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Abstract
In this paper we obtain new estimates for bilinear pseudodifferential operators with sym-
bol in the class BSm

1,1
 , when both arguments belong to Triebel-Lizorkin spaces of the type 

F
n∕p
p,q (ℝ

n) . The inequalities are obtained as a consequence of a refinement of the classical 
Sobolev embedding Fn∕p

p,q (ℝ
n) ↪ bmo(ℝn) , where we replace bmo(ℝn) by an appropriate 

subspace which contains L∞(ℝn) . As an application, we study the product of functions on 
F
n∕p
p,q (ℝ

n) when 1 < p < ∞ , where those spaces fail to be multiplicative algebras.

Keywords Sobolev embeddings · Bilinear pseudodifferential operators · Product of 
functions · Local bmo · Triebel–Lizorkin spaces of generalised smoothness

Mathematics Subject Classification Primary 46E35 · 47G30 · Secondary 35A23 · 42B35

1 Introduction

The classical Sobolev embedding theorem asserts that if s > n∕2 and f belongs to the inho-
mogeneous Sobolev space L2

s
(ℝn) , that is, if ⟨D⟩sf ∈ L2(ℝn) , then f is a continuous func-

tion vanishing at infinity which satisfies

The index n/2 is called the critical Sobolev exponent, as it is known that such inequality 
fails for s = n∕2 , which motivates the terminology.

For the critical exponent, using some classical embeddings between Triebel–Lizor-
kin and Besov spaces (see [20, Theorem  2.2.2 and Remark 2.2.3/3]), it is possible to 

(1.1)‖f‖∞ ≲ ‖⟨D⟩sf‖L2(ℝn).

The authors were partially supported by the Spanish Government Grant PID2020-113048GB-I00, 
funded by MCIN/AEI/10.13039/501100011033.

 * Sergi Arias 
 arias@math.su.se

 Salvador Rodríguez-López 
 s.rodriguez-lopez@math.su.se

1 Department of Mathematics, Stockholm University, 106 91 Stockholm, Sweden

http://orcid.org/0000-0002-4322-4536
http://crossmark.crossref.org/dialog/?doi=10.1007/s13348-023-00400-0&domain=pdf


568 S. Arias, S. Rodríguez-López 

1 3

replace L∞(ℝn) by the space of functions with local bounded mean oscillation, denoted 
by bmo(ℝn) . More precisely, it holds that

which is equivalent to having the embedding L2
n∕2

(ℝn) ↪ bmo(ℝn).
More generally, in the scale of Triebel–Lizorkin spaces Fs

p,q
(ℝn) , which recovers the 

cases above for p = q = 2 , one has the embedding

provided 0 < q ≤ ∞ and 0 < p < ∞ , while

provided 0 < q ≤ ∞ , and either s > n∕p if 1 < p < ∞ or s = n∕p if 0 < p ≤ 1 (see [20, 
Theorem 2.2.4/1]).

Under the condition in (1.4), Fs
p,q
(ℝn) is a multiplicative algebra. Indeed, classical 

bilinear estimates on paraproducts (see [20, Theorem 4.6.4/2]) yield that for

one has

which jointly with the embedding in (1.4) gives the result.
Following our previous investigations in [2], the space L∞(ℝn) can be replaced in 

(1.5) by the larger space Xw(ℝ
n) , which is a suitable subspace of bmo(ℝn) associated 

to an admissible weight (see Definition 2.1). More specifically, we obtain a bounded-
ness property for bilinear pseudodifferential operators with symbol � in the class BSm

1,1
 , 

m ∈ ℝ (see Sect. 4). Namely, we show in Proposition 4.2 that

holds for 0 < p, q ≤ ∞ and

Here T� is the associated pseudodifferential bilinear operator (see (4.1) below) and 
F
s,1∕w
p,q (ℝn) denotes a Triebel–Lizorkin space of generalised smoothness (see Definition 2.7 

below) associated to an admissible weight w. Bilinear pseudodifferential operators with 
symbols in the bilinear Hörmander classes have been widely studied by several authors 
(see for instance [4, 5, 11–13, 16–18] and references therein).

We shall point out that, when � ≡ 1 and w ≡ 1 , then T� becomes the product of two 
functions, the space Xw(ℝ

n) coincides with L∞(ℝn) , and Fs,1∕w
p,q (ℝn) coincides with the 

classical Triebel–Lizorkin space Fs
p,q
(ℝn) (see Proposition 2.2 below). Therefore, the 

estimate in (1.6) recovers the classical inequality in (1.5) for q ≥ max(p, 1).

(1.2)‖f‖bmo(ℝn) ≲
���⟨D⟩

n∕2f
���L2(ℝn)

,

(1.3)Fn∕p
p,q

(ℝn) ↪ bmo(ℝn)

(1.4)Fs
p,q
(ℝn) ↪ L∞(ℝn)

s > n

(
1

min(1, p)
− 1

)

(1.5)‖fg‖Fs
p,q
(ℝn) ≲ ‖f‖Fs

p,q
(ℝn)‖g‖L∞(ℝn) + ‖f‖L∞(ℝn)‖g‖Fs

p,q
(ℝn),

(1.6)��T𝜎(f , g)��Fs,1∕w
p,q (ℝn)

≲ ‖f‖Fs+m
p,q

(ℝn)‖g‖Xw(ℝ
n) + ‖f‖Xw(ℝ

n)‖g‖Fs+m
p,q

(ℝn)

(1.7)s > 𝜏p,q ∶= n

(
1

min(1, p, q)
− 1

)
.
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For the particular choice w(t) = (1 + log+ 1∕t) , the space Xw(ℝ
n) becomes bmo(ℝn) 

(see Proposition 2.2). Hence, with that choice of w and letting � ≡ 1 , one can apply 
(1.6) together with the Sobolev embedding in (1.3) to obtain a logarithmically subcriti-
cal estimate for the product of functions in Fn∕p

p,q (ℝ
n) , given by

As it turns out, one can improve this last estimate by finding a smaller target space. More 
precisely, a suitable refined version of the Sobolev embedding in (1.3), involving the spaces 
Xw(ℝ

n) and choosing an appropriate admissible weight of logarithmic type, will provide us 
the desired improvement. In that way, we show in Theorem 3.1 that

holds with a particular logarithmic weight w depending on the parameter p.
The refined embedding in (1.8), in combination with the estimate in (1.6), allows 

to produce new boundedness properties for bilinear pseudodifferential operators with 
symbol in the class BSm

1,1
 . More specifically, we obtain in Theorem 4.3 an estimate for 

T�(f , g) when both functions belong to the intersection of two Triebel–Lizorkin spaces, 
one of them with critical Sobolev index.

In that direction, for the case � ≡ 1 , we obtain new estimates on the product of func-
tions in Fn∕p

p,q (ℝ
n) when 1 < p ≤ ∞ . We shall point out that those spaces are known 

to be a multiplication algebra if, and only if, 0 < p ≤ 1 (see, for instance, [20, Theo-
rem 4.6.4/1]). Given two functions in Fn∕p

p,q (ℝ
n) , we show in Corollary 4.4 that the prod-

uct of their norms is larger than the norm of the product in the space Fn∕p,1∕w
p,q (ℝn) , with 

w lying in the scale of weights of the form w(t) = (1 + log+ 1∕t)
� , with � = 1∕r� , where 

r = max{1, p} and r′ denotes its conjugate Hölder exponent. In addition, we also show 
in Proposition 4.6 that, in the generality the estimate is stated, the result is sharp in the 
scales of Triebel–Lizorkin spaces of generalised smoothness with weight of the form 
w(t) = (1 + log+ 1∕t)

� , � ∈ ℝ . More specifically, we show that for p = 2 , the estimate 
does not hold for 𝛼 < 1∕2.

Triebel–Lizorkin spaces of generalised smoothness Fs,w
p,q

(ℝn) with p < ∞ , and those 
of logarithmic smoothness in particular, have been previously studied by several authors 
[6, 7, 15]. To the best of our knowledge, the definition for generalized smoothness of 
the spaces Fs,w

∞,q
(ℝn) appeared in [2]. We prove in this article that the definition of these 

spaces is independent on the underlying resolution of unity (see Proposition 2.10) and 
we include some other properties that were of need in the present work (see Proposi-
tions 2.15 and 2.17).

