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Abstract
The set of smooth cubic hypersurfaces in Pn is an open subset of a projective space. A
compactification of the latterwhich allows to count the number of smooth cubic hypersurfaces
tangent to a prescribed number of lines and passing through a given number of points is termed
a 1–complete variety of cubic hypersurfaces, in analogy with the space of complete quadrics.
Imitating the work of Aluffi for plane cubic curves, we construct such a space in arbitrary
dimensions by a sequence of five blow-ups. The counting problem is then reduced to the
computation of five total Chern classes. In the end, we derive the desired numbers in the case
of cubic surfaces.

Introduction

A famous moduli space in enumerative geometry is the space of complete quadrics. This is
a compactification of the set of smooth quadric hypersurfaces in P(W ) = Pn , whereW is an
(n+1)-dimensional vector space over an algebraically closed field k. To construct this space,
one starts with V0 = P

(
Sym2 (W ∗)

)
and considers the sequence of n blow-ups obtained by

iteratively blowing up the proper transforms of the loci of symmetric matrices with rank at
most i . For details, we refer to [19] and the references therein. This variety has been used to
answer the degree 2 case of questions like:

How many smooth degree d hypersurfaces in Pn are tangent to
(n+d

d

) − 1 general linear
spaces of various dimensions?

The solutions to these problems are classically called characteristic numbers (of the family of
degree d hypersurfaces). In the case of quadrics, this question was first answered by Schubert
[21], back in 1879. Later this was translated into a problem about the Chow ring of the space
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of complete quadrics, and beautiful results have been achieved [7, 23, 28]. More recently, the
space of complete quadrics has proved useful to study some classical problems in algebraic
statistics related to maximum likelihood estimation [19, 20]. Therefore, for quadrics, the
problem of computing characteristic numbers is essentially solved. An explicit construction
of a space where the above question translates into a cohomological problem is known.

Much less is understood when it comes to higher degree hypersurfaces. To our knowledge,
the only caseswhere all characteristic numbers are known are plane cubics and plane quartics.
For the latter, partial results were achieved in [3, 30], and later a full description was given
in [29]. When it comes to numbers for cubic plane curves, we have to go back to around 150
years ago, when in the early 1870sMaillard [18] and Zeuthen [31] claimed to have computed
them. Unfortunately, their methods were relying on assumptions that were not rigorously
justified. It took more than a century to prove these numbers by using rigorous theoretical
foundations provided by Fulton–MacPherson intersection theory, as in the works of Kleiman
and Speiser [16], and Aluffi [1, 2]. A particularly interesting feature of [1] is that in order to
compute the characteristic numbers the author constructs a space of complete plane cubics,
which turns out to be the right compactification of the set of reduced plane cubics where
to solve the characteristic numbers problem. In a similar fashion as for complete quadrics,
the space of complete plane cubics is constructed through a sequence of blow-ups of the
projective space parametrizing all cubic forms.

As far as we know, the case of higher-dimensional cubic hypersurfaces has been unex-
plored. Our aim in this paper is to generalize the space of complete plane cubics in [1] and to
construct what we call a variety of 1–complete cubic hypersurfaces, which is the right space
where to answer the following question:

What is the number of smooth cubic hypersurfaces in Pn passing through n p general points
and tangent to

(n+3
3

) − n p − 1 general lines?

The paper is based on [1], whose construction we find out to be generalizable to higher
dimensions in a direct way. We now give an outline of this construction and explain how a
1–complete variety of cubic hypersurfaces can be used to answer the above question.

The set of all cubic hypersurfaces inP(W ) is naturally parametrized by the projective space
P

(
Sym3 (W ∗)

)
of dimension

(n+3
3

) − 1. The classical theory of discriminants of univariate
polynomials shows that the subset of P

(
Sym3 (W ∗)

)
of cubics tangent to a given line in

P(W ) is a hypersurface which we call a line condition, see also Remark 2.2. Similarly, a
point condition is the hyperplane in P

(
Sym3 (W ∗)

)
of all cubics containing a given point in

P(W ). We want to count the finite number of smooth cubics in the intersection of n p general
point conditions and

(n+3
3

) − n p − 1 general line conditions. However, the intersection of
such hypersurfaces is not always generically transverse. A central role is indeed played by the
locus where all line conditions intersect, which turns out to be the set of non-reduced cubics,
i.e., those of the form λμ2 for linear forms λ andμ. This simple description of the base locus
is indeed the reason for our focus on lines rather than higher-dimensional linear spaces. The
goal of our construction is to obtain a variety birational to P

(
Sym3 (W ∗)

)
but such that in

this new space, the proper transforms of the line conditions will no longer intersect. This
is what we called earlier a 1-complete variety of cubic hypersurfaces. It turns out that, as
in [1], it is enough to blow-up five times along irreducible components of the loci where
the proper transforms of the line conditions intersect. The ultimate goal of computing the
characteristic numbers is then achieved by subtracting from the bound provided by Bézout’s
theorem a certain correction term which can be expressed via certain Chern classes of vector
bundles arising in the blow-up process. Let us note that one crucial difference to [1], apart
from the natural difficulties when dealing with higher dimensions, is that the center B4 of
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the fifth blow-up in our case is the projectivization of a vector bundle E of rank > 1 which is
not a priori known explicitly. Its identification and the computation of its Chern classes are
difficult tasks and have no analog in [1]. In particular, Proposition 2.25 provides a new proof
of the important Lemma 4.2 of [1].

The paper is organized as follows. In Sect. 1 we give the definition of a 1-complete variety
of cubic hypersurfaces Ṽ and Theorem 1.4 proves that the intersection numbers we will
compute in this variety coincide with the characteristic numbers we were aiming for.

Section 2 concerns the construction of the 1-complete variety Ṽ achieved by performing
five blow-ups. In each subsection we spell out the details of each blow-up by expressing its
equations, the support of the intersection of the proper transforms of the line conditions, and
the equations for this intersection. Roughly, this intersection is then taken to be the center of
the next blow-up. The construction ends with Corollary 2.23 where we show that the proper
transforms of the line conditions no longer intersect.

Section 3 is devoted to the Chow rings of the five centers defined in the previous section
and to the computation of the intersection classes needed for the correction term.

In the final Sect. 4, we gather the data computed so far and provide the characteristic num-
bers for cubic surfaces in projective 3-space. The proof of Theorem 3.14(ii) and Remark 3.15
explain what is missing to determine the characteristic numbers in higher dimensions.

The code used in this work together with computational results is available at

https://mathrepo.mis.mpg.de/CountingCubicHypersurfaces.

1 First associated hypersurfaces and the Hurwitz map

We fix an integer d ≥ 2, an algebraically closed field k of characteristic 0 or strictly greater
than d , and a k-vector spaceW of dimension n+1 with n ≥ 2.We refer to [13, Section 3.2.E]
for the notion of higher associated hypersurfaces of a projective variety. Specifically, we are
interested in the following case: Let X :=V( f ) ⊆ P(W ) be an integral projective hypersurface
of degree d ≥ 2, defined by an irreducible homogeneous polynomial f . If X is smooth, its
first associated hypersurfaceZ1(X) ⊆ Gr(2,W ) consists of all lines � ⊆ P(W ) such that � is
tangent to X at some point or, more precisely, dim(�∩ ETx X) = 1 for some point x ∈ �∩ X ,
where ETx X is the embedded tangent space of X at the point x . If instead X is singular, we
first consider the lines � for which there exists a smooth point satisfying the above conditions
and then take the Zariski closure of this set in the Grassmannian Gr(2,W ).

In [13, Proposition 2.11] it is shown thatZ1(X) is an irreducible hypersurface inGr(2,W ).
Moreover, if X is smooth, [25, Theorem 1.1] shows that Z1(X) is defined by an irreducible
element Hu f of degree d(d − 1) in the projective coordinate ring of Gr(2,W ), called the
Hurwitz form, written as a degree d(d − 1) homogeneous polynomial in the Plücker coordi-
nates, uniquely only up to the degree d(d − 1) piece of the ideal generated by the Plücker
relations. On the open set of P

(
Symd(W ∗)

)
parametrizing smooth degree d hypersurfaces,

we can define amorphism sending X to the degree d(d−1) hypersurfaceZ1(X) of Gr(2,W ).
The set of hypersurfaces in Gr(2,W ) of this degree is parametrized by the projective space
|OGr(2,W )(d(d − 1))|.

Hence, we define the Hurwitz map to be the rational map

Hu : P
(
Symd (W ∗)

) |OGr(2,W )(d(d − 1))|, [ f ] [Hu f ].
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For instance, if n = 2, this map is simply the one taking a degree d plane curve into
its dual curve. Following [25, Example 2.2], Hu f can be computed as the resultant of the
homogeneous polynomials of degree d − 1 in the variables s and t given by the two partial
derivatives of f (sv0 + tw0, . . . , svn + twn). As a polynomial in s and t , the coefficients
of the latter are bihomogeneous of degree (1, d) in the coefficients of f and the variables
vi , wi , respectively. It follows that the polynomial Hu f is bihomogeneous of degree (2(d −
1), 2d(d − 1)) with respect to the aforementioned variables. By [25, Example 2.2], Hu f

can even be expressed as a polynomial in the Plücker coordinates p0,1, p0,2, . . . , pn−1,n of
the Grassmannian Gr(2,W ) given by the 2 × 2 minors pi j = viw j − v jwi . Hence, Hu f

is bihomogeneous of degree (2(d − 1), d(d − 1)) in the coefficients of f and the Plücker
coordinates, respectively. Notice that the polynomial obtained in this way makes sense also
for non-smooth, reducible and even non-reduced hypersurfaces V( f ).

Remark 1.1 The rational map induced by the linear system generated by all line conditions
in H0(P(Symd(W ∗)),O(2(d − 1))) is closely related to Hu. Composing the former with a
suitable linear embedding into |OGr(2,W )(d(d − 1))| gives the latter.

In the same line of [1], we define the point condition P p and the line condition L� as
the hypersurfaces in P(Symd(W ∗)) consisting of the degree d hypersurfaces, respectively,
containing the point p and tangent to the line �.

Lemma 1.2 The indeterminacy locus of the Hurwitz map Hu is precisely the intersection of
all line conditions, which in turn set-theoretically agrees with the subset S0 ⊆ P(Symd(W ∗))
of the hypersurfaces defined by degree d homogeneous polynomials divisible by the square
of some non-constant polynomial.

Proof Fixing a line � ∈ Gr(2,W ), the polynomial Hu f (�) is a homogeneous degree 2(d−1)
polynomial in the coefficients of f . Its vanishing set agrees with L� ⊆ P(Symd(W ∗)), hence
for the first claim it is enough to see that Hu f (�), for fixed �, is irreducible as a polynomial
in the coefficients of f . This is clearly a property invariant under the action of PGLn , so we
can consider the line � = 〈e0, e1〉. Then Hu f (�) is precisely the discriminant of the generic
homogeneous degree d polynomial in two variables x0, x1, and this is indeed known to be
an irreducible polynomial of degree 2(d − 1) if char(k) 	= 2.

The indeterminacy locus of Hu is the set of [ f ] such that Hu f (�) = 0 for every line �. In
this case, the singular locus of the closed subschemeV( f ) ⊆ P(W )must have codimension 0,
otherwise the general line would intersect V( f ) transversally in d distinct smooth points.
But the singular locus of V( f ) can only have codimension 0 if V( f ) has a non-reduced
component, so f is divisible by the square of some non-constant polynomial. 
�

This allows us to present the following definition.

Definition 1.3 A 1-complete variety of degree d hypersurfaces is a morphism π : Ṽ →
P(Symd(W ∗)) from a smooth projective variety Ṽ which is an isomorphism outside π−1(S0)
resolving Hu, i.e., such that the proper transforms of all line conditions L� in Ṽ do not
intersect:

Ṽ

P(Symd(W ∗)) |OGr(2,W )(d(d − 1))|.
π

H̃u

Hu
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An analogous construction for tangency with respect to s-dimensional planes instead of
lines would lead to the definition of s-complete varieties of degree d hypersurfaces. For
s ≥ 2, however, the intersection of all s-plane conditions set-theoretically agrees with the
subset ofP(Symd(W ∗)) given by all degree d hypersurfaces with singular locus of dimension
≥ n− s, which to our knowledge is not as easily parametrizable as the set S0 of non-reduced
hypersurfaces.

Theorem 1.4 Wewrite V0:=P(Symd(W ∗)). Let Ṽ be a 1-complete variety of degree d hyper-
surfaces as above and let F ⊆ V0\S0 be a locally closed subvariety. Denote by F̃ ⊆ Ṽ the
proper transform of the closure F and by L̃�, P̃ p ⊆ Ṽ the line and point conditions of Ṽ , i.e.,
the proper transforms in Ṽ of the irreducible hypersurfaces L�, P p ⊆ V0 corresponding to
line and point conditions of V0, respectively, for the line � ⊆ P(W ) and the point p ∈ P(W ).

