ2) be the isomorphism which exchange factors:

X × X = (C1 × C2) × (C1 × C2)
(ϕ1,ϕ2)−−−−→ (C1 × C1) × (C2 × C2),
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i.e. ϕi ((x1, x2), (y1, y2) = (xi , yi ). Observe that

I�X×X � ϕ∗
1 I�C1×C1

+ ϕ∗
2 I�C2×C2

,

where ϕ∗
i I�Ci×Ci

, i = 1, 2, are the inverse image ideal sheaves or equivalently the pullbacks
sheaves (because projections are flat). Now consider the isomorphism of OX -modules:

�1
X � I�X×X ⊗OX×X O�X×X .

Under this identification the decomposition

�1
X � p∗

1�
1
C1 ⊕ p∗

2�
1
C2

can be read as

I�X×X ⊗OX×X O�X×X � (ϕ∗
1 I�C1×C1

⊕ ϕ∗
2 I�C2×C2

) ⊗OX×X O�X×X .

So we obtain the following commutative diagram:

(ϕ∗
1 I�C1×C1

⊕ ϕ∗
2 I�C2×C2

) ⊗ q∗
1 L ⊗ q∗

2M (ϕ∗
1 I�C1×C1

⊕ ϕ∗
2 I�C2×C2

) ⊗ q∗
1 L ⊗ q∗

2M ⊗ O�X×X

I�X×X ⊗ q∗
1 L ⊗ q∗

2M I�X×X /I 2�X×X
⊗ q∗

1 L ⊗ q∗
2M

�

Taking global sections we obtain

H0((ϕ∗
1 I�C1×C1

⊕ ϕ∗
2 I�C2×C2

) ⊗ q∗
1 L ⊗ q∗

2M) H0((ϕ∗
1 I�C1×C1

⊕ ϕ∗
2 I�C2×C2

) ⊗ q∗
1 L ⊗ q∗

2M) ⊗ O�X×X )

H0(I�X×X ⊗ q∗
1 L ⊗ q∗

2M) H0(I�X×X /I 2�X×X
⊗ q∗

1 L ⊗ q∗
2M)

ψ

�
�X ,L,M

In order to show that �X ,L,M is surjective we will show the surjectivity of ψ . Clearly ψ

is surjective if each of the direct sum map is surjective:

ψ1 : H0(ϕ∗
1 I�C1×C1

⊗ q∗
1 L ⊗ q∗

2M) → H0((ϕ∗
1 I�C1×C1

⊗ q∗
1 L ⊗ q∗

2M) ⊗ O�X×X )

and

ψ2 : H0(ϕ∗
2 I�C2×C2

⊗ q∗
1 L ⊗ q∗

2M) → H0((ϕ∗
2 I�C2×C2

⊗ q∗
1 L ⊗ q∗

2M) ⊗ O�X×X )

Let us deal with the first map. The same argument will apply also to the second one. Observe
that

p j ◦ qi = qi, j ◦ ϕ j .

Then we can write

q∗
1 L ⊗ q∗

2M = q∗
1 (p∗

1L1 ⊗ p∗
2L2) ⊗ q∗

2 (p∗
1M1 ⊗ p∗

2M2) (4.1)

= ϕ∗
1 (q

∗
1,1L1 ⊗ q∗

2,1M1) ⊗ ϕ∗
2 (q

∗
1,2L2 ⊗ q∗

2,2M2). (4.2)

And so we obtain

ϕ∗
1 I�C1×C1

⊗ q∗
1 L ⊗ q∗

2M � ϕ∗
1 (I�C1×C1

⊗ (q∗
1,1L1 ⊗ q∗

2,1M1)) ⊗ ϕ∗
2 ((q

∗
1,2L2 ⊗ q∗

2,2M2))

Using that O�X×X � ϕ∗
1O�C1×C1

⊗ ϕ∗
2O�C2×C2

, we also obtain

ϕ∗
1 I�C1×C1

⊗ q∗
1 L ⊗ q∗

2M ⊗ O�X×X �
� ϕ∗

1 (I�C1×C1
⊗ (q∗

1,1L1 ⊗ q∗
2,1M1) ⊗ O�C1×C1

)

⊗ ϕ∗
2 ((q

∗
1,2L2 ⊗ q∗

2,2M2) ⊗ O�C2×C2
)
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So ψ1 becomes a map:

H0(ϕ∗
1 (I�C1×C1

⊗ (q∗
1,1L1 ⊗ q∗

2,1M1)) ⊗ ϕ∗
2 ((q

∗
1,2L2 ⊗ q∗

2,2M2)))