Finally, we state in Corollary 4.7 and Corollary 4.8 two applications of our study to 
some PDE. The first one deals with well-posedness of some families of non-linear equa-
tion on L2

n∕2
(ℝn) , related to some classical equations in mathematical physics, such as 

the Schrödinger equation, the biharmonic Schrödinger equation, the half-wave equation 
or the fractional Schrödinger equation. In the second corollary we obtain regularity 
results to PDEs related to the logarithmic Schrödinger operator.

The paper is organised as follows. In Sect.  2 we give some preliminaries, such as 
notations, definitions and properties of function spaces that will be used in the paper. 
In Sect. 3 we state and prove a refined Sobolev embedding. Section 4 contains the esti-
mates that we obtain for bilinear pseudodifferential operators, as well as some of its 
consequences.

‖fg‖
F
n∕p,1∕(1+log+ 1∕t)
p,q (ℝn)

≲ ‖f‖
F
n∕p
p,q (ℝ

n)
‖g‖

F
n∕p
p,q (ℝ

n)
.

(1.8)Fn∕p
p,q

(ℝn) ↪ Xw(ℝ
n)
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2  Preliminaries

The notation A ≲ B will be used to indicate the existence of a constant C > 0 such that 
A ≤ CB . Similarly, we will write A ≈ B if both A ≲ B and B ≲ A hold. We will also use the 
notation ⟨�⟩ = (1 + ���2)1∕2 for � ∈ ℝ

n.
The space of Schwartz functions will be denoted by S(ℝn) and its topological dual, the 

space of tempered distributions, by S�(ℝn) . For a function f ∈ S(ℝn) we define its Fourier 
transform as

and we will write

for appropriate symbols a, or simply a(D) when t = 1 . Here d̄𝜉 denotes the normalised 
Lebesgue measure in ℝn given by d̄𝜉 = (2𝜋)−nd𝜉.

2.1  Spaces of bounded mean oscillation

The space of functions with bounded mean oscillation, BMO(ℝn) , is the set of all those 
locally integrable functions f defined on ℝn for which

The supremum is taken over all cubes in ℝn whose sides are parallel to the axis, while |Q| 
denotes the Lebesgue measure of the cube Q and fQ is the average of f over Q, namely 
fQ =

1

|Q| ∫Q f (x)dx.
The local version of BMO(ℝn) was considered by D. Goldberg in [10], and it will be 

denoted by bmo(ℝn) . It is defined to be the set of all locally integrable functions f on ℝn for 
which

Here �(Q) denotes the side length of the cube Q. The function space bmo(ℝn) is continu-
ously embedded in BMO(ℝn).

2.2  Admissible weights and related spaces

Let us start by introducing the function spaces Xw(ℝ
n) , first defined in [21, Definition 4.2]. 

Those spaces have played an important role in our previous investigations [1, 2]

F[f ](�) = f̂ (�) = ∫
ℝn

f (x)e−ix�dx

a(tD)f (x) = ∫
ℝn

a(t𝜉)�f (𝜉)eix𝜉d̄𝜉

‖f‖BMO(ℝn) ∶= sup
Q

1

�Q� ∫Q

�f (x) − fQ�dx < ∞.

(2.1)‖f‖bmo(ℝn) ∶= sup
�(Q)<1

1

�Q� �Q

�f (x) − fQ�dx + sup
�(Q)≥1

1

�Q� �Q

�f (x)�dx < ∞.
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Definition 2.1 Let w ∶ (0,∞) → (0,∞) be a function satisfying the following properties: 

 I) For every compact interval I ⊆ (0,∞) we have that 

 II) There exists N > 0 such that supt>0 w(t)(1 + 1∕t)−N < ∞;
 III) inft>0 w(t) > 0.

Let � be a Schwartz function supported in the ball {|�| ≤ 2} which is identically one on 
{|�| ≤ 1} . Then Xw(ℝ

n) is defined to be the set of all locally integrable functions f for which

Motivated by the following proposition, we may think about Xw(ℝ
n) as intermediate 

spaces lying in between L∞(ℝn) and bmo(ℝn).

Proposition 2.2 [1, Proposition 2.6] Let w and � be as in Definition 2.1. 

a) The definition of the space Xw(ℝ
n) does not depend on the different choices of function 

� , in the sense that different choices induce equivalent norms.
b) The embeddings L∞(ℝn) ⊂ Xw(ℝ

n) ⊂ bmo(ℝn) hold.
c) If w ≈ 1 , then Xw(ℝ

n) = L∞(ℝn) with equivalent norms.
d) For w(t) = 1 + log+ 1∕t , we have that Xw(ℝ

n) = bmo(ℝn) with equivalent norms.

We shall notice as well that, using the properties in I), II) and III), it holds that for any 
0 < c1 ≤ c2 , there exist 0 < d1 ≤ d2 such that

In this paper we will use the terminology admissible weight for the following type of func-
tions, slightly modifying the original definition of A. Caetano and S. Moura in [6, Defini-
tion 2.1.]

Definition 2.3 Let w ∶ (0, 1] → (0,∞) be a monotonic function, and extend it to 
w ∶ (0,∞) → (0,∞) by defining w(t) = w(1) for all t ≥ 1 . We say that w is an admissible 
weight if there exist c, d > 0 such that for all j ∈ ℕ

Example 2.4 A kind of functions satisfying the requirements for an admissible weight 
could be those of the form

with � , � ∈ ℝ and � ⋅ � ≥ 0.

0 < inf
t∈I

(
inf
s>0

w(st)

w(s)

)
≤ sup

t∈I

(
sup
s>0

w(st)

w(s)

)
< ∞;

‖f‖Xw(ℝ
n) ∶= ‖f‖BMO(ℝn) + sup

t>0

‖𝜙(tD)f‖∞
w(t)

< ∞.

(2.2)c1 ≤ t

s
≤ c2 implies that d1 ≤ w(t)

w(s)
≤ d2.

cw(2−j) ≤ w(2−2j) ≤ dw(2−j).

w(t) ∶= (1 + log+ 1∕t)
�
(
1 + log(1 + log+ 1∕t)

)�
,
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Admissible weights satisify the following property when evaluated on dyadic numbers, 
which will be useful later.

Proposition 2.5 [15, Proposition 1.4] For any admissible weight w there exist constants 
C1,C2 > 0 and b ≥ 0 such that

for any non-negative integers j ≥ k.

We shall point out that the class of admissible weights introduced above do not coin-
cide, in general, with those in Definition 2.1. However, they satisfy similar properties 
and both classes coincide under some restrictions.

Lemma 2.6 [1, Lemma 2.12] Let w be an admissible weight. Then w satisfies I) and II) in 
Definition 2.1 above. Moreover, condition III) holds for an admissible weight w if, and only 
if, w is either non-increasing, or satisfies that for all t > 0 , w(t) ≈ 1.

2.3  Spaces of generalised smoothness

Let �0 be a positive and radially decreasing Schwartz function, supported in the ball 
{|�| ≤ 3∕2} , which is identically one on {|�| ≤ 1} . We define then �(�) ∶= �0(�) − �0(2�) 
and �j(�) ∶= �(2−j�) for � ∈ ℝ

n and all integers j ≥ 1 . We notice that �j is supported 
in the annulus {2j−1 ≤ |�| ≤ 2j+1} for all j ≥ 1 and it holds that 

∑∞

j=0
�j(�) = 1 for all 

� ∈ ℝ
n . Such family {�j}j≥0 forms a resolution of unity.

Definition 2.7 Let s ∈ ℝ , 0 < p ≤ ∞ and 0 < q ≤ ∞ . Let w be an admissible weight and 
let {�j}

∞
j=0

 be a resolution of unity as above.

• We define the Besov space, Bs
p,q
(ℝn) , to be the set of all tempered distributions f for 

which 

 with the usual modification if p = ∞ or q = ∞.
• [6, 15] If 0 < p < ∞ , we define the Triebel–Lizorkin space of generalised smooth-

ness, Fs,w
p,q

(ℝn) , to be the set of all tempered distributions f for which 

 with the usual modification if q = ∞.

C1(1 + j − k)−b ≤ w(2−j)

w(2−k)
≤ C2(1 + j − k)b

‖f‖Bs
p,q
(ℝn) ∶=

�
∞�

j=0

2jsq
���𝜑j(D)f

���
q

Lp(ℝn)

�1∕q

< ∞,

‖f‖Fs,w
p,q (ℝ

n) ∶=

������

�
∞�

j=0

2jsqw(2−j)q
���𝜑j(D)f

���
q

�1∕q������Lp(ℝn)

< ∞,
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• [2, Definition 2.7] Let D be the set of all dyadic cubes in ℝn and 0 < q < ∞ . We 
define Fs,w

∞,q
(ℝn) to be the set of all tempered distributions f for which 

 is finite.