(i) For any finite set of subvarieties A1, . . . , Ar ⊆ Ṽ , there exist a point p and a line � such
that P̃ p and L̃� both intersect every Ai properly, i.e., in the expected dimension. In fact,
this is the case for a general point and a general line.

(ii) If r = dim(F), there exist r lines �1, . . . , �r such that the corresponding line conditions
in Ṽ intersect F̃ in finitely many points, mapping to F under π . Again, this is the case
for general lines �1, . . . , �r .

(iii) The number of elements of F, counted with multiplicity, passing through np general
points and tangent to n� general lines such that n p + n� = dim(F) equals the degree of
the 0-cycle P̃n p · L̃n� · F̃ ∈ CH0(Ṽ ), where P̃, L̃ denote the cycle classes of any point
and line condition P̃ p, L̃� in Ṽ .

(iv) Assume char(k) = 0. Then for sufficiently general points and lines, the multiplicity of
every element of F from (iii) is 1.

Proof Both (ii) and (iii) follow from (i), the arguments being the same as in [1, Proposition 1].
For (i), we alsomimic the strategy of [1, Proposition 1] and assume the conclusion is false, i.e.,
there are subvarieties A1, . . . , Ar such that for every line �, the line condition L̃� intersects
non-properly at least one of the Ai . As L̃� is an irreducible hypersurface and all Ai are
irreducible, this means that every line condition in Ṽ contains at least one of the Ai . Pick
a point pi ∈ H̃u(Ai ) for each i = 1, . . . , r and denote by G� ⊆ |OGr(2,W )(d(d − 1))|
the hyperplane given by all degree d(d − 1) elements of the projective coordinate ring of
Gr(2,W ) vanishing at �. The coefficients of the linear equation definingG� are themonomials
of degree d(d − 1) in the Plücker coordinates evaluated at the line �. Now, by construction,
Hu(L�\S0) ⊆ G� and therefore H̃u(L̃�) ⊆ G�. In particular, every hyperplaneG� contains at
least one of the finitelymany points pi . Dually, in P̌(H0(OGr(2,W )(d(d−1)))) this means that
all points corresponding to the hyperplanesG� are contained in the finite union of hyperplanes
corresponding to the points pi . However, the set of points corresponding to the G� is the
image of the d(d − 1)-Veronese embedding Gr(2,W ) → P̌(H0(OGr(2,W )(d(d − 1)))) and
thus irreducible. Hence, this imagewould have to be contained in a single hyperplane. In other
words, switching back to the primal setting, there exists some pi , say p1, that is contained in
all hyperplanesG�. Then p1 corresponds to a non-zero element in the degree d(d−1) part of
the projective coordinate ring of Gr(2,W ) that, as a polynomial in the Plücker coordinates,
must vanish at all lines in P(W ), hence on all of Gr(2,W ). This, of course, is impossible.

The statement of (iv) follows from [11, Theorem (d), p. 162]. 
�
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2 A 1-complete variety of cubic hypersurfaces

This section is dedicated to our construction of a 1-complete variety of cubic hypersurfaces.
We start from the projective space V0:=P(Sym3(W ∗)) parametrizing cubic hypersurfaces in
Pn = P(W ) and blow-up five times along smooth centers. At each level, these are given by
an irreducible component of the intersection of all proper transforms of the line conditions.
We will also refer to cubic hypersurfaces as cubics.

We saw in the previous section that S0 coincides with the set of cubic hypersurfaces
divisible by the square of a non-constant polynomial. Hence, S0 is the image of themorphism

φ0 : P(W ∗) × P(W ∗) P(Sym3(W ∗)), ([λ], [μ]) [λμ2]. (1)

As φ0 is injective, S0 is a subvariety of P(Sym3(W ∗)) of dimension 2n. Let � denote the
diagonal in P(W ∗) × P(W ∗). We write B0 for the locus φ0(�) of triple hyperplanes.

The following result is a direct generalization of [1, Lemma 0.1]. We will often use it
without explicit reference. The statement does not depend on the choice of the line � ⊆ Pn ,
hence can be verified on the equation of any line condition.

Lemma 2.1 Let L� be the line condition in P(Sym3(W ∗)) corresponding to � ⊆ Pn. Then:

(i) If c ∈ L�, then L� is smooth at c if and only if c intersects � with multiplicity exactly 2
at a point. In particular, the line conditions are generically smooth along the locus S0 of
non-reduced cubics.

(ii) If c intersects �with multiplicity 3 at a point, then L� has multiplicity 2 at c. In particular,
the line conditions have multiplicity 2 along the locus B0 of triple hyperplanes.

(iii) The tangent hyperplane to L� at a smooth point c consists of the cubics containing the
point of tangency of c to �. The tangent cone in V0 to L� at a cubic c intersecting � in a
triple point p is supported on the hyperplane in V0 consisting of the cubics containing p.

An immediate generalization of Lemma 0.2 in [1] implies that the map φ0 is an isomorphism
onto its image when restricted to Pn × Pn \ �.

The next subsections explain in details the construction of the 1-complete variety of cubic
hypersurfaces Ṽ . A schematic overview of this construction and the notation employed is
englobed in the following diagram:

V5

V4 B4 = P(E)

V3 B3 = S3 Bl�Pn × Pn

B2 V2 S2 Bl�Pn × Pn

B1 V1 S1 Bl�Pn × Pn

B0 = ν3(Pn) V0 = P(Sym3(W ∗)) S0 Pn × Pn

π5

π4

j4

π3

j3 φ3

j2

π2

φ2

j1

π1

φ1

j0
φ0
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The center of each blow-up is denoted by Bi , while the blow-ups are called Vi . Hence Vi+1

denotes the blow-up of Vi at the center Bi and πi+1 : Vi+1 → Vi the corresponding blow-up
map, for i = 0, . . . , 4. For i ≤ 3, Si indicates the proper transform of the locus S0 in Vi .

The above diagram is analogous to the one in [1, p. 514]. Our construction of the
1-complete variety of cubic hypersurfaces V5 is indeed a direct generalization to higher
dimensions of the one performed by Aluffi for plane cubic curves. In particular, the same
number of blow-ups is needed to empty the locus where the proper transforms of the line
conditions intersect.

2.0 Space of cubic hypersurfaces

In what follows, let k be an algebraically closed field of characteristic 	= 2, 3 and W a
k-vector space of dimension n + 1 with basis e0, . . . , en . Let us introduce some notation
in order to develop the first blow-up. Given a set of multi-indices I = {I1, . . . , In}, we
denote (cI ) (resp. [cI ]) the vector of affine (resp. projective) coordinates (cI1 , . . . , cIn ) (resp.
[cI1 : · · · : cIn ]). In particular, denote by [aI ] = [a(0,0,0) : · · · : a(n,n,n)] the vector of

(n+3
3

)

projective coordinates for V0. More explicitly, each a(i, j,k) corresponds to the coefficient
of the monomial xi x j xk in the equation for the associate cubic in Pn , where we assume
i ≤ j ≤ k. We denote by [n] the set of natural numbers between 0 and n and by J the
set of multi-indices (i, j, k) ∈ [n]3 with i ≤ j ≤ k and j ≥ 1. Then in the affine chart
D(a(0,0,0)), the ideal I(B0) in V0 determining the locus of triple hyperplanes is generated by
the polynomials f J , with J ∈ J , given as follows:

f(0,i,i) := 3a(0,i,i) − a2(0,0,i) for i > 0,

f(0,i, j) := 3a(0,i, j) − 2a(0,0,i)a(0,0, j) for j > i > 0,

f(i,i,i) := 9a(i,i,i) − a(0,0,i)a(0,i,i) for i > 0,

f(i,i, j) := 3a(i,i, j) − a(0,i,i)a(0,0, j) for i, j > 0, i 	= j,

f(i, j,k) := 3a(i, j,k) − a(0,i, j)a(0,0,k) for k > j > i > 0. (2)

These polynomials will be needed to provide equations for the center of the first blow-up.
Note that B0 is a smooth complete intersection of codimension

(n+3
3

) − 1 − n inside this
open chart. In what follows, when we write the affine coordinates (aI ) we always assume
the index I = (0, 0, 0) to be excluded.

Remark 2.2 A line condition is a degree 4 hypersurface in V0. Indeed, fix the line � =
V(x2, . . . , xn) ⊆ Pn . The tangency condition for a cubic to such line is given by the vanishing
of the resultant of its derivatives with respect to x0 and x1. Then the equation for the line
condition L� in D(a(0,0,0)) ⊆ V0 is given by

a2(0,0,1)a
2
(0,1,1) + 18a(0,0,1)a(0,1,1)a(1,1,1) − 4a3(0,1,1) − 4a3(0,0,1)a(1,1,1) − 27a2(1,1,1) = 0. (3)

Using the action of PGLn , we can recover the equation for L� for any line � ⊆ Pn .

2.1 First Blow-up

Denote by V1 the blow-up of the space V0 along the center B0, and L1 the proper transform
in V1 of a line condition L .

Coordinates I Let ([aI ], [bJ ]) denote the projective coordinates on V0 × Pr−1, where r =(n+3
3

) − 1 − n is the codimension of B0 as subvariety of V0 and J ∈ J . Then, by [9,

123
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Exercise 17.14(b)] the blow-up V1 is a closed subvariety of the affine chart D(a(0,0,0)) given
by the equations

f J1bJ2 − f J2bJ1 = 0,

where J1, J2 ∈ J and the f J ’s denote the equations in (2).
We restrict to the affine chart D(b(0,1,1)), where V1 can be described by the affine coor-

dinates (a(0,0,1), . . . , a(0,0,n), a′, bJ ), with J ∈ J \{(0, 1, 1)}, and the additional variable a′
corresponds to the equation f(0,1,1) = 3a(0,1,1) − a2(0,0,1). The equations for V1 in this affine
open set become

a′ − f(0,1,1) = 0, f J − bJ a
′ = 0, for all J ∈ J \ {(0, 1, 1)}.

The equation for the exceptional divisor E1 inside V1 is then a′ = 0, and the (bJ ) provide
coordinates in the chosen affine chart for the fiber of E1 over a point in B0. In what follows,
we will always exclude the index J = (0, 1, 1) when considering the affine coordinates
(bJ ). Denote by NP(W ∗)P(Symd(W ∗)) the normal bundle of the d-th Veronese embedding
νd : P(W ∗) ↪→ P(Symd(W ∗)), where P(W ∗) is embedded in P(Symd(W ∗)) via νd .

Lemma 2.3 Let e ≤ d. Then there is a natural embedding of normal bundles

αe,d : NP(W ∗)P(Syme(W ∗)) ↪→ NP(W ∗)P(Symd(W ∗)),

given by “multiplication by λd−e” in the fiber over [λ] ∈ P(W ∗).

Proof We write R:=k[x0, . . . , xn]. The pullback of the Euler sequence on P(Symd(W ∗))
via νd is

0 → OP(W ∗)
ν∗
d (ε)→ Symd(W ∗) ⊗ OP(W ∗)(d) → TP(Symd(W ∗))|P(W ∗) → 0,

where ν∗
d (ε) is induced by the graded R-module homomorphism

R → Symd(W ∗) ⊗R R(d), f �→
∑

|I |=d

(
d

I

)
eI ⊗ (x I f ) = f · (e0 ⊗ x0 + . . . en ⊗ xn)

d .

The fiber of ν∗
d (ε) over λ is therefore just multiplication by λd = (λ0e0 + . . .+λnen)d . More

generally, there is a commutative diagram with exact rows

0 OP(W ∗) W ∗ ⊗ OP(W ∗)(1) TP(W ∗) 0

0 OP(W ∗) Syme(W ∗) ⊗ OP(W ∗)(e) TP(Syme(W ∗))|P(W ∗) 0

0 OP(W ∗) Symd(W ∗) ⊗ OP(W ∗)(d) TP(Symd(W ∗))|P(W ∗) 0.

α1,e α1,e=dνe

αe,d αe,d

In here, αe,d is induced by the graded R-module homomorphism which is multiplication by
(e0 ⊗ x0 + . . . + en ⊗ xn)d−e. It can be checked that α1,e = dνe is the differential of the e-th
Veronese embedding. Then αe,d induces the embedding of normal bundles we are looking
for. 
�

For us, e = 2, d = 3. The exceptional divisor is E1 ∼= P(NP(W ∗)P(Sym3(W ∗))) and we
call B1 the image of P(α2,3) in E1. The proper transform of S0 in V1 will be denoted by S1.
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Proposition 2.4 The intersection of the proper transforms of all line conditions in V1 is
contained in the union S1 ∪ B1.