H0(ϕ∗
1 (I�C1×C1

⊗ (q∗
1,1L1 ⊗ q∗

2,1M1) ⊗ O�C1×C1
) ⊗ ϕ∗

2 ((q
∗
1,2L2 ⊗ q∗

2,2M2) ⊗ O�C2×C2
))

Now using that X × X
�−→ (C1 × C1) × (C2 × C2) and Künneth formula we get:

H0(X × X , ϕ∗
1 (I�C1×C1

⊗ (q∗
1,1L1 ⊗ q∗

2,1M1)) ⊗ ϕ∗
2 ((q

∗
1,2L2 ⊗ q∗

2,2M2)))

� H0(C1 × C1, I�C1×C1
⊗ (q∗

1,1L1 ⊗ q∗
2,1M1)) ⊗ H0(C2 × C2, (q

∗
1,2L2 ⊗ q∗

2,2M2)),

and

H0(ϕ∗
1 (I�C1×C1

⊗ (q∗
1,1L1 ⊗ q∗

2,1M1) ⊗ O�C1×C1
) ⊗ ϕ∗

2 ((q
∗
1,2L2 ⊗ q∗

2,2M2)) ⊗ O�C2×C2
)

� H0(I�C1×C1
⊗ (q∗

1,1L1 ⊗ q∗
2,1M1) ⊗ O�C1×C1

)) ⊗ H0((q∗
1,2L2 ⊗ q∗

2,2M2) ⊗ O�C2×C2
)).

Under these identifications ψ1 becomes:

H0(I�C1×C1
⊗ q∗

1,1L1 ⊗ q∗
2,1M1) ⊗ H0(q∗

1,2L2 ⊗ q∗
2,2M2)

H0(I�C1×C1
⊗ q∗

1,1L1 ⊗ q∗
2,1M1 ⊗ O�C1×C1

) ⊗ H0(q∗
1,2L2 ⊗ q∗

2,2M2 ⊗ O�C2×C2
),

ψ1

and it is given by the tensor product �C1,L1,M1 ⊗ �0
C2,L2,M2

, where

�C1,L1,M1 : H0(I�C1×C1
⊗ q∗

1,1L1 ⊗ q∗
2,1M1)

→ H0(I�C1×C1
⊗ q∗

1,1L1 ⊗ q∗
2,1M1 ⊗ O�C1×C1

)

and

�0
C2,L2,M2

: H0(q∗
1,2L2 ⊗ q∗

2,2M2) → H0(q∗
1,2L2 ⊗ q∗

2,2M2 ⊗ O�C2×C2
).

Analogously one can show that ψ2 = �0
C1,L1,M1

⊗ �C2L2,M2 . Therefore we obtain

ψ = �C1,L1,M1 ⊗ �0
C2,L2,M2

⊕ �0
C1,L1,M1

⊗ �C2L2,M2 . (4.3)

Now observe that if deg(Li ), deg(Mi ) ≥ 2gi + 2 for i = 1, 2, then by Theorem 1 of
[2], each Gaussian map is surjective. Moreover, by a classical result of Mumford, also the
multiplication maps are (since deg(Li ), deg(Mi ) ≥ 2gi + 1). So we get the surjectivity of
ψ . ��
Remark 4.2 Let X1 and X2 be two smooth varieties of any dimension. Let L1, M1 and
L2, M2 be two line bundles on X1 and X2 respectively. Denote by L = L1 � L2 and
M = M1 � M2. We observe that a similar proof gives a lifting of �L,M by �X1,L1,M1 ⊗
�0

X2,L2,M2
⊕ �0

X1,L1,M1
⊗ �X2,L2,M2 .

We are now going to prove a surjectivity result for mixed Gaussian maps on curves living
in the product of two curves.
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Proposition 4.3 With the same hypothesis and notations of Proposition 4.1, let Di be an
effective divisor of degree di on Ci , i = 1, 2, and let C be a smooth curve in the linear
system |p∗

1D1 + p∗
2D2|. Denote by li and mi the degree of Li and Mi respectively. Moreover

suppose that

1. li ,mi ≥ 2gi + 2 and li + mi ≥ 6gi + 3;
2. li + mi > 2gi − 2 + di for i = 1, 2;
3. d2(l1 + m1 − (2g1 − 2)) + d1(l2 + m2 − (2g2 − 2)) − 4d1d2 > 0.

Then

�C,L |C ,M|C

is surjective.

Proof Consider the following commutative diagram

H0(X × X ,I�X ⊗ L � M) H0(X , �1
X ⊗ L ⊗ M)

H0(C, �1
X ⊗ L ⊗ M |C )

H0(C × C,I�C ⊗ L |C � M|C ) H0(C, ωC ⊗ L |C ⊗ M|C ).