Remark 2.8 If we consider the admissible weight given by the constant function w ≡ 1 
then Definition  2.7 reduces to the classical Triebel–Lizorkin spaces Fs

p,q
(ℝn) . In addi-

tion, it is also known that the identities F0
∞,2

(ℝn) = bmo(ℝn) and Fs
p,2
(ℝn) = L

p
s (ℝ

n) 
hold for 1 < p < ∞ and s ∈ ℝ , in the sense of equivalent norms (see for instance [23, 
Section 2.3.5]).

The spaces Fs,w
∞,q

(ℝn) were previously defined by the authors in [2] and, to the best of our 
knowledge, they have not appeared in the literature before. For the sake of completeness, as 
the details were not included there, we provide below a proof of the property that the defi-
nition of these spaces is independent on the underlying resolution of unity.

The argument used is similar to the idea applied in the case of the classical Trie-
bel–Lizorkin spaces, making use of an appropriate multiplier theorem, which we state as a 
lemma, due to B.J. Park.

Lemma 2.9 [19, Lemma E] Let 0 < q < ∞ and 𝜈 > n∕min{1, q} − n∕2 . Consider the 
sequence of functions {fj}∞j=0 and assume that there is a constant C > 0 such that the Fou-
rier transform of each fj is supported in the ball {|�| ≤ C ⋅ 2j} . If the sequence {mj}

∞
j=0

 of 
multipliers satisfy

then we obtain the estimate

Proposition 2.10 Let s ∈ ℝ , 0 < q < ∞ and let w be an admissible weight. The space 
Fs,w
∞,q

(ℝn) is independent of the chosen resolution of unity defining ‖⋅‖Fs,w
∞,q(ℝ

n) , in the sense 
that different choices of the resolution of unity give equivalent quasi-norms.

‖f‖Fs,w
∞,q(ℝ

n) ∶=
���0(D)f

��∞

+ sup

Q ∈ D

�(Q) ≤ 1

�
1

�Q� �Q

∞�

j=− log2 �(Q)

2sjqw(2−j)q
����j(D)f (x)

���
q

dx

�1∕q

sup
j≥0

‖‖‖mj
‖‖‖L2

𝜈
(ℝn)

< ∞,

sup

Q ∈ D

𝓁(Q) ≤ 1

(
1

|Q| �Q

∞∑

j=− log2 𝓁(Q)

|||mj(D)fj(x)
|||
q

dx

)1∕q

≲ sup
j≥0

‖‖‖mj(2
j
⋅)
‖‖‖L2

𝜈
(ℝn)

sup

Q ∈ D

𝓁(Q) ≤ 1

(
1

|Q| �Q

∞∑

j=− log2 𝓁(Q)

|||fj(x)
|||
q

dx

)1∕q

.
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Proof We follow the approach in [23, Proposition 2.3.2/1] for the classical Triebel–Lizor-
kin spaces, using Lemma 2.9 in this case as a multiplier theorem.

Set f ∈ Fs,w
∞,q

(ℝn) and let {�j}j≥0 and {�}j≥0 be two resolutions of unity as in Definition 
2.7. If we define �−1 ≡ 0 then we can write

for any non-negative integer j. In particular, we notice that, given j ≥ 0 , the Fourier trans-
form of �j+r(D)f  is supported in the ball {|�| ≤ 4 ⋅ 2j} for any r ∈ {−1, 0, 1} . Hence, given 
a cube Q ∈ D with �(Q) ≤ 1 and a positive integer 𝜈 > n∕min{1, q} − n∕2 , we use (2.3) 
and Lemma 2.9 to see that

We observe that it is possible to find a constant C > 0 such that

Indeed, it holds that

In addition, the right hand side of the last inequality can be seen to be uniformly bounded 
on j by using the estimate |||𝜕

𝛼𝜑j(x)
||| ≲ 2−j|𝛼| for any x ∈ ℝ

n , consequence of the Schwartz 
condition of �j.

Next, changing variables, we observe that for r ∈ {−1, 0, 1} it holds

(2.3)�j = �j

∞∑

r=0

�r =

1∑

r=−1

�j+r�j

(2.4)

(
1

|Q| �Q

∞∑

j=− log2 𝓁(Q)

2sjqw(2−j)q
|||𝜑j(D)f (x)

|||
q

dx

)1∕q

≲

1∑

r=−1

(
1

|Q| �Q

∞∑

j=− log2 𝓁(Q)

2sjqw(2−j)q
|||𝜑j(D)[𝜓j+r(D)f ](x)

|||
q

dx

)1∕q

≲

1∑

r=−1

sup
j≥0

‖‖‖𝜑j(2
j+r

⋅)
‖‖‖L2

𝜈
(ℝn)

sup

Q ∈ D

𝓁(Q) ≤ 1

(
1

|Q| �Q

∞∑

j=− log2 𝓁(Q)

2sjqw(2−j)q
|||𝜓j+r(D)f (x)

|||
q

dx

)1∕q

.

(2.5)sup
j≥0

‖‖‖�j(2
j+r

⋅)
‖‖‖L2

�
(ℝn)

≤ C.

‖‖‖𝜑j(2
j+r

⋅)
‖‖‖L2

𝜈
(ℝn)

≲

(
∑

|𝛼|≤𝜈
‖‖‖𝜕

𝛼
(
𝜑j(2

j+r
⋅)
)‖‖‖

2

L2(ℝn)

)1∕2
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The last inequality is immediate for r = 0 . In the case where r = 1 the last inequality is 
obtained after applying Proposition 2.5 to get the existence of a constant b ≥ 0 for which 
the estimate w(2−j+1) ≲ 2−bw(2−j) holds, while the case r = −1 is obtained similarly but 
using the estimate w(2−j−1) ≲ 2bw(2−j) , which also follows from Proposition 2.5.

Combining the inequalities in (2.4), (2.5) and (2.6) we obtain that

Furthermore, using (2.3) for j = 0 , the Minkowski inequality and the Lebesgue Differen-
tiation Theorem yield

Joining (2.7) and (2.8) we see that the norm ‖⋅‖Fs,w
∞,q(ℝ

n) associated to the family {�j}
∞
j=0

 is 
bounded above by a constant times the norm ‖⋅‖Fs,w

∞,q(ℝ
n) associated to the family {�j}

∞
j=0

 . 
The same argument, interchanging the roles of �j and �j , gives the converse inequality.  
 ◻

(2.6)

sup

Q ∈ D

�(Q) ≤ 1

(
1

|Q| �Q

∞∑

j=− log2 �(Q)

2sjqw(2−j)q
|||𝜓j+r(D)f (x)

|||
q

dx

)1∕q

= sup

Q ∈ D

�(Q) ≤ 1

(
1

|Q| �Q

∞∑

j=− log2 �(Q)+r

2s(j−r)qw(2−j+r)q
|||𝜓j(D)f (x)

|||
q

dx

)1∕q

≲ sup

Q ∈ D

�(Q) ≤ 1

(
1

|Q| �Q

∞∑

j=− log2 �(Q)

2sjqw(2−j)q
|||𝜓j(D)f (x)

|||
q

dx

)1∕q

.

(2.7)

sup

Q ∈ D

�(Q) ≤ 1

(
1

|Q| �Q

∞∑

j=− log2 �(Q)

2sjqw(2−j)q
|||𝜑j(D)f (x)

|||
q

dx

)1∕q

≲ sup

Q ∈ D

�(Q) ≤ 1

(
1

|Q| �Q

∞∑

j=− log2 �(Q)

2sjqw(2−j)q
|||𝜓j(D)f (x)

|||
q

dx

)1∕q

.