Proof It is enough to check that the intersection of the proper transforms of all line conditions
and E1 lies inside B1. The intersection of the proper transform L1 of a line condition L with
the fiber over [λ3] ∈ B0 is the image of the tangent cone of L at the point [λ3] in the
projectivized normal bundle P(NB0V0). By definition of α2,3 in Lemma 2.3, the fiber of B1

over [λ3] consists of all cubics divisible by λ. Lemma 2.1(iii) implies that the intersection of
all tangent cones at [λ3] of all line conditions is contained in the set of cubics containing the
hyperplane λ. This shows the claim. 
�
Lemma 2.5 We have a commutative diagram

Bl�Pn × Pn S1 V1

Pn × Pn S0 V0,

φ1

∼=

φ0

where φ1 is an isomorphism. In particular, S1 is smooth.

Proof We write e for the exceptional divisor of Bl�Pn × Pn . The map φ0 lifts to a map
φ1 : Bl�Pn×Pn → S1 via the universal property of blowing up. Indeed, it can be checked that
the pullback of the ideal sheaf I(B0) via φ0 is precisely the squared ideal sheaf I(�)2 of the
diagonal� ⊆ Pn×Pn , in particular the pullback ofI(B0) toBl�Pn×Pn is an effectiveCartier
divisor, as needed. Clearly, φ1 restricts to an isomorphism of Bl�Pn ×Pn \ e onto S1\E1. As
Bl�Pn×Pn and S1 are projective varieties,φ1 is a closedmap, so surjectivity follows. In order
to prove the injectivity of φ1 we observe that φ0 is an injective morphism between varieties
over an algebraically closed field, hence φ0 is universally injective. Base-changing φ0 along
the blow-upmapπ1 : V1 → V0 hence gives an injection (Pn×Pn)×V0V1 → V1. The blow-up
closure lemma ensures that Bl�Pn ×Pn is naturally a closed subscheme of (Pn ×Pn)×V0 V1,
and the composition Bl�Pn ×Pn → V1 agrees with φ1, showing that φ1 is injective. By [15,
Corollary 14.10], it remains to show that (dφ1)p : Tp (Bl�Pn × Pn) → Tφ1(p)V1 is injective
for all p in the exceptional divisor e of Bl�Pn×Pn . Thismatter is local and invariant under the
PGLn-action, so we can assume p to lie in the fiber of ([1 : 0 : · · · : 0], [1 : 0 : · · · : 0]) ∈ �.
Choose local coordinates

([1 : λ1 : · · · : λn], [1 : μ1 : · · · : μn]) ∈ Pn × Pn .

The equations for � are ui :=λi − μi = 0 for all i ∈ {1, . . . , n}. Thus, Bl�Pn × Pn is
described by the points (μ1, . . . , μn, u1, . . . , un, [s1, . . . , sn]) such that ui s j − u j si = 0 for
all i, j . In the affine chart D(s1), the morphism φ1 is given explicitly in the affine coordinates
(μ1, . . . , μn, u1, s2, . . . , sn) by

a(0,0,1) = 3μ1 + u1,

a(0,0,i) = 3μi + si u1 for i > 1,

a′ = −u21,

b(0,i,i) = s2i for i > 1,

b(1,i,i) = 2μi si for i > 1,

b(1,1,i) = 2μ1si for i > 1,

b(1,1,1) = 2μ1,

b(0,1,i) = 2si for i > 1,

b(0,i, j) = 2si s j for j > i > 1,

b(i,i,i) = 2μi s
2
i for i > 1,

b(i,i, j) = 2μi si s j for i, j > 1, i 	= j,

b(i, j,k) = 2sk
(
μi s j + μ j si

)
for k > j > i > 0.
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The exceptional divisor e now has equation u1 = 0. This explicit description of φ1 allows us
to conclude the proof by checking the non-degeneracy of the Jacobian at every point. Indeed,
the 2n row vectors in the Jacobian corresponding to a(0,0,i) for 1 ≤ i ≤ n, to b(0,1,i) for
2 ≤ i ≤ n and to b(1,1,1) are linearly independent. 
�

Lemma 2.6 The set-theoretic intersection of B1 and S1 is φ1(e). Moreover, the proper trans-
forms of the line conditions are generically smooth and tangent to E1 along B1.

Proof Since φ1 is an isomorphism, we have φ1(e) = S1 ∩ E1 and it suffices to show φ1(e) ⊆
B1. By invariance under projective transformations, it suffices to prove the inclusion for the
fiber in E1 over [x30 ] ∈ B0. Using the coordinates described above, the intersection of this
fiber with B1 in V1 is described by the equations a(0,0,i) = 0 for all 1 ≤ i ≤ n, a′ = 0 and
bJ = 0 for the multi-indices J ∈ J with first entry being non-zero. The explicit description
of φ1 shows that the image of the fiber of ([1 : 0 : · · · : 0], [1 : 0 : · · · : 0]) ∈ Pn × Pn

satisfies all these equations, proving the claim.
For the second point, the invariance under the natural action of PGLn on V1, allows us

to verify the claim for the line condition corresponding to the line � = V(x2, . . . , xn). We
can restrict to the affine open D(a(0,0,0)) ∩ D(b(0,1,1)) where we have local coordinates (see
Remark I). The equation for the line condition L� in D(a(0,0,0)) ⊆ V0 is given in (3). Plugging

in 3a(0,1,1) = a′ + a2(0,0,1) and 27a(1,1,1) = 3b(1,1,1)a′ + a(0,0,1)

(
a′ + a2(0,0,1)

)
, we get the

equation

(a′)2
(
12b(1,1,1)a(0,0,1) − 4a2(0,0,1) − 4a′ − 9b2(1,1,1)

)
= 0,

which outside of E1 describes the proper transform L�
1 of the line condition in the chosen

affine chart, whose equation is therefore −4a′ − (
3b(1,1,1) − 2a(0,0,1)

)2 = 0. Since the
equation of E1 in the local coordinates is a′ = 0, every point of E1 belonging to the proper
transform is indeed a tangency point. Moreover, the equation shows that the proper transform
is smooth in this entire affine open. 
�

Lemma 2.7 The ideal of B1 ⊆ V1 in the open D(a(0,0,0)) is generated by the equations

f J = 0 for all J ,

f ′
(i,i,i) := 3b(i,i,i) − 2a(0,0,i)b(0,i,i) = 0 for all i > 0,

f ′
(i,i, j) := 3b(i,i, j) − a(0,0,i)b(0,i, j) = 0 for all i, j > 0, i 	= j,

f ′
(i, j,k) := 3b(i, j,k) − a(0,0,i)b(0, j,k) − a(0,0, j)b(0,i,k) = 0 for all k > j > i > 0.

These equations clearly form a regular sequence, so B1 is a complete intersection in the
open chart. In the affine chart D(b(0,1,1)), we can moreover replace the first set of conditions
by a′ = 0, as above.

Proof From the commutative diagram in the proof of Lemma 2.3, the fiber over [λ3] ∈ B0 of
the normal bundle can be naturally identified with the vector space Sym3(W ∗)/〈λ2x0, . . . ,
λ2xn〉. We want to understand how an element in the latter corresponds to an element of the
fiber E1|[λ3] if explicitly written in the coordinates from the description of V1 in (I). The
answer is provided by the conormal sequence

0 → I/I 2 → �k[aI ] ⊗k[aI ] k[aI ]/I → �k[aI ]/I → 0.
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Any point k ∈ Sym3(W ∗)/〈λ2x0, . . . , λ2xn〉 can be uniquely represented as a cubic not
containing themonomials x30 , x

2
0 x1, . . . , x

2
0 xn . If wewrite k = k(0,1,1)x0x21 +. . .+k(n,n,n)x3n ,

then k corresponds to the element
∑

J yJ f J in
(
I/I 2 ⊗ k[aI ]/m[λ3]

)∨
via

b(i, j,k) = 3k(i, j,k) − a(0,0,k)k(0,i, j) for all k > j > i > 0,

b(i,i, j) = 3k(i,i, j) − a(0,0, j)k(0,i,i) for all i, j > 0, i 	= j,

b(i,i,i) = 9k(i,i,i) − a(0,0,i)k(0,i,i) for all i > 0,

b(0,i, j) = 3k(0,i, j) for all j ≥ i > 0.

in the fiber over [λ3] ∈ B0 we have a(0,0,i) = 3λi and it is easy to see that the cubic k is
divisible by λ = x0 + λ1x1 + . . . + λnxn if and only if k satisfies the equations

3k(i, j,k) = a(0,0,i)k(0, j,k) + a(0,0, j)k(0,i,k) + a(0,0,k)k(0,i, j) for all k > j > i > 0,

3k(i,i, j) = a(0,0, j)k(0,i,i) + a(0,0,i)k(0,i, j) for all i, j > 0, i 	= j,

3k(i,i,i) = a(0,0,i)k(0,i,i) for all i > 0.

The claim can be deduced directly from this. 
�

2.2 Second Blow-up

Let V2:=BlB1V1. This is smooth because so is B1. We denote π2 : V2 → V1 the blow-up
map, and respectively Ẽ1, S2, P2, L2 the proper transforms of E1, S1, P1, L1. Moreover, we
define B2:=Ẽ1 ∩ E2 = P(NB1E1), where E2 denotes the exceptional divisor in V2.

Coordinates II Let (a(0,0,1), . . . , a(0,0,n), a′, bJ , [ca, cH ]) denote coordinates for the product
space (D(a(0,0,0)) ∩ D(b(0,1,1))) × Pr−1, where r = (n+3

3

) − (n+2
2

) + 1 is the codimension
of B1 as subvariety of V1 and J ∈ J . More precisely, ca denotes a single variable and [cH ]
stands for the projective variables with multi-indices varying in the set H = {(i, j, k) ∈
[n]3, with 1 ≤ i ≤ j ≤ k}.

Thanks to Lemma 2.7, the blow-up V2 in the open chart D(a(0,0,0)) ∩ D(b(0,1,1)) is a
closed subvariety given by the equations

ca f
′
H − a′cH = 0, cH1 f

′
H2

− cH2 f
′
H1

= 0,

for H , H1, H2 ∈ H. We can choose the affine open of V2 given by D(c(1,1,1)), then these
equations simplify to

ca f
′
(1,1,1) − a′ = 0, cH f ′

(1,1,1) − f ′
H = 0,

where H ∈ H \ {(1, 1, 1)}. Introducing the new variable b′:= f ′
(1,1,1), essentially car-

rying the same information as b(1,1,1), this affine open of V2 has affine coordinates
(a(0,0,i), b(0, j,k), b′, ca, cH ) with H 	= (1, 1, 1) subject to no relations. In these coordi-
nates, the equation for E2 in V2 becomes b′ = 0 and the equation for the proper transform
Ẽ1 becomes ca = 0. We will always exclude the index H = (1, 1, 1) when considering the
affine coordinates.

Lemma 2.8 Write N2:=NP(W ∗)P(Sym2(W ∗)) and N3:=NP(W ∗)P(Sym3(W ∗)) and let p1 :
B1 → B0 be the restriction of the canonical map from the projective bundle E1 = P(NB0V0)
to its base B0 ∼= P(W ∗). Therefore, there is a natural isomorphism

NB1E1 ∼= p∗
1(N3/N2) ⊗OB1

OB1(1)
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∼= p∗
1

(
Sym3(W ∗) ⊗ OP(W ∗)(3)

Sym2(W ∗) ⊗ OP(W ∗)(2)

)
⊗ OB1(1)

∼= p∗
1(Sym

3(TP(W ∗))) ⊗ OB1(1).

Hence, over a point (λ, q) ∈ B1, the normal space NB1E1|(λ,q)
is naturally identified with

Sym3(W ∗)/(λ · Sym2(W ∗)). Points in B2 can be thought of as triples consisting of a hyper-
plane λ together with a quadric q and a cubic c inside λ.

Proof The first isomorphism is given by [8, Proposition 9.13]. The Euler sequences for
TP(W ∗), TP(Sym2(W ∗)), TP(Sym3(W ∗)) then give the second and third equality. 
�
Lemma 2.9 The set-theoretical intersection of all proper transforms of the line conditions in
V2 is contained in the union of S2 and the smooth variety B2 = Ẽ1 ∩ E2.

Proof The variety S2 is clearly a component of the intersection. By Lemma 2.6, the line
conditions in V1 are generically tangent to E1, and therefore the tangent space of each line
condition is contained in the tangent space of E1. Hence, the intersection of the proper
transforms of the line conditions with the exceptional divisor E2 is contained in Ẽ1. 
�

A similar reasoning as in Lemma 2.5 shows also the following.

Lemma 2.10 The lift φ2 : Bl�Pn × Pn → V2 of φ1 is explicitly given by

a(0,0,1) = 3μ1 + u1,

a(0,0,i) = 3μi + si u1 for i > 1,

b(0,i,i) = s2i for i > 1,

b(0,1,i) = 2si for i > 1,

b(0,i, j) = 2si s j for j > i > 1,

b′ = −2u1,

ca = u1/ 2,

c(1,1,i) = si for i > 1,

c(1,i,i) = s2i for i > 1,

c(i,i, j) = s2i s j for i, j > 1,

c(i,i,i) = s3i for i 	= 0, 1,

c(i, j,k) = 2si s j sk for k > j > i > 0.