�X ,L,M

π1

π2�L|C ,M|C

(4.4)

Observe that the vertical arrow and π1 are restriction maps, whereas π2 comes from the
conormal bundle sequence

0 → OC (−C) → �1
X |C

→ ωC → 0

tensored by OC (L + M). We prove that �X ,L,M , π1, and π2 are surjective. From this we
obtain the desired surjectivity result. The surjectivity of �X ,L,M is just Proposition 4.1.
The surjectivity of π1 will follow from the vanishing of H1(X ,�X ⊗ L ⊗ M(−C)) �
H1(X , p∗

1ωC1 ⊗ L ⊗ M(−C)) ⊕ H1(X , p∗
1ωC2 ⊗ L ⊗ M(−C)). Consider the first piece.

Observe that

H1(X , p∗
1ωC1 ⊗ L ⊗ M(−C)) � H1(X , p∗

1(ωC1 ⊗ L1 ⊗ M1(−D1)) ⊗ p∗
2(L2 ⊗ M2(−D2))).

By Künneth this is just

H0(C1, ωC1 ⊗ L1 ⊗ M1(−D1)) ⊗ H1(C2, L2 ⊗ M2(−D2)).

⊕
H1(C1, ωC1 ⊗ L1 ⊗ M1(−D1)) ⊗ H0(C2, L2 ⊗ M2(−D2)).

Now observe that h1(C2, L2 ⊗ M2(−D2)) = 0 and h1(C1, ωC1 ⊗ L1 ⊗ M1(−D1)) are
zero by Serre duality and the hypothesis 2. Analogously H1(X , p∗

1ωC2 ⊗ L ⊗ M(−C))

decomposes as

H0(C1, L1 ⊗ M1(−D1)) ⊗ H1(C2, ωC2 ⊗ L2 ⊗ M2(−D2)).

⊕
H1(C1, L1 ⊗ M1(−D1)) ⊗ H0(C2, ωC2 ⊗ L2 ⊗ M2(−D2)).
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Again, h1(C2, ωC2 ⊗ L2 ⊗M2(−D2)) and h1(C1, L1 ⊗M1(−D1)) are zero by Serre duality
and the hypothesis 2. The surjectivity of π2 will follow from the vanishing of H1(C, (L |C +
LM|C − C|C ). By Serre duality it will be enough to show that

deg(KC + C|C − L |C − M|C ) < 0.

This is just hypothesis 3. ��
Main construction 4.4 In this remark we consider a construction we will use in the following
corollary. First observe that if X is a smooth surface, H is an ample divisor on X andC ∈ |H |
is a smooth curve, then the restriction map

Pic0X → Pic0C

is injective by Lefschetz hyperlane theorem (see for example [25], Theorem C).
Now let C1 and C2 be two curves of genus g1 and g2 respectively. Let X be the product

C1 × C2. Let pi : X → Ci , i = 1, 2 be the two projections and let Di be effective divisors
of degree di such that |p∗

1D1 + p∗
2D2| is base-point free. Let C be a smooth irreducible

curve in the linear system |p∗
1D1 + p∗

2D2|. In particular observe that the genus of C is
equal to g = d1(g2 − 1) + d2(g1 − 1) + d1d1 + 1. Let α′ ∈ Pic0(C1) be a non trivial
2-torsion line bundle (in particular g1 ≥ 1). Then α1 := p∗

1α
′ is a non trivial 2-torsion line

bundle in Pic(X) and α := α1|C is a non trivial 2-torsion line bundle in Pic(C). Assume
supp(D1) = {p1,1, ..., p1,d1} and denote by Td2 the divisor of the d2 points of intersection
between the fiber p−1

1 (p1,1) and C . We can assume that Td2 consists of distinct points.

Remark 4.5 Take X as in 4.4. We observe that a sufficient condition for OX (p∗
1D1 + p∗

2D2)

to be base-point free is that bothOC1(D1) andOC2(D2) are. Observe that if C is any smooth
curve of genus g ≥ 1, a general effective divisor D of degree d ≥ g + 1 is base-point free.
This follows from classical results but we recall it.