(2.8)

‖‖𝜑0(D)f
‖‖∞ ≤ ‖‖𝜑0(D)[𝜓0(D)f ]

‖‖∞ + ‖‖𝜑0(D)[𝜓1(D)f ]
‖‖∞

≲ ‖‖𝜓0(D)f
‖‖∞ + ‖‖𝜓1(D)f

‖‖∞

≲ ‖‖𝜓0(D)f
‖‖∞ + sup

Q ∈ D

�(Q) ≤ 1

(
1

|Q| �Q

||𝜓1(D)f (x)
||
q
dx

)1∕q

≲ ‖‖𝜓0(D)f
‖‖∞ + sup

Q ∈ D

�(Q) ≤ 1

(
1

|Q| �Q

∞∑

j=− log2 �(Q)

2sjqw(2−j)q
|||𝜓j(D)f (x)

|||
q

dx

)1∕q

.
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We shall recall some classical embeddings for Besov and Triebel–Lizorkin spaces, 
which will be used to prove Theorem 3.1.

Proposition 2.11 The following embeddings hold:  

 I) Let 0 < p < ∞ , 0 < q ≤ ∞ and s ∈ ℝ . Then 

 II) Let 0 < q, p1, q1 ≤ ∞ , 0 < p < p1 and s, s1 ∈ ℝ . Assume in addition that 
s − n∕p = s1 − n∕p1 . The embedding 

 holds if, and only if, p ≤ q1.

Proof The first statement can be found in [14, Lemma 16] while the second one is shown 
in [22, Theorem 3.2.1].   ◻

We shall point out that admissible weights might not be regular enough for some pur-
poses, so it is useful to introduce a regularised version of them.

Definition 2.12 [6] Let w be an admissible weight, and let (�j)j≥0 be as in Definition 2.7. 
We say that the function

is the regularisation of w (associated to the resolution of unity (�j)j≥0).

Proposition 2.13 [6, Lemma 3.1] Let w be an admissible weight. The functions w and 1∕w 
are smooth on ℝn and they satisfy the inequalities

and

for any multi-index � ∈ ℕ
n and any � ∈ ℝ

n.

Remark 2.14 Using (2.9) and the fact that w(1∕|�|) = w(1) for all |�| ≤ 1 yields the equiva-
lence w(�) ≈ w(1∕���) ≈ w(1∕⟨�⟩) for any � ≠ 0 . This motivates the terminology of regu-
larisation, as w is smooth and also essentially encodes all the pointwise information of w.

Triebel–Lizorkin spaces of generalised smoothness, Fs,w
p,q

(ℝn) , satisfy a lifting property 
involving the underlying weight function. This property was shown by A. Caetano and S. 
Moura for the case 0 < p < ∞ and we provide the details on the proof for the missing case 
p = ∞.

Bs+n∕p
p,∞

(ℝn) ↪ Fs
∞,q

(ℝn).

Fs
p,q
(ℝn) ↪ Bs1

p1,q1
(ℝn)

(2.9)w(�) =

∞∑

j=0

w(2−j)�j(�), � ∈ ℝ
n,

(2.10)�(𝜕𝛼w)(𝜉)� ≲ w(1∕⟨𝜉⟩)⟨𝜉⟩−�𝛼�

(2.11)
����

�
𝜕𝛼
�
1

w

��
(𝜉)

����
≲

1

w(1∕⟨𝜉⟩) ⟨𝜉⟩
−�𝛼�
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Proposition 2.15 Let either 0 < p < ∞ and 0 < q ≤ ∞ , or p = ∞ and 0 < q < ∞ and 
s ∈ ℝ . Let w be an admissible weight and denote by w its regularisation given by (2.9). It 
holds that

for all f ∈ Fs,w
p,q

(ℝn).

Proof The proof of the case 0 < p < ∞ can be found in [6, Proposition 3.2]. So we reduce 
ourselves to the case p = ∞.

We shall prove first the estimate

Indeed, let us consider a Schwartz function M supported in the ring {1∕4 ≤ |�| ≤ 4} which 
is identically one on {1∕2 ≤ |�| ≤ 2} . Then we can write

where mj(�) ∶= w(2−j)−1w(�)M(2−j�) . Hence, given a positive integer 
𝜈 > n∕min{1, q} − n∕2 , Lemma 2.9 yields

The Leibniz rule, the property in (2.10), the support condition of M and (2.2), yield

for any multi-index � ∈ ℕ
n . Using the previous estimate, we see that

‖f‖Fs,w
p,q (ℝ

n) ≈ ‖w(D)f‖Fs
p,q
(ℝn)

(2.12)

sup
Q ∈ 
�(Q) ≤ 1

(

1
|Q| ∫Q

∞
∑

j=− log2 �(Q)

|

|

|

2sj�j(D)[w(D)f ](x)
|

|

|

q
dx

)1∕q

≲ sup
Q ∈ 
�(Q) ≤ 1

(

1
|Q| ∫Q

∞
∑

j=− log2 �(Q)
2sjqw(2−j)q||

|

�j(D)f (x)
|

|

|

q
dx

)1∕q

.

(2.13)2sj�j(D)[w(D)f ] = mj(D)[2
sjw(2−j)�j(D)f ],

(2.14)

sup

Q ∈ D

𝓁(Q) ≤ 1

(
1

|Q| �Q

∞∑

j=− log2 𝓁(Q)

|||mj(D)[2
sjw(2−j)𝜑j(D)f ](x)

|||
q

dx

)1∕q

≲ sup
j≥0

‖‖‖mj(2
j
⋅)
‖‖‖L2

𝜈
(ℝn)

sup

Q ∈ D

𝓁(Q) ≤ 1

(
1

|Q| �Q

∞∑

j=− log2 𝓁(Q)

|||2
sjw(2−j)𝜑j(D)f (x)

|||
q

dx

)1∕q

.

|||𝜕
𝛼(mj(2

j
⋅))(𝜉)

||| ≲
2j|𝛼|

w(2−j)

∑

𝛼1+𝛼2=𝛼

|||𝜕
𝛼1w(2j𝜉)

|||2
−j|𝛼2||𝜕𝛼2M(𝜉)|

≲
2j|𝛼|

w(2−j)

∑

𝛼1+𝛼2=𝛼

w(2−j)2−j|𝛼1|−j|𝛼2||𝜕𝛼2M(𝜉)|
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The inequality in (2.12) is obtained then by combining the estimates in (2.13), (2.14) and 
(2.15).

In addition we have that

Indeed, let us consider a Schwartz function � supported in the ball {|�| ≤ 2} which is iden-
tically one in the support of �0 . Then, using the classical multiplier theorem in [23, Theo-
rem 1.5.2] we get that, for a positive integer 𝜈 > n∕2 , it holds that

Since w is constant in the support of � , we see that

The combination of the last two estimates gives (2.16). Therefore, joining (2.12) and (2.16) 
yields the inequality ‖w(D)f‖Fs

∞,q
(ℝn) ≲ ‖f‖Fs,w

∞,q(ℝ
n).

To get the converse inequality we use a similar argument. This time we can write

where m̃j(𝜉) = w(2−j)M(2−j𝜉)w(𝜉)−1 , with M as above. Therefore, Lemma 2.9 yields

for a positive integer 𝜈 > n∕min{1, q} − n∕2.
Similarly as it was done to obtain (2.15), we can show that

where this time one shall use (2.11).
Furthermore, repeating the argument used to show (2.16), we see that

for any positive integer 𝜈 > n∕2 , where this time one should take into account that w is 
constant and non-zero in the support of �.

(2.15)sup
j≥0

‖‖‖mj(2
j
⋅)
‖‖‖L2

𝜈
(ℝn)

≲

(
∑

|𝛼|≤𝜈
‖‖‖𝜕

𝛼
(
mj(2

j
⋅)
)‖‖‖

2

L2(ℝn)

)1∕2

≲ 1.

(2.16)‖‖𝜑0(D)[w(D)f ]
‖‖∞ ≲ ‖‖𝜑0(D)f

‖‖∞.

��𝜑0(D)[w(D)f ]
��∞ = ��(w𝜒)(D)[𝜑0(D)f ]

��∞ ≲ ‖w𝜒‖L2
𝜈
(ℝn)‖𝜑(D)f‖∞.

‖w𝜒‖2
L2
𝜈
(ℝn)

≲
�

�𝛼�≤𝜈 �ℝn

�w(x)𝜕𝛼𝜒(x)�2dx ≲ 1.