Lemma 2.6 implies that the set-theoretic intersection of S1 with B1 is given by φ1(e). It
is not hard to see then that S2 is isomorphic to S1, hence to Bl�Pn × Pn . Abusing notation,
we will indicate with e the exceptional divisor of Bl�Pn × Pn as well as all its isomorphic
images under the maps φi .

Lemma 2.11 The following hold:

(i) B2 intersects S2 along e.
(ii) The line conditions in V2 are generically smooth along B2.

Proof First, recall that S1 is tangent to E1 along e. In fact, for any point p ∈ e we have
Tφ1(p)S1 = dφ1

(
Tp (Bl�Pn × Pn)

)
. Working in the chosen affine chart for V1, since the

entry relative to a′ in the column vectors of the Jacobian is always zero, then Tφ1(p)S1 is
contained in the tangent space of E1. By invariance under projective transformations this is
true everywhere. Thus, since B1 intersects S1 along φ1(e)we have that S2∩ E2 ⊆ Ẽ1∩ E2 =
B2 because the tangent space of S1 is contained in the tangent space of E1.

For the second claim, observe that the line conditions in V1 are generically smooth along
B1. The claim then follows from the blow-up closure lemma and the fact that the blow-up of
a smooth variety is again smooth. 
�
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Remark 2.12 A cubic k ∈ B2|[λ,q] ∼= P(Sym3(W ∗)/(λ · Sym2(W ∗))), whose defining equa-
tion can be uniquely written (up to scaling) in the form k = k(1,1,1)x31 + k(1,1,2)x21 x2 + . . . +
k(n,n,n)x3n , not containing any monomial divisible by x0, is identified with the projective
coordinates [ca, cH ] in Remark II via ca = 0 and kH = 3cH for all H ∈ H with at least
two entries in H = (i, j, k) being distinct, and k(i,i,i) = c(i,i,i) for all i ≥ 1. In particular,
S2 ∩ B2 consists of all triples (λ, q, k) = (λ, g2, g3) for some hyperplane g ∈ P(W ∗/λ) as
follows from the explicit description of φ2 in Lemma 2.10.

Proposition 2.13 Let λ:=([λ], [q], [k]) be a point of B2, i.e. a hyperplane λ together with
a quadric q and a cubic k. Consider the line condition L�

2 in V2 corresponding to a line
� ⊆ P(W ). Then:

(i) � intersects λ at the quadric q if and only if L�
2 is tangent to E2 at λ

(ii) � intersects λ at the cubic k if and only if L�
2 is tangent to Ẽ1 at λ

Proof We can assume the hyperplane λ to be V(x0) and � the line V(x1, x3, . . . , xn). By
plugging in the equations c(1,2,2)b′ − 3b(2,2,2) + 2a(0,0,2)b(0,2,2) = 0 and a′ − cab′ = 0 in
the equation of the proper transform of the line condition in V1, we get the equation for L�

in local coordinates in V3, i.e.

4b3(0,2,2)ca + c2(2,2,2)b
′.

From Lemma 2.7, one has that the quadrics intersecting λ at its point of intersection with �

are given by the equation: b(0,2,2) = 0. From Remark 2.12 the cubics intersecting λ in λ ∩ �

are given by the equation c(2,2,2) = 0. The statement on the tangency at E2 and at Ẽ1 follows
from the direct computation with the equations. 
�
Remark 2.14 We can notice that if the line � does not intersect the quadric q or the cubic k
at the point λ, then the line condition L� is smooth at λ. This is clear from the proof of the
previous lemma when λ = x0 and � = V(x1, x3, . . . , xn). The claim follows by invariance
under projective transformations.

2.3 Third Blow-up

Let V3:=BlB2V2. This is smooth because B2 is. We stick to the notation π3 : V3 → V2 for
the blow-up map and E3 for the exceptional divisor. We denote L3 the proper transform in
V3 of the a line condition L2 ⊆ V2, and S3 is the proper transform of S2.

Coordinates III In the chosen chart for V2 described in Remark II the base locus B2 is
given by V(ca, b′). Consider (D(a(0,0,0)) ∩ D(b(0,1,1)) ∩ D(c(1,1,1))) × P1 with coordi-
nates (a(0,0,i), b(0, j,k), b′, ca, cH , [dc, db]). The blow-up of B2 in the chosen chart of V2 can
be described as the subvariety determined by

b′dc = dbca .

In the affine chart D(a(0,0,0)) ∩ D(b(0,1,1)) ∩ D(c(1,1,1)) ∩ D(dc) of V3 we can work with
coordinates (a(0,0,i), b(0, j,k), ca, cH , db). The exceptional divisor E3 is cut out by ca = 0 in
this chart.

Remark 2.15 The line condition L�
3 corresponding to �:=V(x1, x3, . . . , xn) has equation

4b3(0,2,2) + c2(2,2,2)db = 0.
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Therefore, every other line condition obtained from this one by an induced action of the
PGLn-action preserving this chart will be of type

4 f (bJ )
3 + g(cH )2db = 0,

where f is a linear function in the (bJ ) coordinates and g is a linear function in the (cH )

coordinates.

We now prove that the intersection of all line conditions coincides with S3.

Proposition 2.16 The intersection of all line conditions in V3 is supported on the smooth
irreducible variety S3.

Proof The base locus B2 = P(NB1E1) has codimension 2 in V2. The exceptional divisor
E3 = P(NB2V2) is then a P1-bundle over B2. Let λ:=([λ], [q], [k]) be a fixed point in B2

with π2 ◦ π1(λ) = [λ3] ∈ B0, i.e., a hyperplane λ together with a quadric q and a cubic
k lying on λ. Thanks to Remark 2.14, a general line condition is smooth at λ ∈ B2, has
codimension one, and contains B2. Its proper transform intersects the fiber of P(NB2V2) over
λ at most in one point. We need to check that line conditions in V3 can only intersect in E3

above B2 ∩ S2.
The base locus B2 = E2 ∩ Ẽ1 is smooth of codimension 2 in V2. Therefore, the proper

transforms of Ẽ1 and E2 in V3 cut the fiber of E3 over any λ ∈ B2 in different points r1 and
r2. From Proposition 2.13 it follows that if a line � intersects q , then the line condition L�

3
contains r2, while if � intersects k, then the line condition L�

3 contains the point r1.
We claim that in order for the line conditions to intersect over λwe must have q = hg and

k = h2 g where h, g are linear forms on the hyperplane λ. In fact, suppose there is a point
of q which is not in k. Then, we can take a line � in Pn passing through that point and not
contained in λ. Thanks to Remark 2.14, the line condition L�

2 is smooth at λ and L�
3 intersects

the fiber over λ in a unique point, necessarily in r2. Take now another line condition L�′
2 in

V2 such that the line �′ does not intersect the cubic nor the quadric. The line condition L�′
2

is a hypersurface which is smooth at λ and contains B2. If its proper transform intersects the
fiber over λ in r2, then L�′

2 is tangent to E2, and by Proposition 2.13 it must intersect the
quadric.

Similarly, we can show that there is no point of q which is not in k. Hence, we proved that
in order for the line conditions to intersect over λ we must have q = k set-theoretically. But
this is equivalent to q = hg and k = h2 g with h, g linear forms on the hyperplane λ.

By Remark 2.12, we just have to show that g = h. It is enough to show it for λ = x0
because the locus B2 ∩ S2 is invariant under the induced PGLn-action on V2. Consider the
point x0 = ([x30 ], [q], [k]), where

q = (h1x1 + · · · + hnxn) (g1x1 + · · · + gnxn) , k = (h1x1 + · · · + hnxn)2 (g1x1 + · · · + gnxn)

are respectively a quadric and a cubic on the hyperplane x0 = 0.
We claim there exists an index l such that x0 belongs to D(b(0,l,l)). First, fix i and j such

that x0 belongs to the affine chart D(b(0,i, j)) ∩ D(c(i,i, j)). Then, we can work in this affine

chart with its coordinates. For t ∈ k, consider the line conditions L
xi+t x j
2 in V2 corresponding

to the line given by the vanishing of xi + t x j = 0 and of all coordinates except for x0, xi , x j .
Their equations in V2 are

4(t2b(0,i,i) + b(0, j, j) − t)3ca + (t3c(i,i,i) − 3t2 − c( j, j, j) + 3tc(i, j, j))
2b′ = 0
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in the mentioned open chart, where b′ = f ′
(i,i, j) and a′ = f(0,i, j). Notice that thanks to

Lemmas 2.7 and 2.12, we have a relation between the coordinates and the coefficients of q
and k. Suppose b(0,l,l)(x0) = hlgl = 0 for all indices. The line conditions L

xi+t x j
3 intersect

the fiber over x0 in V3 in the points

[
−4t3,

(
3t2 − 3tc(i, j, j)(x0)

)2]
.

Recall that we are working in a chart such that h2i g j = c(i,i, j)(x0) 	= 0, therefore
c(i, j, j)(x0) = h2j gi = 0 and the points become

[−4t3, 9t4
] = [−4, 9t].

This is absurd because we are assuming these line conditions to intersect over x0 and we
proved the claim. Without loss of generality, we put l = 1, and we work in the affine chart
D(a(0,0,0)) ∩ D(b(0,1,1)) ∩ D(c(1,1,1)) of V2, so we can assume h1 = g1 = 1.

We claim that hi is zero if and only if gi is zero for every index i . Suppose there exists
an index i such that hi = 0 and gi 	= 0 and consider the line conditions Lxi+t x1

2 in V2 with
equations

4
(
t2b(0,i,i) + 1 − tb(0,1,i)

)3
ca + (

t3c(i,i,i) − 3t2c(i,i,1) − 1 + 3tc(1,1,i)
)2

b′ = 0

in the chosen affine chart. The line conditions Lxi+t x1
3 intersect the fiber over x0 in E3 in the

points

[
4

(
1 − tb(0,1,i)(x0)

)3
,
(
1 − 3tc(1,1,i)(x0)

)2] = [
4(1 − thi − tgi )

3, (1 − tgi )
2]

= [
4(1 − tgi )

3, (1 − tgi )
2] .

Notice that for gi 	= 0, these would give different points for different values of t which is
absurd. The same reasoning holds for gi = 0 and hi 	= 0 proving then the claim. Finally, if
we consider the line condition L

x j
2 in V2 corresponding to the line given by the vanishing of

all coordinates except for x0 and x j then this has equation

4b3(0, j, j)ca + c2( j, j, j)b
′ = 0

in the chosen open chart. If we assume (b(0, j, j)(x0), c( j, j, j)(x0)) 	= (0, 0), we must have

= [
4(b(0, j, j)(x0))

3, (c( j, j, j)(x0))
2] ⇔(b(0, j, j)(x0))

3 = (c( j, j, j)(x0))
2

⇔g3j h
3
j = g4j h

2
j ,

and therefore g j = h j when h j is non-zero. 
�

Since S3 will be the next center for the blow-up, we denote it with B3. From Lemma 2.11
follows that B3 is isomorphic to S2. In particular, the isomorphismmapφ2 : Bl�Pn×Pn → S2
defined in Lemma 2.10 lifts to the following map.
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Lemma 2.17 The lift φ3 : Bl�Pn × Pn → V3 of φ2 on the chosen open charts is explicitly
given by

a(0,0,1) = 3μ1 + u1,

a(0,0,i) = 3μi + si u1 for i > 1,

b(0,i,i) = s2i for i > 1,

b(0,1,i) = 2si for i > 1,

b(0,i, j) = 2si s j for j > i > 1,

ca = u1/ 2,

c(1,1,i) = si for i > 1,

c(1,i,i) = s2i for i > 1,

c(i,i, j) = s2i s j for i, j > 1,

c(i, j,k) = 2si s j sk for k > j > i > 0,

db = −4.

Remark 2.18 The equations

db + 4 = 0,

g(0,1,i) := b(0,1,i) − 2c(1,1,i) = 0 for i > 1,

g(0,i,i) := b(0,i,i) − c2(1,1,i) = 0 for i > 1,

g(0,i, j) := b(0,i, j) − 2c(1,1,i)c(1,1, j) = 0 for j > i > 1,

g(1,i,i) := c(1,i,i) − c2(1,1,i) = 0 for i > 1,

g(i,i, j) := c(i,i, j) − c2(1,1,i)c(1,1, j) = 0 for i, j > 1,

g(i, j,k) := c(i, j,k) − 2c(1,1,i)c(1,1, j)c(1,1,k) = 0 for k > j > i > 0.

cut out B3 in the chosen affine open chart. Notice that the equations form a regular sequence
and that B3 is indeed a complete intersection of codimension

(n+3
3

) − 1 − 2n in the chosen
affine chart.