Since every divisor of degree 2g is base-point free, we can restrict to the case g ≥ 2 and
g + 1 ≤ d ≤ 2g − 1. Consider first the case d = 2g − 1. Let D′ be a general divisor of
degree 2g − 2 and p ∈ C be a point. Then, by Riemann-Roch, it immediately follows that
D′ + p is a base-point free divisor of degree 2g − 1. Now suppose g + 1 ≤ d ≤ 2g − 2 and
consider the Brill-Noether variety Wr

d parametrizing (isomorphism classes of) line bundles
of degree d such that the dimension of the space of global sections is greater than or equal to
r + 1. Since d is greater than g + 1, by Riemann-Roch, Picd(C) = Wd−g

d . Hence we have

to show that a general element of Wd−g
d , with g + 1 ≤ d ≤ 2g − 2, is base-point free. Line

bundles with base points are given, inside Wd−g
d , by the image of the natural map

Wd−g
d−1 × W 0

1 → Wd−g
d . (4.5)

Consider the isomorphismWd−g
d−1 � W 0

2g−1−d given by L → ωC ⊗ L∨. Since 0 ≤ 2g− 1−
d ≤ g, the last one is birational to Sym2g−1−d C and hence has dimension 2g− 1− d . Then
the image of 4.5 has dimension 2g− d . On the other handWd−g

d has dimension greater than
or equal to ρ(g, d − g, d) = g. We conclude that if d ≥ g + 1 the image of 4.5 is a proper
subvariety. Hence the general element is base-point free.

Corollary 4.6 Using the construction 4.4, suppose that one of the following holds:

1. gi ≥ 2 i=1,2, d1 ≥ 5, d2 ≥ 4, d1 ≥ g1 + 5, d2 ≥ g2 + 4;
2. g1 = 1, g2 ≥ 2, d1 ≥ 6, d2 ≥ 4, d2 ≥ g2 + 4, d1 > d2

g2−1 ;
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3. g1 ≥ 3, g2 = 1, d1 ≥ 5, d2 ≥ 5, d1 ≥ g1 + 5;
4. C1 = P

1, g2 ≥ 2, d1 ≥ 5, d2 ≥ 4, d2 ≥ g2 + 4, d1(g2 − 1) > 2d2;
5. g1 ≥ 3, C2 = P

1, d1 ≥ 5, d2 ≥ 4, d2(g1 − 2) > d1 ≥ g1 + 5.

Then

�C,ωC (−Td2 ),ωC (−Td2+α),

and

�C,ωC ,ωC (−Td2+α)

are surjective.

Proof Set L1 = ωC1+D1−p1,1, L2 = ωC2+D2,M1 = ωC1+D1−p1,1+α′,M2 = ωC2+D2

and L ′
1 = ωC1 + D1, L ′

2 = ωC2 + D2, M ′
1 = ωC1 + D1 − p1,1 + α′ and M ′

2 = ωC2 + D2.
Denote by li ,mi , i = 1, 2 and l ′i ,m′

i , i = 1, 2 their degrees. To prove the surjectivity of the
Gaussian maps we want to apply Proposition 4.3 with Li , Mi , i = 1, 2 in the first case, and
L ′
i , M

′
i , i = 1, 2, in the second. Since l ′i ≥ li , i = 1, 2, m′

i ≥ mi , i = 1, 2, it is enough to
verify the hypothesis of Proposition 4.3 in the first situation. It is easy to see that the conditions
become: d1 ≥ 5, d2 ≥ 4, d1 ≥ g1 + 5, d2 ≥ g2 + 4 and d2(g1 − 2) + d1(g2 − 1) > 0. Then
we conclude as in the statement. ��

We end this section with a surjectivity result for the related multiplication maps.

Proposition 4.7 Using the construction 4.4, suppose that d2 ≥ 3 and d1 ≥ 4, g1 ≥ 1, or
g1 = 1 and d2 ≥ 3. Then

�0
C,ωC (−Td2 ),ωC (−Td2+α) (4.6)

and
�0

C,ωC ,ωC (−Td2+α) (4.7)

are surjective.

Proof Consider first�0
C,ωC (−Td2 ),ωC (−Td2+α) and denote it by�0. Set L = KX+C−p∗

1(p1,1)

and M = KX +C− p∗
1(p1,1)+α1. Then L |C = ωC (−Td2), M|C = ωC (−Td2 +α). Consider

the following commutative diagram

H0(X , L) ⊗ H0(X , M) H0(X , L ⊗ M)

H0(C, L |C ) ⊗ H0(C, M|C ) H0(C, L |C ⊗ M|C ).