2sjw(2−j)𝜑j(D)f (x) = m̃j(D)[2
sj𝜑j(D)[w(D)f ]](x),

(2.17)

sup

Q ∈ D

𝓁(Q) ≤ 1

(
1

|Q| �Q

∞∑

j=− log2 𝓁(Q)

|||2
sjw(2−j)𝜑j(D)f (x)

|||
q

dx

)1∕q

≲ sup
j≥0

‖‖‖m̃j(2
j
⋅)
‖‖‖L2

𝜈
(ℝn)

sup

Q ∈ D

𝓁(Q) ≤ 1

(
1

|Q| �Q

∞∑

j=− log2 𝓁(Q)

|||2
sj𝜑j(D)[w(D)f ](x)

|||
q

dx

)1∕q

(2.18)sup
j≥0

‖‖‖m̃j(2
j
⋅)
‖‖‖L2

𝜈
(ℝn)

< ∞,

(2.19)��𝜑0(D)f
��∞ ≲ ‖𝜒∕w‖L2

𝜈
(ℝn)

��𝜑0(D)[w(D)f ]
��∞ ≲ ��𝜑0(D)[w(D)f ]

��∞,
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Combining (2.17), (2.18) and (2.19) yields the desired estimate 
‖f‖Fs,w

∞,q(ℝ
n) ≲ ‖w(D)f‖Fs

∞,q
(ℝn) .   ◻

Next we would like to show how the lifting property is satisfied for the inverse weight 
1/w, having as a multiplier operator the inverse of the regularised version of w, that is, 1∕w . 
To this end, we will need the following lemma.

Lemma 2.16 [23, Theorem  2.3.7] Let � ∈ C
∞(ℝn) be a function such that for all multi-

index � ∈ ℕ
n it satisfies that

Then, for all s ∈ ℝ , if 0 < p < ∞ and 0 < q ≤ ∞ , or p = ∞ and 1 < q ≤ ∞ , the operator 
�(D) ∶ Fs

p,q
(ℝn) → Fs

p,q
(ℝn) is bounded.

Proposition 2.17 Let w be an admissible weight and set w for its regularisation given by 
(2.9). Let � ∈ ℝ⧵{0} and denote by u the regularisation of the admissible weight w� . Given 
s ∈ ℝ , if 0 < p < ∞ and 0 < q ≤ ∞ , or if p = ∞ and 1 < q ≤ ∞ , it holds that

Proof First of all, we shall notice that

holds for all multi-index � ∈ ℕ
n and all � ∈ ℝ

n.
Using the previous estimate jointly with Leibniz rule and (2.11) it follows that

for any multi-index � ∈ ℕ
n and any � ∈ ℝ

n.
Next, (2.21) and Lemma 2.16 yield

Similarly, one shows that u∕w� also satisfies the condition in (2.21) and the estimate

is obtained. The first equivalence in the statement is hence shown.
The second equivalence in the statement follows by using Proposition 2.15.   ◻

(2.20)sup
𝜉∈ℝn

⟨𝜉⟩�𝛼����𝜕
𝛼
𝜉
𝜎(𝜉)

��� < +∞.

���w
�(D)f

���Fs
p,q
(ℝn)

≈ ‖u(D)f‖Fs
p,q
(ℝn) ≈ ‖f‖

F
s,w�

p,q (ℝn)
.

���𝜕
𝛼w𝜆(𝜉)

��� ≲ w(1∕⟨𝜉⟩)𝜆⟨𝜉⟩−�𝛼�

(2.21)
�����
𝜕𝛼
�
w𝜆

u

�
(𝜉)

�����
≲

w(1∕⟨𝜉⟩)𝜆
w(1∕⟨𝜉⟩)𝜆

⟨𝜉⟩−�𝛼� = ⟨𝜉⟩−�𝛼�

���w
𝜆(D)f

���Fs
p,q
(ℝn)

=
����
w𝜆

u
(D)

�
u(D)f

�����Fs
p,q
(ℝn)

≲ ‖u(D)f‖Fs
p,q
(ℝn).

‖u(D)f‖Fs
p,q
(ℝn) ≲

���w
𝜆(D)f

���Fs
p,q
(ℝn)
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3  A refined Sobolev embedding

Theorem  3.1 Let either 0 < p < ∞ and 0 < q ≤ ∞ , or p = ∞ and 0 < q ≤ 2 . If we set 
r ∶= max{1, p} then the embedding

holds with w(t) = (1 + log+ 1∕t)
1∕r�.

Proof Let us start with the case p = ∞ . Under this choice of p, we notice that r = ∞ and 
w(t) = 1 + log+ 1∕t , so that Xw(ℝ

n) = bmo(ℝn) (see Proposition 2.2 d)). The statement 
becomes then

that follows from the inequality ‖⋅‖F0
∞,2

(ℝn) ≤ ‖⋅‖F0
∞,q

(ℝn) , which can be deduced from the 
embedding of the sequential spaces �q(ℕ) ↪ �

2(ℕ) , with 0 < q ≤ 2.
Let us focus on the case 0 < p < ∞ . We shall check first that the embedding

holds. To do so, we can combine some known embeddings between Besov and Triebel–
Lizorkin spaces. Indeed, applying Proposition 2.11 II) with s1 = 0 and p1 = ∞ we obtain 
that

Moreover, applying Proposition 2.11 I) we get that

for any 0 < p1 < ∞ , while Proposition 2.11 II) yields

for any 0 < p < p1.
Combining the embeddings in (3.3) and (3.4) we obtain that Fn∕p

p,q (R
n) ↪ F0

∞,2
(ℝn) for 

any 0 < p < ∞ , which jointly with (3.2) gives (3.1).
Next we would like to see that

holds with w(t) = (1 + log+ 1∕t)
1∕r� . To that end, let � be as in Definition 2.1 and let 

� ∈ S(ℝn) , where we define �0 ∶= � and �j(x) ∶= �(2−jx) − �(2−j+1x) for any integer 
j ≥ 1 . The functions �j , for j ≥ 1 , are supported in the rings {2j−1 ≤ |�| ≤ 2j+1} and the 
identity

Fn∕p
p,q

(ℝn) ↪ Xw(ℝ
n)

F0
∞,q

(ℝn) ↪ bmo(ℝn) = F0
∞,2

(ℝn),

(3.1)Fn∕p
p,q

(ℝn) ↪ F0
∞,2

(ℝn) ∩ B0
∞,r

(ℝn)

(3.2)Fn∕p
p,q

(ℝn) ↪ B0
∞,r

(ℝn).

(3.3)Bn∕p1
p1,∞

(ℝn) ↪ F0
∞,2

(ℝn)

(3.4)Fn∕p
p,q

(Rn) ↪ Bn∕p1
p1,∞

(ℝn)

(3.5)bmo(ℝn) ∩ B0
∞,r

(ℝn) ↪ Xw(ℝ
n)
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is satisfied for all � ∈ ℝ
n . We want to show that

for all j ∈ ℕ . Indeed, we use (3.6), the definition of ‖⋅‖B0
∞,r

(ℝn) and Hölder’s inequality to get 
that

Next we want to show that for all t > 0

Let us first take 0 < t < 1 . Then, there exists an integer j ≥ 0 such that 2−j−1 ≤ t < 2−j . We 
notice that

from where, applying Minkowski’s inequality and using (3.7) we get that

When t ≥ 1 we notice that �(tD)f = �(tD)[�(2−1D)f ] from where, applying Minkowski’s 
inequality and the definition of ‖⋅‖B0

∞,r
(ℝn) , we get that

Combining this and (3.8) we deduce that

from where ‖f‖Xw(ℝ
n) ≲ ‖f‖bmo(ℝn) + ‖f‖B0

∞,r
(ℝn) , which shows (3.5).

The statement of the theorem follows by combining (3.1) and (3.5).  ◻

Remark 3.2 We notice that, if r = 1 , the weight w is constant and hence Xw(ℝ
n) = L∞(ℝn) 

(see Proposition 2.2). Therefore Theorem  3.1 states that Fn∕p
p,q (ℝ

n) ↪ L∞(ℝn) for all 

(3.6)�(2−j�) = �(�) +

j∑

�=1

�
�
(�)

(3.7)
���𝜙(2

−jD)f
���∞ ≲ (1 + log 2j)1∕r

�‖f‖B0
∞,r

(ℝn)

���𝜙(2
−jD)f

���∞ ≤ ‖𝜙(D)f‖∞ +

j�

�=1

��𝜓�
(D)f��∞

≤ ‖f‖B0
∞,r

(ℝn) +

�
∞�

�=0

��𝜓�
(D)f��

r

∞

�1∕r� j�

�=1

1

�1∕r�

≲
�
1 + j1∕r

��‖f‖B0
∞,r

(ℝn) ≈
�
1 + log 2j

�1∕r�‖f‖B0
∞,r

(ℝn).