2.4 Fourth Blow-up

Recall that B3 = S3. Let V4:=BlB3V3. We will write E4 for the exceptional divisor and
π4 : V4 → V3 for the blow-up map.

Coordinates IV In the chosen affine chart of V3 the base locus B3 is cut out by the equations

in Remark 2.18. Consider D(a(0,0,0)) ∩ D(b(0,1,1)) ∩ D(c(1,1,1)) ∩ D(dc) × P(n+3
3 )−2n−2

with coordinates (a(0,0,i), b(0, j,k), ca, cH , db, [ed , eF ]), where ed is a new coordinate and
the multi-indices F vary in the set F = {(i, j, k) ∈ [n3], with 0 ≤ i ≤ j ≤ k, 1 < j}.
The blow-up of V3 along B3 in the chosen affine chart can be described as the subvariety
determined by

edg(i, j,k) − (db + 4)e(i, j,k) = 0 for (i, j, k) ∈ F,

e(i1, j1,k1)g(i2, j2,k2) − g(i1, j1,k1)e(i2, j2,k2) = 0 for (i1, j1, k1), (i2, j2, k2) ∈ F .

In the affine chart D(a(0,0,0)) ∩ D(y(0,1,1)) ∩ D(c(1,1,1)) ∩ D(dc) ∩ D(e(0,1,2)) of V4 we can
work with coordinates (a(0,0,i), ca, c(1,1,2), .., c(1,1,n), ed , eF , e′) where e′ = g(0,1,2) is used
as a coordinate and F is the same index set as above but we exclude (0, 1, 2). The exceptional
divisor E4 is cut out by e′ = 0 in this chart.

Proposition 2.19 The intersection of all line conditions in V4 is supported on a smooth
subvariety B4 of codimension

(n+2
3

)
inside E4. More precisely, B4 = P(E) where E is a

vector subbundle of rank
(n
2

)
of the normal bundle NB3V3.
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The enumerative geometry of cubic hypersurfaces... 609

Proof We generalize the proof of [1, Proposition 4.1]. Let Rμ ⊆ V0 denote the subvariety of
cubics containing the hyperplaneμ. Clearly, Rμ

∼= P(Sym2(W ∗)) is smooth. By Lemma 2.1,
a line condition L� is smooth at [λμ2] ∈ S0 \ B0 if the line � intersects μ in a single point
outside λ. Clearly, T[λμ2]Rμ ⊆ T[λμ2]L� for every line �, and Lemma 2.1 shows that

⋂

�⊆P(W ) line

T[λμ2]L� = T[λμ2]Rμ.

Clearly, finitely many lines suffice for the intersection of the tangent spaces to agree with
T[λμ2]Rμ over every point [λμ2] ∈ B3 \ e ∼= S0 \ B0. By Proposition 2.16, the intersection
of the proper transforms L�

3 in V3 for all lines � agrees set-theoretically with S3 = B3. The
proper transforms L�

4 in V4 therefore only intersect in the exceptional divisor E4. We claim
that their intersection is precisely the projectivization of a vector subbundle E ⊆ NB3V3.
We construct E as the intersection of the images of the tangent sheaves T L�

3|B3 in NB3V3
corresponding to finitely many lines �. The finiteness will ensure that the resulting subsheaf
E of NB3V3 is coherent. First, we pick finitely many lines such that the intersection of the
tangent spaces over every point [λμ2] ∈ B3 \ e agrees with T[λμ2]Rμ. The intersection of the
images of the tangent sheaves in NB3V3 of these line conditions defines a coherent subsheaf
E ′ which restricts to a vector subbundle over B3 \e. Then by Lemma 2.1 and a Zariski closure
argument, every other line condition L�

4 contains the projectivizationP(E ′|B3\e), andwe have
E ′([λμ2]) ∼= T[λμ2]Rμ/T[λμ2]S0,

where E ′(p) denotes the geometric fiber of E ′ over the point p. The rank of E ′ over B3 \ e
is r = (n+2

2

) − 2n − 1 = (n
2

)
. Next, we fix a point p ∈ e = B3 ∩ E3 lying in our affine

open chart. By Remark 2.15, in the chosen affine chart the equation for L�
3 with � any line

passing through the point [1 : 0 : · · · : 0] does not depend on the variable ca , and the
equation determining E3 in V3 is exactly ca = 0. The transversality of such line conditions
can therefore be checked outside of E3 and hence in S0\B0. This shows at once that there
are codim(Rμ, V0) = (n+2

3

)
lines �i ⊆ P(W ) such that the line conditions L�i

3 are all smooth
and intersect transversally at p. Moreover, employing the PGLn-action and using that it acts
transitively on e by Lemma 2.24, we obtain finitely manymore lines such that the intersection
of their tangent spaces at every point of e has dimension at most r . Let E be the intersection
of E ′ with the images of the tangent sheaves in NB3V3 of these new line conditions. Then E
is a coherent subsheaf of NB3V3 which still restricts over B3 \ e to a vector subbundle of rank
r and has rank ≤ r over every point of e. By upper semi-continuity of the rank, since E is
coherent, E is a vector subbundle of NB3V3 of rank r everywhere. As P(E) is an irreducible
closed subset of V4, a Zariski closure argument then shows that it is contained in L�

4 for
every �, so it is contained in the intersection of all line conditions in V4. Nevertheless, by
construction P(E) also contains the intersection of some (and hence of all) line conditions in
V4, proving equality. 
�

2.5 Fifth Blow-up

Let V5:=BlB4V4. Denote with E5 the exceptional divisor and let π5 : V5 → V4 be the
blow-up map. Let Ẽ4 be the strict transform of E4.

Lemma 2.20 We have the isomorphism

NB4E4 ∼= (π4|B4)∗(NB3V3/E) ⊗ OB4(1).

123



610 M. Belotti et al.

Moreover, over U :=B4 \ (π4|B4)−1(e) the normal bundle NB4E4 restricts to

NU E4 ∼= (π4|U )∗
(
Sym3(W ∗) ⊗ O(1, 2)

Sym2(W ∗) ⊗ O(1, 1)

)
⊗ OU (1),

where O(a, b) denotes the pullback to Pn × Pn\�. In particular, the fiber of NB4E4 over
some point of B4\π−1

4 (e)mapping to [λμ2] ∈ B3\e is given by Sym3(W ∗)/(μ·Sym2(W ∗)).

The proof is similar to that of Lemma 2.8. We can now start to understand the intersection
of all line conditions inside V4.

Lemma 2.21 Fix a line � of Pn and a cubic λμ2 such that � does not intersect λ ∩ μ.
The strict transform L�

5 in V5 contains a point p in E5 ∩ Ẽ4 with (π4 ◦ π5)(p) = [λμ2]
if and only if the line � intersects the cubic on μ associated with p, i.e. the element of
Sym3(W ∗)/(μ · Sym2(W ∗)).

Proof By assumption, L�
3 and its proper transforms are smooth at every point over [λμ2] ∈

B3.We have (L�
5∩ Ẽ4∩E5)|π5(p) = P(NB4(L4∩E4)|π5(p)). Since L4∩E4|U = P(NB3L3|U )

on the smooth locus U of L�
3 inside B3, we have the canonical isomorphisms

NB4(L
�
4 ∩ E4)|π5(p)

∼= ((π4|B4)∗(NB3L
�
3/E) ⊗ OB4(1))|π5(p)

∼= (NB3L
�
3/E)|[λμ2].

Knowing that T[λμ2]L�
3 is given by those cubics containing � ∩ μ by Lemma 2.1(iii) and that

the fiber of E at [λμ2] is the quotient of the cubics containing μ by the tangent space of B3

at [λμ2], we conclude that the projective fiber of this bundle over the point π5(p) of B4 is
exactly given by those cubics on μ touching �. 
�

Lemma 2.22 There exists a point [λμ2] with λ 	= μ in B3 such that for every point λμ2

in B4 with π3(λμ2) = [λμ2] the intersection of the line conditions in the fiber (E5)|λμ2 is

contained in the proper transform Ẽ4 of E4 in V5.

Proof Consider the chart inV3 given by D(a(0,0,0))∩D(b(0,1,1))∩D(c(1,1,1))∩D(da).We can
nowchoose any point in B3\e;wewill choose our favourite one P:=[(x2+x0)2(x2+x1+x0)].
Notice that this is indeed contained in the chart. We will denote with (P, Q) a point in the
fiber of B4 over P , where Q ∈ P(R(x2+x0)/(T B3)P ) and where R(x2+x0) is the space of
cubics which are divisible by (x2 + x0). Points Pε,q in R(x2+x0) can be uniquely written up
to constants as Pε,q :=(x2 + x0)q in the projective coordinates [qi j ]i, j∈[n] of the quadric q in
(n + 1) variables. In this coordinates, the tangent space (T B3)P is given by

⎧
⎨

⎩

q00 + q22 = q02
q0 j − q2 j = 0 for all j 	= 0, 1, 2,
qi j = 0 for all i, j 	= 0, 1, 2.

Denoting πP : R(x2+x0) \ (T B3)P → (B4)P the quotient map followed by the projectiviza-
tion, every point (P, Q) can be represented in a non-unique way as πP ([qi j ]i, j∈[n]). We now
want to show that for every point (P, Q) = πP ([qi j ]i, j∈[n]) there exists a sequence of line
conditions Lm

4 in V4 which are smooth at (P, Q) and such that the hyperplanes (T Lm
4 )(P,Q)

tend to (T E4)(P,Q) as vector subspaces of (T V4)(P,Q). This proves the lemma, as the inter-
section of all line conditions in (E5)(P,Q) will be the same as the intersection of all line
conditions and (Ẽ4)(P,Q).
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Before choosing appropriate line conditions, let us compute the projective coordinates
[ed , e(0,1,2), . . . , e(0,n,n), e(1,1,2), . . . , e(n,n,n)] for (P, Q) = πP ([qi j ]i, j∈[n]) as functions of
[qi j ]. We get the following coordinates for the point (P, Q):

ed = 0,

e(0,1, j) = 0 for j 	= 0, 1,

e(0,2,2) = 3(q02 − q00 − q22),

e(0, j, j) = −3q j j for j 	= 0, 1, 2,

e(0,2, j) = 3(q0 j − q2 j ) for j 	= 0, 1, 2,

e(0,i, j) = −3qi j for i, j 	= 0, 1, 2,

e(1,2,2) = 3

2
(q02 − q00 − q22),

e(1, j, j) = −3

2
q j j for j 	= 0, 1, 2,

e(1,2, j) = 3

2
(q0 j − q2 j ) for j 	= 0, 1, 2,

e(1,i, j) = −3

2
qi j for i, j 	= 0, 1, 2,

e(i,i, j) = 0 for i, j 	= 0, 1,

e( j, j, j) = 0 for j 	= 0, 1.

Notice that this makes sense as long as [qi j ]i, j∈[n] /∈ (T B3)P , which is the case we are
interested in.

We will use the notation L j,t for line conditions associated to the lines

V
(
x1 + t x j , x2, . . . , x̂ j , . . . , xn

)
.

The proper transform L j,t
3 of these line conditions in the chosen affine chart for V3 are given

by

4
(
t2 + b(0, j, j) − tb(0,1, j)

)3 + (
t3 − 3t2c(1,1, j) − c( j, j, j) + 3tc(1, j, j)

)2
db = 0.

Notice that the line condition L j,0
3 is singular at P for any j 	= 0, 1, but the line conditions

L j,t
3 for t 	= 0 are not, and therefore the proper transforms L j,t

4 in V4 are smooth at every
point (P, Q) ∈ B4. Now consider the proper transform of such line condition in a chart of V4
different from D(ed) with coordinate e′. Notice that we can do that because ed(P, Q) = 0
for every choice of Q. Since we are interested in the gradient of the equation evaluated on
points in B4 ⊆ E4 = {e′ = 0}), we can just look at the gradient of the following equation:

(
12(t − c(1,1, j))

4(e(0, j , j) − te(0,1, j)
) + ed (t−c(1,1, j))

6 − 8(t − c(1,1, j))
3(3te(1, j, j) − e( j, j, j))

)+

e′
(
12(t − c(1,1, j))

2(e(0, j , j) − te(0,1, j))
2 + 2ed (t − c(1,1, j))

3(3te(1, j, j) − e( j, j, j)
)−

4
(
3te(1, j , j) − e( j , j , j)

)2
)

= 0.

If we look at partial derivatives ∂y with respect to variables y 	= e′ evaluated at the point

(P, Q), we have that ∂y
ta = 0 for a ∈ {0, 1, 2}, and this follows from c(1,1, j)(P) = 0. If we

look at partial derivatives ∂e′ evaluated at the point (P, Q) = πP ([qi j ]i, j∈[n]), this is given
by

12t2
(
e(0, j, j)

)2 − 4
(
3te(1, j, j)

)2
.