�0
X ,L,M

p

�0

(4.8)

where p is the restriction map. Again, in order to prove the surjectivity result, it is sufficient
to prove that �0

X ,L,M and p are surjective. Using the identifications in 4.1 with L1 = ωC1 +
D1 − p1,1 and L2 = ωC2 + D2, M1 = ωC1 + D1 − p1,1 +α1, M2 = ωC2 + D2, and Künneth
theorem, the multiplication map:

H0(X × X , q∗
1 L ⊗ q∗

2M)
�0

X ,L,M−−−−→ H0(X × X , q∗
1 L ⊗ q∗

2M ⊗ O�X×X )

decomposes as the tensor product of the multiplication maps on the curves Ci : i = 1, 2:

�0 = �0
C1,L1,M1

⊗ �0
C2,L2,M2

.
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Since li ,mi ≥ 2gi + 1, i = 1, 2, each multiplication map is surjective by a classical result
of Mumford. The surjectivity of p will follow from the vanishing of H1(X , L ⊗ M(−C)).
By Künneth this is isomorphic to

H0(C1, L1 ⊗ M1(−D1)) ⊗ H1(C2, L2 ⊗ M2(−D2))

⊕
H1(C1, L1 ⊗ M1(−D1)) ⊗ H0(C2, L2 ⊗ M2(−D2)).

Now observe that h1(C2, L2 ⊗ M2(−D2)) = h1(C1, L1 ⊗ M1(−D1)) = 0. This is a con-
sequence of Serre duality together with the fact that li + mi > 2gi − 2 + di . This ends the
proof of the surjectivity of 4.6. An identical proof, with L1 = ωC1 + D1, L2 = ωC2 + D2,
M1 = ωC1 + D1 − p1,1 + α′ and M2 = ωC2 + D2, gives the surjectivity of 4.7. ��

5 Some useful lemmas

In this section we prove some other results we will use in the proof of Theorem 1.6. Let C be
a curve. We will need an upper bound on the gonality of curves in the surface C ×P

1, where
C is a curve. The proof is very much inspired by [35] (see Lemma 2.8 and Theorem 6.1).

Let p1 : C × P
1 → C , p2 : C × P

1 → P
1 be the two projections. Let C0 be the class of

a fiber of p2. Recall that

Pic(C × P
1) = p∗

1(Pic(C)) ⊕ ZC0,

and that the Néron-Severi is generated by C0 and the class of a fiber of p1, which we will
call f . We are going to prove the following:

Proposition 5.1 Let C ′ ∈ |p∗
1(D1) + d2C0| be a curve in C × P

1. Then

• if C is hyperelliptic,
gon(C ′) ≥ min(d1, 2d2).

• If C is any curve, g(C ′) > 0 and d2 ≥ d1
4 + 1 + 1

d1
,

gon(C ′) ≥ min(d1, d2 gon(C)).

For the proof we will use the following theorem of Serrano (see [43]):

Theorem 5.2 Let C’ be a smooth curve on a smooth surface X. Let ϕ : C ′ → P
1 be a

surjective morphism of degree d. Suppose that either

(a) C ′2 > (d + 1)2, or
(b) C ′2 > 1

2 (d + 2)2 and KX is numerically even.

Then there exists a morphism ψ : X → P
1 such that ψ|C ′ = ϕ.

Recall that a divisor D is called numerically even if D · E is even for any other divisor E .
In our situation KC×P1 is numerically even since KC×P1 ≡ −2C0 + (2g(C) − 2) f . Before
presenting the proof of Proposition 5.1, we will need the folllowing:

Lemma 5.3 Let C ′ ∈ |p∗
1(D1) + d2C0| be a curve in X = C × P

1. Let ϕ : C ′ → P
1

be a morphism, and suppose that there exists ψ : X → P
1 such that ψ|C ′ = ϕ. Then

deg(ϕ) ≥ min(d2 gon(C), d1).
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Proof Let D be a fiber of ψ . Then D ∼ p∗
1B + aC0, with a ∈ Z and B a divisor in C .

Denote by b the degree of B. Numerically: D ≡ b f + aC0. From f · D ≥ 0, C0 · D ≥ 0,
and D2 = 0 one finds a ≥ 0, b ≥ 0 and 2ab = 0. Then we have two cases:

(i) a = 0. In this case D ∼ p∗
1B. Then deg(ϕ) = deg(ψ|C ′ ) = C ′ · D = d2b ≥ d2 gon(C),

where the latter inequality follows from the observation that the restriction ofψ to a fiber
of p2 gives a morphism C → P

1 of degree greater than or equal to C0 · D = b. And so
b ≥ gon(C).

(ii) b = 0. In this situation D ∼ aC0 and then deg(ϕ) = deg(ψ|C ′ ) = aC0 ·C ′ = ad1 ≥ d1.

��
Proof of Proposition 5.1 LetC ′ ∈ |p∗

1(D1)+d2C0| be a curve inC×P
1 as before. Denote by k

the gonality ofC ′, and letϕ : C ′ → P
1 amorphismof degree k. Ifϕ is extendablewe conclude

using Lemma 5.3. Then, assume that ϕ is not extendable. By contradiction suppose that
k < min(d1, d2 gon(C)). UsingTheorem5.2,we getC ′2 = 2d1d2 ≤ 1

2 (k+2)2 < 1
2 (d1+2)2.