‖𝜙(tD)f‖∞ ≲ (1 + log+ 1∕t)
1∕r�‖f‖B0

∞,r
(ℝn).

�(tD)f = �(tD)[�(2−j−2D)f ]

(3.8)

‖𝜙(tD)f‖∞ ≤ ���t
−n �𝜙(t−1⋅)

���L1(ℝn)

���𝜙(2
−j−2D)f

���∞
≲
�
1 + log 2j+2

�1∕r�‖f‖B0
∞,r

(Rn)

≈ (1 + log 1∕t)1∕r
�‖f‖B0

∞,r
(Rn).

‖𝜙(tD)f‖∞ ≤ ���t
−n �𝜙(t−1⋅)

���L1(ℝn)

���𝜙(2
−1D)f

���∞ ≲ ‖f‖B0
∞,r

(ℝn).

sup
t>0

‖𝜙(tD)f‖∞
(1 + log+ 1∕t)

1∕r�
≲ ‖f‖B0

∞,r
(ℝn),
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0 < q ≤ ∞ and 0 < p ≤ 1 . This recovers partially the stronger result of W. Sickel and H. 
Triebel [22, Theorem 3.3.1], which states that the embedding Fn∕p

p,q (ℝ
n) ↪ L∞(ℝn) holds if, 

and only if, 0 < q ≤ ∞ and 0 < p ≤ 1.

4  Bilinear pseudodifferential operators

Given a measurable function � on ℝ3n we denote by T� the associated bilinear pseudodif-
ferential operator given by

The function � is referred to as the symbol of the bilinear operator T�.
The following theorem, shown in [2, Theorem 3.1], gives an estimate for bilinear pseu-

dodifferential operators on Triebel–Lizorkin spaces and the spaces Xw(ℝ
n) for a certain 

elementary type of symbols.

Theorem 4.1 Let us consider the bilinear operator T� with � of the form

where {�j}∞j=0,{�j}
∞
j=0

 and {�j}
∞
j=0

 are collections of smooth functions in ℝn satisfying that 
for every N ∈ ℕ there exists CN > 0 such that

for all |�| ≤ N and some m ∈ ℝ , as well as

and

Let 0 < p ≤ ∞ , 0 < q ≤ ∞ , m ∈ ℝ and let s > 𝜏p,q , with �p,q as in (1.7). Given a non-
increasing admissible weight w we can find C > 0 such that

for all f , g ∈ S(ℝn).

We say that a smooth function � defined on ℝ3n belong to the class BSm
1,1

= BSm
1,1
(ℝn) , if 

it satisfies

(4.1)T𝜎(f , g)(x) = ∬ 𝜎(x, 𝜉, 𝜂)�f (𝜉)�g(𝜂)eix(𝜉+𝜂)d̄𝜉d̄𝜂, x ∈ ℝ
n, f , g ∈ S(ℝn).

(4.2)�(x, �, �) =

∞∑

j=0

�j(x)�j(�)�j(�),

(4.3)
‖‖‖�

�
�j
‖‖‖∞ ≤ CN2

j(m+|�|)

(4.4)
supp𝜓0 ⊆ {|𝜉| ≲ 1}, supp𝜓j ⊆ {|𝜉| ≈ 2j} for j ≥ 1,

‖‖‖𝜕
𝛼𝜓j

‖‖‖∞ ≤ CN2
−j|𝛼| for all |𝛼| ≤ N,

(4.5)
supp𝜙j ⊆ {|𝜉| ≲ 2j} for j ≥ 0,

‖‖‖𝜕
𝛼𝜙j

‖‖‖∞ ≤ CN2
−j|𝛼| for all |𝛼| ≤ N.

��T�(f , g)��Fs,1∕w
p,q (ℝn)

≤ C‖f‖Fs+m
p,q

(ℝn)‖g‖Xw(ℝ
n)
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for all (x, �, �) ∈ ℝ
3n , all multi-indices �, �, � ∈ ℕ

n and some C𝛼,𝛽,𝛾 > 0 . For symbols in the 
class BSm

1,1
 and N ∈ ℕ we shall use the notation

In the following proposition, we obtain an estimate for bilinear pseudodifferential operators 
with symbol in the class BSm

1,1
 , when both arguments of the operator belong to the intersec-

tion of a Triebel–Lizorkin space and a space of the type Xw(ℝ
n) . The idea of the proof is to 

decompose the symbol into the sum of two elementary symbols as in Theorem 4.1, follow-
ing the argument used in [13, Theorem 1.1] by K. Koezuka and N. Tomita (see also [5]). 
We provide the details of the argument to make the paper self-contained.

Proposition 4.2 Let 0 < p, q ≤ ∞ , s > 𝜏p,q (see (1.7)), m ∈ ℝ and � ∈ BSm
1,1

 . Consider two 
admissible weights u, v with u ≤ v . Then we can find a constant C > 0 and a positive inte-
ger N such that

for all f , g ∈ S(ℝn).

Proof Let us consider a symbol � in BSm
1,1

 and let {�j}
∞
j=0

 be as in Definition 2.7. We write 
� = �0 + �1 with

where

and

Next let us take �0,� ∈ S(ℝn) with �0 supported in the ball {|�| ≤ 3} and � supported 
in the ring {1∕3 ≤ |�| ≤ 3} , with �0 and � being identically one on {|�| ≤ 2} and 
{1∕2 ≤ |�| ≤ 2} respectively. Define �j(�) ∶= �(2−j�) for j ≥ 1 , in such a way that the 
functions �j are identically one in the support of �j for all j ≥ 0.

Fixed an integer j ≥ 0 and x ∈ ℝ
n , we consider the Fourier series expansion of the com-

pactly supported function

We can describe �0
j
 by

|||�
�
x
�
�

�
��
�
�(x, �, �)

||| ≤ C�,�,� (1 + |�| + |�|)m+|�|−|�|−|�|

‖�‖BSm
1,1;N

∶= max
���,���,���≤N

�
sup

x,�,�∈ℝn

(1 + ��� + ���)−(m+���−���−���)����
�
x
�
�

�
��
�
�(x, �, �)

���

�
.

��T�(f , g)��Fs,1∕v
p,q (ℝn)

≤ C‖�‖BSm
1,1;N

�
‖f‖Fs+m

p,q
(ℝn)‖g‖Xu(ℝ

n) + ‖f‖Xv(ℝ
n)‖g‖Fs+m

p,q
(ℝn)

�

�0(x, �, �) ∶=

∞∑

j=0

�0
j
(x, �, �) and �1(x, �, �) ∶=

∞∑

k=1

�1
k
(x, �, �),

�0
j
(x, �, �) =

j∑

k=0

�(x, �, �)�j(�)�k(�) = �(x, �, �)�j(�)�0(2
−j�), j ≥ 0,

�1
k
(x, �, �) =

k−1∑

j=0

�(x, �, �)�j(�)�k(�) = �(x, �, �)�0(2
−k+1�)�k(�), k ≥ 1.

(4.6)(�, �) ↦ �(x, 2j�, 2j�)�(�)�0(�).
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where cj,k,�(x) are the Fourier coefficients of the function in (4.6), which are given by

with �0(�) instead of �(�) when j = 0.
In addition, we observe that the Fourier coefficients of the function in (4.6) and their 

derivatives can be bounded uniformly in j, k and � . More precisely, given positive integers 
a, b, N, an integration by parts argument allows us to find N� ∈ ℕ such that

for all multi-indices |�| ≤ N.
For any positive integers a′, a′′, b′, b′′ we can write �0

j
 as

where

from where we rewrite the symbol �0 as

By using the estimates obtained on the Fourier coefficients in (4.7) it is possible to find, for 
a given a, b,N ∈ ℕ , a positive integer N′ such that

for all x ∈ ℝ
n and |�| ≤ N . In addition, we can also find CN > 0 such that

and

for all �, � ∈ ℝ
n and |�| ≤ N . Hence by choosing a′, a′′, b′, b′′ large enough we can reduce 

ourselves to the study of a symbol as in Theorem 4.1.
Hence, applying Theorem 4.1 with the choice w = u yields the existence of a positive 

integer N′ such that

�0
j
(x, �, �) =

∑

k,�∈ℤn

cj,k,�(x)e
ik(2−j�)�j(�)e

i�(2−j�)�0(2
−j�),

cj,k,�(x) =
1

(2�)n ∬ �(x, 2j�, 2j�)�(�)�0(�)e
−i(k�+��)d�d�,

(4.7)sup
j≥0,k,�∈ℤn

2−j(m+�𝛼�)(1 + �k�)a(1 + ���)b���𝜕
𝛼cj,k,�

���∞ ≲ ‖𝜎‖BSm
1,1;N�

∑

k,�∈ℤn

(1 + |k|)−a� (1 + |�|)−b��(k,�)
j

(x)�
(k)

j
(�)�

(�)

j
(�)

�
(k,�)

j
(x) = (1 + |k|)a�+a�� (1 + |�|)b�+b��cj,k,�(x),

�
(k)

j
(�) = (1 + |k|)−a��eik(2−j�)�j(�),

�
(�)

j
(�) = (1 + |�|)−b��ei�(2−j�)�0(2

−j�),

∑

k,�∈ℤn

(1 + |k|)−a� (1 + |�|)−b�
(

∞∑

j=0

�
(k,�)

j
(x)�

(k)

j
(�)�

(�)

j
(�)

)
.