We see that the partial derivative ∂e
t2

is given by

12
(
e2(0, j, j) − 3e2(1, j, j)

)
.
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For j = 2 then this becomes

27
(
4 (q02 − q00 − q22)

2 − 3 (q02 − q00 − q22)
2) = 27 (q02 − q00 − q22)

2 ,

and the claim follows from this quantity being non-zero at the point (P, Q).
Suppose instead q02−q00−q22 = 0, thenwe can look at different line conditions assuming

e(0,2,2)(P, Q) = e(1,2,2)(P, Q) = 0. Take L j,t
4 where j 	= 2. If we repeat the same reasoning

everything remains the same but in the end we get that ∂e′
t2

is given by

27
(
4q2j j − 3q2j j

)
= 27q2j j .

Once again, we obtain the claim if this quantity is different from zero for our (P, Q). If
instead c j j = 0 for every j 	= 2, then we can look at different line conditions assuming
e(0, j, j)(P, Q) = e(1, j, j)(P, Q) = 0 for every j . Let us denote with Li, j,t the line conditions
associated to the lines V(x1 + t x j , x2, . . . , x̂ j , . . . , x̂i , xi + x j , . . . , xn) for i, j 	= 0, 1. The

proper transform Li, j,t
3 of these line conditions in the chosen affine chart for V3 are given by

4F3
i, j,t + G2

i, j,t db = 0,

where

Fi, j,t = t2 + b(0, j, j) + b(0,i,i) − b(0,i, j) − tb(0,1, j) + tb(0,1,i),

and

Gi, j,t = t3 + c(i,i,i) + 3tc(1,i,i) + 3t2c(1,1,i) + 3c(i, j, j)

− 3c(i,i, j) + 3tc(1, j, j) − 3t2c(1,1, j) − 3tc(1,i, j) − c( j, j, j).

If we now consider the proper transform of this line condition in a chart of V4 different
from ed 	= 0, repeating a similar reasoning to before we can see that for partial derivatives
∂y with respect to variables y 	= e′ evaluated at the point (P, Q), we have ∂y

ta = 0 for
a ∈ {0, 1, 2}, and this follows again from the fact that c(1,1,i)(P) = c(1,1, j)(P) = 0 for
our point P . If we look at partial derivatives ∂e′ for the variable e′ evaluated at the point
(P, Q) = πP ([qi j ]i, j∈[n]), this is given by

12t2
(
e(0,i, j)

)2 − 4
(
3te(1,i, j)

)2
.

But then we see that ∂e′
t2

is given by

12
(
e2(0,i, j) − 3e2(1,i, j)

)
.

If j = 2 then this becomes

27
(
4(q0i − q2i )

2 − 3 (q0i − q2i )
2) = 27(q0i − q2i )

2

and we obtain the claim if this quantity is different from zero for our (P, Q). If instead we
also have q0i − q2i = 0 for every i , then we can look at different line conditions. Take Li, j,t

where j 	= i 	= {0, 1, 2}. If we repeat the same reasoning everything remains the same but
in the end we get that ∂e′

t2
is given by

27
(
4q2i j − 3q2i j

)
= 27q2i j .
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Once again, we obtain the claim if this quantity is different from zero for our (P, Q). Finally,
if qi j = 0 for every i j as before, then this implies [qi j ]i, j∈[n] ∈ (T B3)P , but this is not
possible. This concludes the proof. 
�
Corollary 2.23 The intersection of all line conditions in V5 is empty.

Proof We need to show that the line conditions do not intersect in E5. Thanks to Remark 2.15
and the fact that the equations in Remark 2.18 do not involve the variable ca , we can show
it over fibers corresponding to points in B4 \ (π4|B4)−1(e). By the PGLn-action we can just
look at one single fiber on a point λμ2 of B4, with π4(λμ2) = [λμ2]. The claim then follows
from Lemma 2.22. 
�

The previous lemma proves that line conditions separate in V5 and that this space is a
1–complete variety of cubic hypersurfaces.

2.6 Identifying the vector bundle E on e

We now give a more explicit description of the bundle E|e, which will be useful for under-
standing the total Chern class c(E).

Lemma 2.24 The natural action of PGLn on the exceptional divisor e ⊆ Bl�Pn × Pn is
transitive.

Proof We have e = P(N�Pn × Pn) = P(T�) where the isomorphism N�Pn × Pn ∼= T�

is provided by any multiple of the difference of the differentials of the projections, e.g.
dpr1 − dpr2. Fix now two points [λ], [μ] ∈ � and two non-zero normal vectors (v1, v2) ∈
N�Pn × Pn |[λ] and (w1, w2) ∈ N�Pn × Pn |[μ]. These two normal vectors are represented
by two curves A1 → Pn × Pn, t �→ ([λ + tv1], [λ + tv2]) and t �→ ([μ + tw1], [μ + tw2]),
respectively. We then only need to find A ∈ PGLn = GLn+1/ ∼ with Aλ = μ and A(v1 −
v2) = w1 −w2. Such a A exists if v1 −v2 is not a multiple of λ andw1 −w2 is not a multiple
of μ. Both conditions are satisfied by the requirement that (v1, v2) and (w1, w2) are both
non-zero normal vectors. 
�
Proposition 2.25 We have E|e ∼= Sym2(Te/�).

Remark 2.26 The geometric intuition behind this proposition is as follows. The fiber of

Sym2(Te/�) over a point ([λ], [g]) ∈ e is Sym2(W ∗/λ)
g·(W ∗/λ)

, the quadrics on g. This makes much

sense, given that over a point [λμ2] ∈ B3 \ e, the fiber of E is naturally identified with
Sym2(W ∗)

(λ·W ∗+μ·W ∗) , the quadrics on λ ∩ μ. Fixing λ, as μ approaches λ along some curve, λ ∩ μ

can be seen as a sequence of hyperplanes inside λ with some limiting hyperplane g inside λ.
Along this sequence, the quadrics on λ ∩ μ should indeed approach the quadrics on g.

Remark 2.27 It follows from the relative Euler sequence of the projective bundle e over �

that

Sym2(Te/�) ∼= π∗
e

(
Sym2(T�)

) ⊗ Oe(2)

π∗
e (T�) ⊗ Oe(1)

,

the total Chern class of which can be computed using the Chern classes of T�.
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Proof of Proposition 2.25 From the relative Euler sequence for the projective bundles e =
P(T�) and B1 = P(Sym2(T�)) we obtain

NeB1 ∼= TB1/B0 |e
Te/�

∼= Sym2(Te/�).

We now first give an embedding of NeB1 into NB3V3|e. In a second step we show that
the image agrees with E|e. For the first step, we observe the chain of natural inclusions of
geometric vector bundles

TB2/B0 |e ⊆ T B2|e ∼= TP(NB2E2)|e ⊆ TP(NB2V2)|e = T E3|e ⊆ T V3|e, (4)

using in the first step that B2 = E2∩ Ẽ1, so NB2E2 is a line bundle and therefore the restriction
of π3 is an isomorphism P(NB2E2) ∼= B2. In order to embed TB1/B0 |e into TB2/B0 |e, note
that B2 is actually a fiber product over B0. To be precise, it follows from Lemma 2.8 that

B2 = P(NB1E1) ∼= P(p∗
1(Sym

3(T�))) = P(Sym3(T�)) ×B0 B1.

The restriction p2 : B2 → B1 of π2 agrees under this identification with the projection to
the second factor. Under the natural identifications B0 = � and B1 = P(Sym2(T�)), the
inclusion e ⊆ B2 corresponds to the map

e = P(T�)
(ν3,ν2)−→ P(Sym3(T�)) ×� P(Sym2(T�)),

where ν2, ν3 denote the relative second and third Veronese embeddings. On the fiber over
[λ] ∈ � = P(W ∗), these map a linear form [g] ∈ P(W ∗/λ) = e|[λ] to its second respectively
third power. Consider now the following diagram (where we omit the pullback signs and
identify B0 = �):

0

TB2/B0 TB1/B0

T B2 T B1

0 TP(Sym3(T�))/� TP(Sym3(T�)) T� = T B0 0

0

�

The induced dashed maps provide an isomorphism TB2/B0 ∼= TP(Sym3(T�))/� ⊕ TB1/B0 . We
define the embedding

s : TB1/B0 |e TP(Sym3(T�))/�|e ⊕ TB1/B0 |e ∼= TB2/B0 |e
by prescribing it to be the identity on the second factor. On the first factor we define it via

TB1/B0 |e TP(Sym3(T�))/�|e

π∗
e (Sym2(T�))⊗Oe(2)

Oe

π∗
e (Sym3(T�))⊗Oe(3)

Oe
,

∼= ∼=
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given on the fiber over ([λ], [g]) ∈ e (i.e. [λ] ∈ � = P(W ∗) and g ∈ W ∗/λ) by sending
a quadric q ∈ Sym2(W ∗/λ)/(g2) to cst · g · q ∈ Sym3(W ∗/λ)/(g3), where cst is some
non-zero constant still to be specified. (Up to multiplication by cst, this is a relative version
of the map α2,3 from Lemma 2.3.) Denoting by e1 ⊆ B1 and e2 ⊆ B2 the images of φ1(e)
and φ2(e), respectively, we want s(Te1/�) = Te2/� ⊆ TB2/B0 |e2 . This is achieved precisely
for the choice cst = 3

2 . Composing with (4), the embedding s : TB1/B0 |e ↪→ TB2/B0 |e now
provides an embedding of geometric vector bundles TB1/B0 |e ↪→ T V3|e. Composing further
with the quotient map T V3|e → NB3V3|e, the kernel is then precisely Te1/B0 ⊆ TB1/B0 |e1 .
Hence, we obtain an embedding of geometric vector bundles

NeB1 NeE3 ⊆ NB3V3|e.
We denote by F ⊆ NeE3 ⊆ NB3V3|e its image. It is enough to show P(F) = P(E|e) =
B4 ∩ π−1

4 (e). As the embedding NeB1 ↪→ NB3V3|e is PGLn-equivariant, it is enough to
show the equality P(F) = P(E|e) for the fiber over a single point of e, using that PGLn

acts transitively on e by Lemma 2.24. We pick the point ([λ], [g]) = ([x0], [x1]) ∈ e. In the
explicit coordinates of Subsection 2.4, the fiber of B4 over this point is defined (in the affine
chart where e(0,1,2) = 1) by the equations

0 = e′,
0 = ed ,

0 = e(0,i, j) − 2e(1,i, j) for all i, j > 1,

0 = eF for all F 	= (0, i, j), (1, i, j).

This follows from the fact that the same equations hold for the fiber of B4 over the point
[(x0 + x1 + x2)(x0 + x2)2] ∈ B3\e, see the proof of Lemma 2.22. This point has the same
b(0,i, j) and c(i, j,k) coordinates as ([x0], [x1]) ∈ e. By Remark 2.18, the equations for B3

inside V3 only depend on those, and the same is true for the equations of the line conditions
from Remark 2.15. Therefore, the fiber of B4 over ([x0], [x1]) ∈ e is indeed defined by
the same equations in the (eF , ed , e′)-coordinates as the fiber over [(x0 + x1 + x2)(x0 +
x2)2] ∈ B3\e. Finally, the explicit description of the embedding s : TB1/B0 |e ↪→ TB2/B0 |e
above provides a way to check that all points in the chart satisfying the above equations
lie inside P(F |([x0],[x1])). Namely, if we start with a tangent vector associated to a quadric
q = ∑

2≤i≤ j q(i, j)xi x j ∈ TB1/B0 |([x0],[x1]), it is represented by a curve in our usual affine

open chart of B2 given by sending t ∈ A1 to b(0,i, j) = q(i, j) · t , c(1,i, j) = cst
3 · q(i, j) · t for

all i, j > 1 and all other coordinates equal to 0. Tracing the proper transform of this curve
in V3, we obtain that this tangent vector corresponds to the point in E4 with coordinates
e′ = ed = 0, e(0,i, j) = q(i, j), e(1,i, j) = cst

3 · q(i, j) and all other eF = 0. This satisfies the
above equations exactly for the choice cst = 3

2 . We get that P(F |([x0],[x1])) contains a dense
open subset of P(E|([x0],[x1])) and hence the entire fiber. As their dimensions agree, we obtain
equality, and with this we conclude that P(F) = P(E|e). 
�

3 Intersection rings and Chern classes

In the following subsectionswe collect details about theChow rings of the centers of the blow-
ups. This is the last step needed to compute the characteristic numbers. In particular, we find
generators, describe the degree of the product of those generators, and find the Chern classes
c(NBi Vi ) of the normal bundle of Bi inside Vi . Recall from the beginning of [1, Section 2]
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that for a nonsingular variety V of dimension n, and a nonsingular closed subvariety B in
V of codimension d , the full intersection class of a pure-dimensional subscheme X in V is
defined as:

B ◦ X :=c(NBV ) ∩ s(B ∩ X , X)

in the Chow group A∗(B ∩ X) of B ∩ X , with s(B ∩ X , X) denoting the Segre class. In the
end of this section, we compute the full intersection classes Bi ◦ Pi and Bi ◦ Li .