That cannot happen if d2 ≥ d1
4 + 1+ 1

d1
. Finally observe that from k < min(d1, d2 gon(C)),

we get (k + 1)2 ≤ d1d2 gon(C) and so, if C is hyperelliptic, we get (k + 1)2 ≤ 2d1d2 =
C ′2 ≤ 1

2 (k + 2)2 �⇒ k = 1 and C ′ � P
1. ��

We end this section proving a lemma which gives a criterion for a line bundle of the type
ωC (−Tm + α) to be base-point free or very ample on a curve of genus g. We will use it
in Proposition 6.2 and Theorem 1.6. Since we want this lemma to hold for any effective
divisor Tm of degree m, we have to suppose m ≤ g − 3. This condition in fact guarantees
that h0(C, ωC (−Tm + α)) ≥ 2.

Lemma 5.4 Let C be a smooth irreducible curve of genus g and Tm be an effective divisor
of degree m ≤ g − 3, and α a (non-trivial) 2−torsion line bundle.

(a) Suppose that ωC (−Tm + α) is not base-point free. Then

(i) h0(C, Tm + α) = 0, and there exists a point p such that dim(|2(Tm + p)|) ≥ 1, or
(ii) h0(C, Tm + α) ≥ 1, and there exists a point p such that dim(|Tm + α + p)|) ≥ 1.

(b) Suppose ωC (−Tm + α) is not very ample. Then

(i) there exist points p and q such that h0(C, Tm + α + p) = 0, and dim(|2(Tm + p +
q)|) ≥ 1, or

(ii) there exist points p and q such that h0(C, Tm + α + p) ≥ 1, and dim(|Tm + α +
p + q)|) ≥ 1.

Proof Consider first (a). Suppose that p is a base-point forωC (−Tm+α). Then, by Riemann-
Roch, h0(Tm + p+α) = h0(Tm +α)+1. If h0(Tm +α) ≥ 1 we conclude. If h0(Tm +α) = 0,
then h0(Tm +α+ p) = 1. Then there exists an effective divisor E such that E ∼ Tm + p+α.
This gives 2E ∼ 2(Tm + p). Now observe that h0(2(Tm + p)) ≥ 2, since otherwise 2E =
2(Tm + p) and hence E = Tm + p, which gives α = 0. Since α is not trivial by hypothesis,
this cannot happen.

Now let us deal with (b). Suppose there exist two points p and q such that q is a base-point
forωC (−Tm+α− p). Then, by Riemann-Roch, h0(Tm+ p+q+α) = h0(Tm+ p+α)+1. If
h0(Tm + p+α) ≥ 1we conclude. If h0(Tm + p+α) = 0, then h0(Tm + p+q+α) = 1. Then
there exists an effective divisor E such that E ∼ Tm + p+q+α. Then 2E ∼ 2(Tm + p+q).
As before, it follows that h0(2(Tm + p + q)) ≥ 2. ��
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6 Surjectivity for the general point

Let ˜Mg,d be the Deligne–Mumford stack of smooth irreducible curves of genus g with d
unordered distinct points. Let Rg be the stack of Prym curves of genus g. We consider the
stack of Prym curves of genus g with d unordered distinct points:

Rg,d := Rg ×Mg
˜Mg,d . (6.1)

We denote by Rg,d the coarse moduli space. We want to show that under some assumptions
on g, d , the Gaussian maps �C,ωC (−Td ),ωC (−Td+α), and �C,ωC ,ωC (−Td+α) are surjective for
a general (C, α, Td) in Rg,d . For convenience, we introduce the following set:

S := {(g1, d1, d2) : g1 ≥ 3, d2 ≥ 4, d2(g1 − 2) > d1 ≥ g1 + 5, d1 > d2}. (6.2)

Fix (g1, d1, d2) ∈ S and set g = (g1 − 1)d2 + d1(d2 − 1) + 1. We are going to prove
that for all 0 ≤ d ≤ d2, if (C, α, Td) ∈ Rg,d is a general point, the Gaussian maps
�C,ωC (−Td ),ωC (−Td+α), and �C,ωC ,ωC (−Td+α) are surjective.

Notations 6.1 In the following we will denote by (C∗, α∗, T ∗
d2

) a point in Rg,d2 constructed

as in Construction 4.4, with D1 general and takingC2 = P
1,C1 hyperelliptic and (g1, d1, d2)

belonging to S. In particular the genus of C∗ is g = (g1 −1)d2 +d1(d2 −1)+1. We observe
that the conditions g1 ≥ 3, d2 ≥ 4, d2(g1 − 2) > d1 ≥ g1 + 5 guarantee that C∗ does exist,
by Remark 4.5, and the surjectivity of the aforementioned Gaussian maps for the special
point (see Corollary 4.6). We requireC1 to be hyperelliptic and d1 > d2, because in the proof
of Proposition 6.2 we will need h0(C∗, T ∗

d2
) = 1 (we will use Proposition 5.1).