���𝜕
𝛼
�
(k,�)

j
(x)

��� ≲ 2j(m+�𝛼�)(1 + �k�)a�+a��−a(1 + ���)b�+b��−b‖𝜎‖BSm
1,1;N�

|||�
��

(k)

j
(�)

||| ≤ CN2
−j|�|(1 + |k|)−a��+N

|||�
��

(�)

j
(�)

||| ≤ CN2
−j|�|(1 + |�|)−b��+N
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An analogous argument, interchanging the roles of � and � , can be repeated to reduce the 
study of the symbol �1 to a symbol as in (4.2). We apply Theorem  4.1 with the choice 
w = v to get the existence of a positive integer N′′ such that

Next, using the norm inequality ‖f‖
F
s,1∕v
p,q (ℝn)

≤ ‖f‖
F
s,1∕u
p,q (ℝn)

 , it follows that

with N = max{N�,N��} .   ◻

One of the main consequences that we obtain from Theorem 3.1, combined with the 
previous proposition, is the following boundedness property for bilinear pseudodifferential 
operators with symbol in the class BSm

1,1
 , on Triebel–Lizorkin spaces.

Theorem  4.3 Let 0 < p, q ≤ ∞ , s > 𝜏p,q (see (1.7)), m ∈ ℝ and � ∈ BSm
1,1

 . Set either 
0 < p̃i < ∞ and 0 < q̃i ≤ ∞ or p̃i = ∞ and 0 < q̃i ≤ 2 , with i ∈ {1, 2} . Consider the func-
tion w(t) = (1 + log+ 1∕t)

1∕r� with r = max{1, p̃1, p̃2} . There exist a constant C > 0 and a 
positive integer N such that

for all f , g ∈ S(ℝn).

Proof As a consequence of Theorem 3.1, we obtain the embeddings

where

Next, we shall notice that

for j = 1, 2 , so that

Hence the statement follows by aplying Proposition 4.2 with u = v = w jointly with the 
embeddings in (4.9) and (4.8).   ◻

��T𝜎0 (f , g)��Fs,1∕u
p,q (ℝn)

≲ ‖𝜎‖BSm
1,1;N�

‖f‖Fs+m
p,q

(ℝn)‖g‖Xu(ℝ
n).

��T𝜎1 (f , g)��Fs,1∕v
p,q (ℝn)

≲ ‖𝜎‖BSm
1,1;N��

‖f‖Xv(ℝ
n)‖g‖Fs+m

p,q
(ℝn).

��T𝜎(f , g)��Fs,1∕v
p,q (ℝn)

≲ ��T𝜎0 (f , g)��Fs,1∕u
p,q (ℝn)

+ ��T𝜎1 (f , g)��Fs,1∕v
p,q (ℝn)

≲ ‖𝜎‖BSm
1,1;N

�
‖f‖Fs+m

p,q
(ℝn)‖g‖Xu(ℝ

n) + ‖f‖Xv(ℝ
n)‖g‖Fs+m

p,q
(ℝn)

�
,

��T𝜎(f , g)��Fs,1∕w
p,q (ℝn)

≤ C‖𝜎‖BSm
1,1;N

�
‖f‖Fs+m

p,q
(ℝn)‖g‖Fn∕p̃1

p̃1,q̃1
(ℝn)

+ ‖f‖
F
n∕p̃2
p̃2,q̃2

(ℝn)
‖g‖Fs+m

p,q
(ℝn)

�

(4.8)F
n∕p̃1
p̃1,q̃1

(ℝn) ↪ Xw1
(ℝn) and F

n∕p̃2
p̃2,q̃2

(ℝn) ↪ Xw2
(ℝn),

w1(t) = (1 + log+ 1∕t)
1∕max{1,p̃1}

�

and w2(t) = (1 + log+ 1∕t)
1∕max{1,p̃2}

�

.

wj(t) ≤ 2(1 + log+ 1∕t)
1∕max{1,p̃1,p̃2}

�

= w(t),

(4.9)Xw1
(ℝn) ↪ Xw(ℝ

n) and Xw2
(ℝn) ↪ Xw(ℝ

n).
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Taking the symbol � to be identically one in the previous theorem, we obtain the follow-
ing logarithmically subcritical estimate for the product of functions in the Triebel–Lizorkin 
space with Sobolev-critical exponent.

Corollary 4.4 Let 0 < p < ∞ and 0 < q ≤ ∞ such that

If r = max{1, p} then the inequality

holds with w(t) = (1 + log+ 1∕t)
1∕r�.

Proof Take s = n∕p , m = 0 , � ≡ 1 , p = p̃1 = p̃2 and q = q̃1 = q̃2 in Theorem 4.3.   ◻

Remark 4.5 The result above recovers, for 0 < p ≤ 1 , the fact that Fn∕p
p,q (ℝ

n) is a multiplica-
tion algebra. Indeed, it is know that Fn∕p

p,q (ℝ
n) is an algebra, if and only if 0 < p ≤ 1 (see, for 

instance, [20, Theorem 4.6.4/1]).
For the case 1 < p < ∞ , by Proposition 2.17, we show the logarithmically-subcritical 

estimate

where w denotes the regularisation of w given by (2.9). Notice that, for all 𝜖 > 0 , 
⟨D⟩−�w(D) satisfies (2.20). This yields

which recovers the known multiplication result for Triebel–Lizorkin spaces (see e.g. [3, 
Proposition 2.3]).

The following proposition, which is an Euclidean version of [8, Theorem 1.3.1], states 
the sharpness of Theorem 4.3, in the sense that, in general, it is not possible to improve the 
exponent of the logarithmic weight.

Proposition 4.6 Let 𝛾 < 1∕2 and consider the weight w(t) ∶= (1 + log+ 1∕t)
−� . Then, there 

exists a function f ∈ F
n∕2

2,2
(ℝn) for which ‖‖f 2‖‖Fn∕2,w

2,2
(ℝn)

= ∞.

Proof Let 𝛿 > 1∕2 and consider the function

We shall notice that f� = F
−1g� with

min(1, p, q) >
p

p + 1
.

‖fg‖
F
n∕p,1∕w
p,q (ℝn)

≲ ‖f‖
F
n∕p
p,q (ℝ

n)
‖g‖

F
n∕p
p,q (ℝ

n)

(4.10)
����
1

w
(D)(fg)

����Fn∕p
p,q (ℝ

n)

≲ ‖f‖
F
n∕p
p,q (ℝ

n)
‖g‖

F
n∕p
p,q (ℝ

n)
,

‖fg‖
F
n∕p−𝜖
p,q (ℝn)

≲ ‖f‖
F
n∕p
p,q (ℝ

n)
‖g‖

F
n∕p
p,q (ℝ

n)
,

f𝛿(x) ∶= �|𝜉|≥e
1

|𝜉|n log𝛿 |𝜉|
eix𝜉d̄𝜉.

g𝛿(𝜉) =
𝜒{|𝜉|>e}(𝜉)

|𝜉|n log𝛿 |𝜉|
.
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By using Plancherel’s Theorem, we see that

where the last integral is finite since 𝛿 > 1∕2 . We deduce than that f ∈ F
n∕2

2,2
(ℝn).