Remark 3.1 For X ⊆ Vi being a divisor and ji : Bi ↪→ Vi , we have

Bi ◦ X = eBi X [Bi ] + j∗i [X ] (5)

where eBi X denotes the multiplicity of X along Bi .

3.0 Chow ring of B0

The following results directly generalize from [1]:

Lemma 3.2 The intersection ring of B0 � Pn is generated by the hyperplane class h. More-

over, c(NB0V0) = (1 + 3h)(
n+3
3 )/(1 + h)n+1.

Lemma 3.3 The full intersection classes of point and line conditions in V0 with respect to B0

are

B0 ◦ P = 3h B0 ◦ L = 2 + 12h.

3.1 Chow ring of B1

The center of the second blow-up is B1, this was described in Subsection 2.1.

Lemma 3.4 The variety B1 has dimension
(n+2

2

) − 2.

(i) The intersection ring of B1 is generated by the pullback h of h via the map π1 : B1 → B0

and the pullback ε of [E1] via the inclusion map j1 : B1 ↪→ V1. Consider the sequence
{as} obtained with the following recursion

⎧
⎪⎨

⎪⎩

a0 = 1

as = (n+1
s

) −
s∑

i=1

2i
(
dim B1 + 2

i

)
as−i .

We get
∫

B1
hsεdim B1−s = 0 for s ∈ [n + 1, dim B1],

∫

B1
hsεdim B1−s = (−1)dim B1−san−s for s ∈ [0, n].

(ii) c(NB1V1) = (1 + ε)(1 + 3h − ε)(
n+3
3 )/(1 + 2h − ε)(

n+2
2 ).

Proof The proof is exactly as in [1]. Notice that OE1(−1) = OV1(E1)|E1 , so that
c1(OE1(−1)) = c1(OV1(E1)|E1 ) = j∗1 ([E1]). The coefficients in

s(Nv2(Pn)P(n+2
2 )−1) = (1 + h)n+1

(1 + 2h)(
n+2
2 )

= a0 + a1h + · · · + anh
n
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Table 1 The intersection number
of

∫
B1

h j ε8− j is given in column

h j

1 h h2 h3

−996 −146 −16 −1

are computed by equating the coefficients of the powers of h. From the above expression one
gets the relation

(
n + 1

s

)
=

s∑

i=0

2s−i
((n+2

2

)

s − i

)
ai

from which we attain the recursive formula for the ai ’s stated above. 
�
Remark 3.5 (n = 3) In this case we have:

s(Nv2(P3)P
9) = 1 − 16h + 146h2 − 996h3.

The center B1 has dimension 8 and
∫
B1

h jε8− j = 0 when j ≥ 4, while the other intersection
numbers are summarized in Table 1,

Lemma 3.6 We have π∗
1 (P) = P1 and π∗

1 (L) = L1 + 2E1. The full intersection classes of
point and line conditions with respect to B1 are:

B1 ◦ P1 = 3h, B1 ◦ L1 = 1 + 12h − 2ε.

3.2 Chow ring of B2

The third center of blow-up is B2, which was described in the Subsection 2.2.

Lemma 3.7 B2 is a P(n+2
3 )−1-bundle over B1 and it has dimension

(n+3
3

) − 3.

(i) Consider π2|B2
: B2 → B1 and the inclusion j2 : B2 ↪→ V2. Then the intersection ring

of B2 is generated by the pullback of the classes h and ε along the projection π2 and by
φ the pullback of [E2] along the inclusion j2. Let {c j,k} j∈[n],k∈[dim B1] be the sequence
obtained recursively for j + k ≤ dim B1, following the lexicographic order:

⎧
⎪⎪⎨

⎪⎪⎩

c0,0 = 1

c j,k = (−1)k2 j
(dim B1+2

j,k

) −
∑

a≤ j,b≤k
(a,b)	=( j,k)

ca,b

(
dim B2 + 3

j − a, k − b

)
3 j−a(−1)k−b,

where
( a
b,c

) = a!
(a−b−c)!b!c! . For j ∈ [n], k ∈ [dim B1], we get

∫

B2
h jεkφdim B2− j−k = 0

for j + k ∈ [dim B1 + 1, dim B2] and
∫

B2
h jεkφdim B2− j−k = (−1)dim B2− j−k

∑

a+b=dim B1− j−k
a∈[n− j],b∈[dim B1]

ca,b(−1)dim B1−a− j an−a− j
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Table 2 The intersection number of
∫
B2

h j εkφ17− j−k is given in row h j and column εk

1 ε ε2 ε3 ε4 ε5 ε6 ε7 ε8

1 −1370200 −641680 251160 24388 −49400 12900 4460 −4120 996

h −345280 −3640 31668 −10790 −320 1860 −820 146 0

h2 −40040 8008 0 −880 440 −120 16 0 0

h3 −2002 715 −220 55 −10 1 0 0 0

for j + k ∈ [0, dim B1], where the ai in the sum are the numbers obtained by recursion
in Lemma 3.4.

(ii) Moreover c(NB2V2) = (1 + φ)(1 + ε − φ).

Proof Since B2 = P(NB1V1), the first point follows from [12, Example 8.3.4]. Point (ii) in
Lemma 3.4 implies

c(NB1E1) = (1 + 3h − ε)(
n+3
3 )

(1 + 2h − ε)(
n+2
2 )

.

Hence recalling that hn+1 = 0 and ε(
n+2
2 ) = 0, we have

s(NB1E1) = (1 + 2h − ε)(
n+2
2 )

(1 + 3h − ε)(
n+3
3 )

=
∑

j∈[n],k∈[(n+2
2 )]

c j,kh
jεk .

Note that this relation allows us to give a recursive formula for the coefficients c j,k (following
the lexicographic order on ( j, k)). For the second point we have that B2 = Ẽ1 ∩ E2 hence
c(NB2V2) = c(NE2V2)c(NẼ1

V2). Note that NE2V2 is a line bundle on E2 and NẼ1
V2 is a

line bundle on E1. Since NE2V2 = OE2(−1), we get c(NE2V2) = 1 + φ. The isomorphism
NẼ1

V2 � π∗
1 (NE1V1) ⊗ OE2(−E2) implies c(NẼ1

V2) = 1 + ε − φ. Hence, one concludes
that

c(NB2V2) = c(NE2V2)c(NẼ1
V2) = (1 + φ)(1 + ε − φ).


�
Remark 3.8 (n = 3) In the case of cubic surfaces, B2 has dimension17and

∫
B2

h jεkφ17− j−k =
0 with j + k > 8 or j > 3, while the remaining integrals are summarized in Table 2.

Lemma 3.9 We have π∗
2 (P1) = P2 and π∗

2 (L1) = L2 + E2. The full intersection classes of
point and line conditions with respect to B2 are:

B2 ◦ P2 = 3h, B2 ◦ L2 = 1 + 12h − 2ε − φ.

Proof As divisor classes we have π∗
2 (P1) = P2 and π∗

2 (L1) = L2 + E2, because L1 is
generically smooth along B1. In the intersection ring of B2 we get j∗2 (P2) = 3 h and j∗2 (L2) =
12 h − 2ε − φ. The claim follows by Remark 3.1 observing that in our case the divisor P2
does not contain B2 and L2 is smooth along B2. 
�
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3.3 Chow ring of B3

Recall from Sect. 2.3 that B3 denotes the fourth center in our sequence of blow-ups, and it
is defined as the proper transform in V3 of S0. Moreover, in Lemma 2.17, we described the
isomorphism φ3 of S3 with Bl�Pn × Pn .

Theorem 3.10 We identify B3 with Bl�Pn × Pn.

(i) We have two natural projections of Bl�Pn × Pn onto Pn. Let l,m be the pullbacks of
the hyperplane classes in Pn through these projections, and let e denote the exceptional
divisor. Consider the sequence {ds} obtained recursively:

{
d0 = 1

ds = −∑s−1
i=0

(n+1
s−i

)
di .

The intersection ring of B3 is generated by l,m, e subject to ems = els for every s,
ln+1 = mn+1 = 0 and

∫

B3
mnln = 1,

∫

B3
lse2n−s = (−1)2n−s−1dn−s

with s ∈ [n]. All the remaining intersection numbers vanish.
(ii) (n = 3) In the case of cubic surfaces, we have

c(NB3V3) =1672560l3m3 − 66343820m3e3 + 36537350m2e4 − 10851224me5 + 1356403e6+
209440l3m2 + 474320l2m3 + 8045100m3e2 − 5907690m2e3 + 2193180me4−
328977e5 + 15960l3m + 53560l2m2 + 81680lm3 − 582940m3e + 642110m2e2−
317840me3 + 59595e4 + 560l3 + 3720l2m + 8400lm2 + 6460m3 − 42166m2e+
31308me2 − 7827e3 + 120l2 + 536lm + 610m2 − 1880me + 705e2 + 16l + 36m−
39e + 1.

Proof We follow the proof of [1, Theorem III (4)]. Consider the diagram:

e Bl�Pn × Pn

� Pn × Pn .

j

g f

i

By definition we have s(�,Pn × Pn) = s(N�(Pn × Pn)) and

si (N�(Pn × Pn)) = g∗((−ζ )n−1+i )

where ζ = c1(OP(e)(−1)) = j∗(e). Hence we get

s(�,Pn × Pn) = g∗
( n∑

i=0

(−1)n−1+i ( j∗e)n−1+i
)

.

However,we can also compute s(�,Pn×Pn) as the inverse of theChern class of N�(Pn×Pn).
This gives us

s(�,Pn × Pn) = 1

(1 + k)n+1 =
(

n∑

i=0

(−1)i ki
)n+1

.
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Table 3 The intersection number
of

∫
B3

l j e6− j is given in column

l j

1 l l2 l3

20 10 4 1

Applying the projection formula and the above observations we get
∫

B3
f ∗(l)i e2n−i =

∫

B3
j∗

(
j∗( f ∗li ) j∗(e2n−i−1)

)
=

∫

�

ki g∗
(
j∗(e)2n−i−1

)
=

=
∫

�

ki (−1)2n−i−1s(�,Pn × Pn) = (−1)2n−i−1dn−i .

For proving point (ii), we can compute φ∗
3 (c(T V3)) applying [12, Theorem 15.4] multiple

times. Notice that to do this, computing c(T B1) and c(T B2) is also needed. Hencewe observe
that

c(T B1) = (i1 ◦ j1)∗c(T V1)
c(NB1V1)

and then we can again use [12, Theorem 15.4] to compute the numerator. Finally, c(T B3) is
computed applying [12, Theorem 15.4] considering B3 = Bl�Pn × Pn . 
�
Remark 3.11 Notice that in principle it is possible to compute c(NB3V3) for any n, using the
strategy of the proof. However, this can be computationally difficult. For instance, here is the
result for n = 4:

c(NB3V3) = 8604607900l4m4 + 1511859296400m4e4 − 956335227000m3e5 + 379626653775m2e6−
86448428700me7 + 8644842870e8 + 699244875l4m3 + 1520696100l3m4−
107772730500m4e3 + 85215404025m3e4 − 40592536260m2e5 + 10784338950me6−
1232495880e7 + 40828725l4m2 + 117863200l3m3 + 192910550l2m4 + 5484228225m4e2−
5781808210m3e3 + 3442721815m2e4 − 1097565900me5 + 146342120e6 + 1525545l4m+
6578880l3m2 + 14291235l2m3 + 15643810lm4 − 177497950m4e + 280693735m3e2−
222848500m2e3 + 88807250me4 − 14209160e5 + 27405l4 + 235480l3m + 764065l2m2+
1109920lm3 + 609280m4 − 8685470m3e + 10343355m2e2 − 5495900me3 + 1099180e4+
4060l3 + 26245l2m + 56940lm2 + 41475m3 − 306580m2e + 244350me2 − 65160e3+
435l2 + 1880lm + 2045m2 − 6950me + 2780e2 + 30l + 65m − 76e + 1.

Remark 3.12 (n = 3) In this case the dimension of B3 is 6 and
∫
B3

l jmke6− j−k = 0 with j >

3 or k > 3,
∫
B3

l3 m3 = 1 while the other integrals are summarised in Table 3, remembering

that
∫
B3

l jmke6− j−k = ∫
B3

l j+ke6− j−k for j + k < 6.

Lemma 3.13 We have π∗
3 (P2) = P3 and π∗

3 (L2) = L3 + E3. The full intersection classes of
point and line conditions with respect to B3 are:

B3 ◦ P3 = l + 2m, B3 ◦ L3 = 1 + 4l + 8m − 6e.