Proposition 6.2 Fix (g1, d1, d2) in S (6.2), and set g = (g1 − 1)d2 + d1(d2 − 1) + 1. Then
the Gaussian maps

�C,ωC ,ωC (−Td2+α) : R(ωC , ωC (−Td2 + α)) → H0(C, ω⊗3
C (−Td2 + α))

and

�C,ωC (−Td2 ),ωC (−Td2+α) : R(ωC (−Td2), ωC (−Td2 + α)) → H0(C, ω⊗3
C (−2Td2 + α))

are surjective for the general (C, α, Td2) in Rg,d2 .

Proof We will prove the result for �C,ωC (−Td2 ),ωC (−Td2+α). An identical proof gives the

surjectivity of �C,ωC ,ωC (−Td2+α). For the rest of the proof we denote by �0 and �, the

multiplication map �0
C,ωC (−Td2 ),ωC (−Td2+α), and the Gaussian map �C,ωC (−Td2 ),ωC (−Td2+α)

respectively. Let X be the product C1 × P
1, with g(C1) = g1 ≥ 3, and C1 hyperelliptic. Let

(C∗, α∗, T ∗
d2

), C∗ ⊂ X , be a marked Prym curve constructed as in 6.1.

First, we show that h0(C, ωC (−Td2)), h
0(C, ωC (−Td2 +α)) and h0(C, ω⊗2

C (−2Td2 +α)),
are locally constant in a neighborhood of (C∗, α∗, T ∗

d2
). For the latter, it follows immediately

from Riemann-Roch. So let’s focus on the other two. By Riemann-Roch it is equivalent
to show that h0(C, Td2 + α) and h0(C, Td2) are locally constant in a neighborhood of
(C∗, α∗, T ∗

d2
). For the special point we have h0(C∗, T ∗

d2
) = 1 since d1 > d2 by con-

struction and gon(C∗) > min(d1, 2d2) > d2 by Proposition 5.1. Next we show that
h0(C∗, T ∗

d2
+ α∗) = 0. Consider:

0 → OX (p∗
1 p1,1 + p∗

1α
′(−C∗)) → OX (p∗

1 p1,1 + p∗
1α

′) → OC∗(p∗
1 p1,1 + p∗

1α
′) → 0.
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By Künneth formula we have that H1(X ,OX (p∗
1 p1,1 + p∗

1α
′(−C∗)) �

H0(C1,OC1(p1,1 + α′(−D1)) ⊗ H1(C2,OC2(−D2))

⊕
H1(C1,OC1(p1,1 + α′(−D1)) ⊗ H0(C2,OC2(−D2)).

Notice that the h0 terms are zero by the hypothesis on the degrees of Di , i = 1, 2. Now
observe that choosing p1,1 ∈ supp(D1) general in the construction, we can assume that
h0(X ,OX (p∗

1 p1,1 + p∗
1α

′)) = h0(C1, p1,1 + α′) = 0. Therefore h0(C∗, T ∗
d2

+ α) =
h0(C∗,OC∗(p∗

1 p1,1 + p∗
1α

′)) = 0.
Now observe that since g = (g1 − 1)d2 + d1(d2 − 1) + 1 ≥ d2, if (C, Td2 , α) is a

general point in Rg,d2 , h
0(C, Td2) = 1. Analogously, since g− 1 ≥ d2, h0(C, Td2 +α) = 0.

Hence we are done: the dimensions of the spaces of global sections of the line bundles we are
considering are locally constant in a neighborhood of the special point. ByProposition 4.7,�0

is surjective for the special point (C∗, α∗, T ∗
d2

). Then the kernel of the multiplication map on
global sections, R(ωC (−Td2), ωC (−Td2 +α)), has constant dimension in a neighborhood of
the special point. By Riemann-Roch, also h0(C, ω⊗3

C (−2Td2 +α)) is locally constant. Since
by Corollary 4.6, � is surjective for the special point, by semi-continuity it is surjective in
a neighborhood. For the Gaussian map �C,ωC (−Td2 ),ωC (−Td2+α) : R(ωC , ωC (−Td2 + α)) →
H0(C, ω⊗3

C (−2Td2 + α)) the proof is very similar. ��
Weobserve that the previous result requiresd2 ≥ 4, and hencewedon’t still have a surjectivity
result for a general Prym curve with 2 or 3 marked points. We overcome this problem in the
final theorem (Theorem 1.6).