We observe that, for any |�| ≥ 2e , it holds that

Let us denote by w the regularisation of the admissible weight w given by (2.9). Next, we 
use Proposition 2.15. the identification Fn∕2

2,2
(ℝn) = L2

n∕2
(ℝn) , Plancherel’s Theorem, 

Remark 2.14 and (4.11) to get that

Notice that the last integral diverges if, and only if

In particular, if 𝛾 < 1∕2 then it is possible to find 𝛿 > 1∕2 so that (4.12) is satisfied.   ◻

4.1  Some consequences and applications

4.1.1  Local Well‑Posedness of some PDE’s with logaritmically supercritical 
non‑linearities

Consider the following type of non-linear families of equations

��f𝛿��
2

L2
n∕2

(ℝn)
= ∫

ℝn

⟨𝜉⟩n��g𝛿(𝜉)��
2
d𝜉 ≈ ∫�𝜉�>e

1

�𝜉�n log2𝛿 �𝜉�
d𝜉 ≈ ∫

∞

1

1

r2𝛿
dr,

(4.11)

(�f𝛿 ∗ �f𝛿)(𝜉) = �|𝜂|>e

𝜒{x∈ℝn∶|x|>e}(𝜉 − 𝜂)

|𝜂|n log𝛿 |𝜂||𝜉 − 𝜂|n log𝛿 |𝜉 − 𝜂|
d𝜂

≥ �e<|𝜂|<|𝜉|−e

1

|𝜂|n log𝛿 |𝜂||𝜉 − 𝜂|n log𝛿 |𝜉 − 𝜂|
d𝜂

≥ 1

(2|𝜉| − e)n log𝛿(2|𝜉| − e) �e<|𝜂|<|𝜉|−e

1

|𝜂|n log𝛿 |𝜂|
d𝜂

≈
1

(2|𝜉| − e)n log𝛿(2|𝜉| − e)

log1−𝛿(|𝜉| − e) − 1

1 − 𝛿
.

���f
2
�

���
2

F
n∕2,w

2,2
(ℝn)

≈
���w(D)f

2
�

���
2

L2
n∕2

(ℝn)
= �

ℝn

⟨�⟩n
w(�)2

���(f̂� ∗ f̂�)(�)
���
2

d�

≥ ����≥2e
⟨�⟩n
w� (�)2

���(f̂� ∗ f̂�)(�)
���
2

d�

≈ ����≥2e
⟨�⟩n

(1 + log ���)2�
���(f̂� ∗ f̂�)(�)

���
2

d�

≥ ����≥2e
⟨�⟩n

(1 + log ���)2�

�
log1−�(��� − e) − 1

(1 − �)(2��� − e)n log�(2��� − e)

�2

d�

≈ ����≥2e
1

���n
log2−4�−2� ���d�.

(4.12)2 − 4� − 2� + 1 ≥ 0 ⇔ � ≤ 3

2
− 2�.
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where N(u, v) = m(D)(T�(u, v)) , with � ∈ BS0
1,1
(ℝn) and m is a linear Fourier multiplier 

satisfying that

For different values of the parameter s, the equation above recovers some important 
equation in mathematical physics. For instance, in the s = 2 , it becomes the well-known 
Schrödinger equation; for s = 4 , the equation becomes the biharmonic Schrödinger equa-
tion; for s = 1 , the equation is the half-wave equation; and for 0 < s < 2 and s ≠ 1 , the 
equation is the fractional Schrödinger equation.

Corollary 4.7 Let s > 0 , w(t) = (1 + log+ 1∕t)
1∕2 and denote by w its regularisation given 

by (2.9). For all u0 ∈ L2
n∕2

(ℝn) , there exists T = T(u0) > 0 and a unique 

u ∈ C

(
[0,T], L2

n∕2
(ℝn)

)
 solving the IVP

Proof Using a standard argument one can show that the operator

is a contraction on a ball B of radius R = R(u0) in C
(
[−T , T], L2

n∕2
(ℝn)

)
 , for T = T(u0) 

small enough. In doing so, one needs to establish the boundednes on L2
n∕2

(ℝn) of the last 

term of the operator Tu0 . Since ei(t−r)(
√
−Δ)s is an isometry on L2

n∕2
(ℝn) , by using the 

Minkowskii integral inequality, matters are reduced to establish the boundedness on 
L2
n∕2

(ℝn) of the bilinear operator N(u, u) with constants independet of the variable t. This 
operator can be explicitly written as

Notice that by using Remark 2.14 and assumption (4.13),

so by Plancherel’s identity, m(D)w(D) is a bounded operator on L2
n∕2

(ℝn) . This, the identifi-
cation of the Sobolev spaces L2

n∕2
(ℝn) as the Triebel–Lizorkin space Fn∕2

2,2
(ℝn) , the lifting 

property and Theorem 4.3 yield

with constants independing on t.

i𝜕tu +
�√

−Δ
�s

u = N(u, u) s > 0.

(4.13)|m(𝜉)| ≲ (1 + log+ |𝜉|)−1∕2, 𝜉 ∈ ℝ
n,

�
i�tu +

�√
−Δ

�s

u = N(u, u)

u(t, 0) = u0.

Tu0
(t, u) ∶= eit(

√
−Δ)s u0 − i∫

t

0

ei(t−r)(
√
−Δ)s [N(u, u)]dr

N(u, u) = m(D)T�(u, u) = m(D)w(D)
1

w(D)
T�(u, u).

sup
𝜉∈ℝn

|m(𝜉)w(𝜉)| ≈ sup
𝜉∈ℝn

|||m(𝜉)(1 + log+ |𝜉|)1∕2
||| < ∞,

‖N(u, u)‖L2
n∕2

(ℝn) ≲
����
1

w
(D)T𝜎(u, u)

����L2
n∕2

(ℝn)

≈ ��T𝜎(u, u)��Fn∕2,w

2,2
(ℝn)

≲ ‖u‖2
L2
n∕2

(ℝn)
,
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The statement follows then by applying the Banach fixed point Theorem.   ◻

4.1.2  Regularity of global solutions to logarithmic equations

In this section we study the regularity of solutions to logarithmic equations related to the 
operator

where I denotes the identity and (I − Δ)log stands for the logarithmic Schrödinger operator, 
whose symbol is given by the function log(1 + |�|2) . This last operator has been studied by 
several authors (see [9] and the references therein).

Corollary 4.8 Let 0 < p < ∞ and 0 < q ≤ ∞ such that

Given m ∈ ℝ , take a symbol � in the class BSm
1,1

 . Consider the equation

where v(�) ∶= 1 + log(1 + |�|2) . Then the function

solves (4.14) and satisfies

for some positive integer N, where �(t) = (1 + log+ 1∕t)
1∕p.

Proof Let us denote by w the regularisation in (2.9) of the admissible weight 
w(t) = 1 + log+ 1∕t . Using the fact that

one can show that

for all multi-index � ∈ ℕ
n and all � ∈ ℝ

n . Therefore by using Proposition 2.17 and Lemma 
2.16 we see that

Then Proposition 2.17 and Theorem 4.3 yield

I + (I − Δ)log,

min(1, p, q) >
p

p + 1
.

(4.14)v(D)u(x) = T�(f , g)(x), x ∈ ℝ
n,

u =
1

v
(D)

[
T�(f , g)

]

‖u‖
F
n∕p,𝜔
p,q (ℝn)

≲ ‖𝜎‖BSm
1,1;N

‖f‖
F
n∕p+m
p,q (ℝn)

‖g‖
F
n∕p+m
p,q (ℝn)

,

w(�) ≈ w(1∕|�|) ≈ v(�),

(4.15)
����
𝜕𝛼
�
w

v

�
(𝜉)

����
≲ ⟨𝜉⟩−�𝛼�

‖u‖
F
n∕p,𝜔
p,q (ℝn)

≈
����
w

v
(D)

�
1

w1∕p�
(D)T𝜎(f , g)

�����Fn∕p
p,q (ℝ

n)

≲
����

1

w1∕p�
(D)T𝜎(f , g)

����Fn∕p
p,q (ℝ

n)

.
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from where the result follows.   ◻

Remark 4.9 We notice that the property in (4.15) is also satisfied for the reciprocal quo-
tient, that is,

for any multi-index � ∈ ℕ
n and any � ∈ ℝ

n . Hence, in view of Propositions 2.15 and 2.17, 
we have the norm equivalences

and

for the range of indexes as in Corollary 4.8.
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