Proof In the intersection ring of B3 we get j∗3 (P3) = l + 2m and j∗3 (L3) = 4(l + 2m) −
2(2e) − e − e = 4l + 8m − 6e. The assertion is then proved by noticing that P3 does not
contain B3 and L3 is smooth along B3. 
�
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Table 4 The intersection number
of

∫
B4

m j ek z8− j−k is given in

row m j and column ek , while∫
B4

m j lk z8− j−k is given in row

lk and column m j

e e2 e3 e4 e5 e6

1 −1820 −580 340 12 −60 20

m −890 190 54 −42 10 0

m2 0 68 −24 4 0 0

m3 51 −9 1 0 0 0

1 m m2 m3

1 13720 1610 −600 −175

l 1610 −230 −35 21

l2 −600 −35 46 6

l3 −175 21 6 1

3.4 Chow ring of B4

The fifth center we blow-up is B4, which was described in Subsection 2.4. In particular, recall
that B4 = P(E) and that we have an isomorphism of E|e given in Proposition 2.25.

Theorem 3.14 We identify B4 with P(E).

(i) Let l,m, e be the pullbacks of the generators of theChow ring of B3 through the projection
π4|B4 : B4 → B3. The Chow ring of B4 is generated by l,m, e and z where z is the
first Chern class of OB4(−1). The intesection numbers in the case n = 3 are collected
in Table 4.

(ii) (n = 3) In the case of cubic surfaces, we have

c(NB4V4) = − 8540e6z2 − 45500l2m2z4 − 109900lm3z4 + 280350m2e2z4 − 325500me3z4

+ 106575e4z4 + 13440l2mz5 + 44800lm2z5 + 47320m3z5 − 235200m2ez5 + 174720me2z5

− 43680e3z5 − 1260l2z6 − 7560lmz6 − 11620m2z6 + 30240mez6 − 11340e2z6 + 480lz7

+ 1440mz7 − 1440ez7 − 75z8 + 12810e6z + 251300l2m3z2 + 195650me4z2 − 108220e5z2

− 45500l2m2z3 − 109900lm3z3 + 280350m2e2z3 − 325500me3z3 + 106575e4z3 + 630l2z5

+ 3780lmz5 + 5810m2z5 − 15120mez5 + 5670e2z5 − 420lz6 − 1260mz6 + 1260ez6 + 90z7

− 4270e6 − 201040l2m3z − 156520me4z + 86576e5z + 81900l2m2z2 + 197820lm3z2

− 504630m2e2z2 + 585900me3z2 − 191835e4z2 − 13440l2mz3 − 44800lm2z3 − 47320m3z3

+ 235200m2ez3 − 174720me2z3 + 43680e3z3 + 630l2z4 + 3780lmz4 + 5810m2z4

− 15120mez4 + 5670e2z4 − 42z6 + 50260l2m3 + 39130me4 − 21644e5 − 45500l2m2z

− 109900lm3z + 280350m2e2z − 325500me3z + 106575e4z + 13440l2mz2 + 44800lm2z2

+ 47320m3z2 − 235200m2ez2 + 174720me2z2 − 43680e3z2 − 1260l2z3 − 7560lmz3

− 11620m2z3 + 30240mez3 − 11340e2z3 + 420lz4 + 1260mz4 − 1260ez4 − 42z5 + 9100l2m2

+ 21980lm3 − 56070m2e2 + 65100me3 − 21315e4 − 5760l2mz − 19200lm2z − 20280m3z

+ 100800m2ez − 74880me2z + 18720e3z + 900l2z2 + 5400lmz2 + 8300m2z2 − 21600mez2

+ 8100e2z2 − 480lz3 − 1440mz3 + 1440ez3 + 90z4 + 960l2m + 3200lm2 + 3380m3 − 16800m2e

+ 12480me2 − 3120e3 − 315l2z − 1890lmz − 2905m2z + 7560mez − 2835e2z + 270lz2 + 810mz2

− 810ez2 − 75z3 + 45l2 + 270lm + 415m2 − 1080me + 405e2 − 80lz − 240mz + 240ez + 35z2

+ 10l + 30m − 30e − 9z + 1.
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Proof To compute the intersection numbers, we follow the usual strategy adopted in the
previous proofs, using

s(E) = (π4|B4)∗
⎛

⎝
dim(B4)∑

i=0

(−1)i zi

⎞

⎠ .

The Segre class s(E) is computed explicitly in the case n = 3 thanks to Remark 2.27. In
fact, we have the Chern Classes c(E|B3\e) and c(E|e). The first one is in the Chow ring of
B3 \ e, which thanks to the excision theorem is described by

Z[l,m]
(ln+1,mn+1, [�])

where [�] = ∑n
i=0 l

n−imi . Therefore c(E|B3\e) = ∑2n
d=0

∑d
j=0 o j,d− jm j nd− j .

The second one is an element of the Chow ring of e described by

Z[k, ζ ]
(kn+1, ζ 2n, (n + 1)kn + ∑n

i=1 ζ i kn−i cn−i (T�))

where ζ is just the pullback of the class e through the inclusion of e in B3, and ci (T�)

is the i-th Chern class of the tangent space of the diagonal. Therefore c(E|B3\e) =
∑2n

d=0
∑d

j=0 u j,d− j k jζ d− j . In general, knowing c(E|B3\e) and c(E|e) allows us to recon-
struct c(E) up to degree n. In fact, for d < n we have

cd(E) =
d∑

j=0

o j,d− jm
j ld− j +

d−1∑

j=0

u j,d− jm
j ed− j .

For d = n, call then
∑n

j=0 o j,n− j = un,0 + (n + 1)w for some w ∈ Z and

cn(E) =
n∑

j=0

o j,n− jm
j nn− j − w[�] +

n−1∑

j=0

u j,n− j k
jζ n− j .

When n = 3, since rk(E) = 3, we get the entire total Chern class.
For proving (ii), we can follow the strategy of [1, Theorem III(ii)] and Lemma 2.20. 
�

Remark 3.15 We are not able to recover the Chern class c(E) in the case n > 3. Indeed,
knowing c(E|e) and c(E|B3\e) we can recover c(E) only up to integer multiples of mk[�] =
mk(

∑n
i=1 e

imn−i cn−i (T�)) for k ≥ 1.

Lemma 3.16 We have π∗
4 (P3) = P4 and π∗

4 (L3) = L4 + E4. The full intersection classes of
point and line conditions with respect to B3 are:

B4 ◦ P4 = l + 2m, B4 ◦ L4 = 1 + 4l + 8m − 6e − z.

4 Characteristic numbers for cubic surfaces, and somethingmore

In this section we gather all information from Sect. 3 in order to compute the characteristic
numbers with respect to line conditions for smooth cubic surfaces. Recall that for n = 3 the
moduli space of cubic surfaces is V0 = P19 and that in Sect. 2 we constructed a 1-complete
space of cubic surfaces denoted V5. Moreover, Vi+1 is the blow-up of Vi with center Bi , and
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Pi and Li are the proper transforms, in Vi , of a point and line condition from V0. Thanks to
Theorem 1.4 and [1, Theorem II] we obtain the following.

Lemma 4.1 The numberN (n p, n�) of smooth cubic surfaces containing n p given points and
tangent to n� given lines in general position with n p + n� = 19 is

N (n p, n�) = 4n� −
4∑

i=0

∫

Bi

(Bi ◦ Pi )n p (Bi ◦ Li )
n�

c(NBi Vi )

Theorem 4.2 We have

N (n p, n�) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

419−n p , n p ∈ {7, 8, . . . , 19},
67107584, n p = 6,

268391296, n p = 5,

1072926016, n p = 4,

4266198896, n p = 3,

16615227040, n p = 2,

61810371328, n p = 1,

213642327616, n p = 0.

Proof The proof is merely computational.

∫

B0

(3h)n p (2 + 12h)n� (1 + h)4

(1 + 3h)20
=

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

1769472, n p = 3

54263808, n p = 2

877658112, n p = 1

9948889088, n p = 0

∫

B1

(3h)n p (1 + 12h − 2ε)n� (1 + 2h − ε)10

(1 + ε)(1 + 3h − ε)20
=

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

434889, n p = 3

13011156, n p = 2

203305944, n p = 1

2199770536, n p = 0

∫

B2

(3h)n p (1 + 12h − 2ε − φ)n�

(1 + φ)(1 + ε − φ)
=

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

17951031, n p = 3

443328300, n p = 2

5677810728, n p = 1

49885157976, n p = 0

∫

B3

(l + 2m)n p (1 + 4l + 8m − 6e)n�

c(NB3V3)
=

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

160, n p = 6

6240, n p = 5

130224, n p = 4

1426504, n p = 3

8284040, n p = 2

7701512, n p = 1

−337368096, n p = 0
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∫

B4

(B4 ◦ P4)n p (B4 ◦ L4)
n�

c(NB4V4)
=

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

1120, n p = 6

37920, n p = 5

685584, n p = 4

7186504, n p = 3

45754840, n p = 2

142629112, n p = 1

−460870176, n p = 0


�
Remark 4.3 As explained in Remark 3.15, we cannot have a similar result for n > 3. Looking
at the computations in MathRepo, it seems that for n p ∈ [n, 2n] the last correction term is
not affected by the ambiguity explained in Remark 3.15 of the Chern class c(E). We therefore
conjecture that, for every n, the numbers given by the code for n p ≥ n are the characteristic
numbers.

It is an interesting question whether the characteristic numbers above can be attained by
numerical algebraic geometry methods. However, the numbers in Theorem 4.2 increase fast
and it could be numerically challenging to compute them. One could try instead to compute
the correction term that needs to be subtracted from 419−n p by numerical software, e.g.
HomotopyContinuation.jl [6]. We did not pursue this direction, it would be in any
case an interesting problem for experts in numerical algebraic geometry.

4.0 Crumbs of hyperplanes tangency conditions

We stick to the conventions of Sect. 1. In the case of hyperplane tangency conditions for
degree d hypersurfaces, the base locus is in general hard to parametrize if compared with
the base locus of tangency with respect to lines, where one has obvious maps as in (1). In
fact, hyperplane conditions in P(Symd(W ∗)) intersect in the locus BH

0 of hypersurfaces with
positive-dimensional singular locus

BH
0 (d, n) = {[h] ∈ P(Symd(W ∗)), | dim Sing(V(h)) ≥ 1},

as a Bertini-type argument shows. This set has been studied in [24, 27]. Building on [5], it
is shown in [17, Lemma 2.4] that an integral cubic hypersurface in Pn which is not normal,
i.e., whose singular locus has dimension n − 2, is necessarily singular exactly along a linear
subspace of Pn of dimension n − 2. For n = 3, this means that the cubic form defining a
cubic surface with singular locus of dimension ≥ 1 is either reducible or the singular locus
contains a line in P3 (or both). This fact is also known classically [22, p. 144]. It is not hard
to see that the first set has dimension 12. The dimension of the second set is 13 because it is
birational to

{(�, f ) : (grad f )|� ≡ 0} ⊆ Gr(2, 4) × P(Sym3(W ∗)),

a P9-bundle over Gr(2, 4). We deduce that Slavov’s theorem [24, Theorem 1.1] is also true
for cubic surfaces. The work [26] lists the finitely many PGL-orbits for cubic surfaces with
positive-dimensional singular locus and studies containments among their closures.

We can derive some characteristic numbers for hyperplane conditions without any com-
plicated construction.

For a hyperplane H ⊆ P(W ), we define LH to be the hypersurface in P(Symd(W ∗))
parametrizing all degree d hypersurfaces tangent to H .
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Remark 4.4 The variety LH of all degree d hypersurfaces in P(W ) tangent to H has degree
n(d − 1)n−1. Indeed, assume H = V(x0) and g ∈ P(Symd(W ∗)). Asking for the hypersur-
face g to be tangent to H corresponds to the vanishing of the resultant of the polynomials
∂xi g(0, x1, . . . , xn), for i ∈ {1, .., n}. This is the resultant of n homogeneous polymonials of
degree d − 1 in n variables, hence it has degree n(d − 1)n−1.

Knowing the degree of the variety LH , it is immediate to compute someof the characteristic
numbers for degree d hypersurfaces in P(W ).

Lemma 4.5 Let d = 5, d ≥ 7 and n arbitrary or (d, n) = (3, 3). If nH < n(d − 2) + 3,
the number N H (n p, nH ) of smooth degree d hypersurfaces in P(W ) tangent to nH general
hyperplanes and passing through n p = (n+d

d

)−1−nH general points equalsN H (n p, nH ) =(
n(d − 1)n−1

)nH .

Proof If we consider nH hyperplane conditions with nH strictly less than the codimension of
BH
0 (d, n), the claim follows from Bézout’s theorem. The codimension of BH

0 (d, n) is known
for d = 5 or d ≥ 7 and arbitrary n by [27, Theorem 1.6] and equals

codimBH
0 (d, n) = n(d − 2) + 3.

Moreover, this codimension holds true also in the case of cubic surfaces by the above dis-
cussion. 
�
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