Proof of Theorem 1.6 Let’s deal with the first map. Let (C, α, Td) and (C, α, Td2) be general
points in Rg,d and Rg,d2 respectively, such that Td ⊆ Td2 . In particular, we can suppose
that gon(C) = � g+3

2 �. An easy calculation shows that � g+3
2 � > 2(d2 + 2), and so we have

that ωC (−Td2 + α) is very ample. In fact, if ωC (−Td2 + α) is not very ample, by Lemma
5.4 there exists a g12(d2+2). Observe that also ωC (−Td2) and ωC (−Td) are very ample since

otherwise the curve would admit a g1d2+2 and a g1d+2 respectively. Moreover, observe that

h1(ωC (−Td)) = h1(ωC (−Td2)) since h0(Td) = h0(Td2) = 1. Denote by Tn the divisor
whose support consists of the n−distinct points such that Td2 = Td + Tn . Then we can
apply Proposition 2.2 with L = ωC (−Td), n = d2 − d (then L − Tn = ωC (−Td2)), and
M = ωC (−Td2 + α). We obtain a surjective map

coker(�C,ωC (−Td2 ),ωC (−Td2+α)) → coker(�C,ωC (−Td ),ωC (−Td2+α)).

Since coker(�C,ωC (−Td2 ),ωC (−Td2+α)) = 0 by Proposition 6.2, we conclude that
coker(�C,ωC (−Td ),ωC (−Td2+α)) is zero. Now we use again Proposition 2.2 with L =
ωC (−Td + α), n = d2 − d , and M = ωC (−Td) (in particular L − Tn = ωC (−Td2 + α)).
Notice that since (C, α, Td) and (C, α, Td2) are general points in Rg,d (and Rg,d2 respec-
tively), and g − 1 ≥ d2 ≥ d , we have that h0(Td + α) = h0(Td2 + α) = 0. This gives by
Serre-duality h1(L) = h1(L − Tn). We then obtain a surjective map:

coker(�C,ωC (−Td2+α),ωC (−Td )) → coker(�C,ωC (−Td+α),ωC (−Td )).

Hence we conclude that coker(�ωC (−Td ),ωC (−Td+α)) = 0 for the general point. The proof
for

�C,ωC ,ωC (−Td+α)

is analogous. ��
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Example 1 Observe that choosing d2 = 4, d1 = g1+l+5 with g1 ≥ 3 and 0 ≤ l+14 ≤ 3g1,
all the conditions of Theorem 1.6 are satisfied, and in this case g = 7g1 + 3l + 12. Choosing
(g1, l) ∈ {(7+ k, 5), (8+ k, 3), (9+ k, 1), (7+ k, 6), (8+ k, 4), (9+ k, 2), (7+ k, 7), (8+
k, 5), (9 + k, 3), (10 + k, 1), (8 + k, 6), (9 + k, 4), k ≥ 0}, we get all the genera greater
than or equal to 76. Then for all g ≥ 76, the Gaussian maps with 2,3 or 4−marked points
are surjective by Theorem 1.6.

Remark 6.3 We expect our results regarding the surjectivity of 1.2 and 1.3 to be not sharp. In
this remark, we compute the expected numerical range of degrees d and genus g such that one
can expect the surjectivity of the Gaussian maps for the general point (C, α, Td). Denote by
�0,� (�0′

,�
′
) respectively�0

C,ωC ,ωC (−Td+α) and�C,ωC ,ωC (−Td+α) (�0
C,ωC (−Td ),ωC (−Td+α)

and �C,ωC (−Td ),ωC (−Td+α)), and denote by R(g, d) (R′(g, d)) the kernel of �0 (�0′
). We

first observe that a necessary condition for the surjectivity is d ≥ g−3. Indeed, let (C, α, Td)
be a general point in Rg,d . Observe that h0(C, ωC (−Td + α)) = max{g − 1 − d, 0}. Then,
if d ≥ g− 1, R(g, d) = 0. If d = g− 2, h0(C, ωC (−Td +α)) = 1 and �0 (�0′

) is injective
in both cases. Then suppose d ≤ g − 3. An easy calculation shows that in order to have the

surjectivity of 1.2, we need d ≤ g− 7− 6
g−2 + cork(�0)

g−2 . In particular one can expect to have
the surjectivity of 1.2 for every g ≥ 9 and d ≤ g − 8.

Analogously, an easy calculation shows that in order to have the surjectivity of 1.3, we

need d ≤ g − 3, if g = 4 or g = 5, and d ≤ g − 5
2 − √

8g − 7 + cork(�0
′
) if g ≥ 6.
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