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Abstract
We construct examples of twice differentiable functions in ℝn with continuous Lapla-
cian and unbounded Hessian. The same construction is also applicable to higher order 
differentiability.

1 Introduction

The standard Schauder theory states that if Δu = f  in B1(0) ⊂ ℝ
n and f is Hölder continu-

ous (C0,� , 0 < 𝛼 < 1 ), then u is C2,� . However, it fails when � = 0 , that is, if Δu is just con-
tinuous, then u may not be C2 , as shown by a standard example in ℝ2 (see [3]):

This function has continuous Laplacian but is not C2 because it is not twice differentiable at 
the origin. (Another such example can be obtained by replacing x2 − y2 with xy.)

The main goal of this paper is to construct (a family of) functions that are twice differ-
entiable everywhere with continuous Laplacian and unbounded Hessian. These functions 
have only gained twice differentiablity at the origin over the above example; nevertheless, 
it appears that some effort is needed to achieve the gain.

Theorem 1.1 Given any C2 function � ∶ (0,∞) → ℝ satisfying

w(x, y) =

{
(x2 − y2) ln(− ln(x2 + y2)) 0 < x2 + y2 ≤ 1

4
,

0 (x, y) = (0, 0).

lim
s→∞

�(s) = ∞, lim
s→∞

��(s) = 0, lim
s→∞

���(s) = 0,
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there is a function u ∶ ℝ
n
→ ℝ depending on � with compact support, such that it is twice 

differentiable everywhere in ℝn , and it has continuous Laplacian and unbounded Hessian. 
In particular, u is not in C2(ℝn).

Obviously there are many choices of such functions � ; for example, �(s) = s� with 
0 < 𝛼 < 1 , �(s) = ln(s) , or �(s) = ln ln⋯ ln s if s > c.

As a consequence, the following is a simple application to the Dirichlet problem.

Corollary 1.2 There is a continuous function f such that the unique solution of the Dirichlet 
problem

is twice differentiable in B1(0) and has unbounded Hessian.

For any positive integer k, the Schauder theory also asserts that if Δu is Ck,� , then u is 
Ck+2,� . Once again, it fails when � = 0 , that is, if Δu is just Ck , then u may not be Ck+2 . 
As a result of our construction we have an extension of Theorem 1.1.

Theorem 1.3 Given any Ck+2 function � ∶ (0,∞) → ℝ satisfying

there is a function u ∶ ℝ
n
→ ℝ depending on � with compact support, such that u is (k + 2)

-times differentiable everywhere in ℝn , Δu is Ck , but Dk+2u is unbounded. In particular, u 
is not in Ck+2(ℝn).

Corollary 1.4 There is a Ck function f such that the unique solution of the Dirichlet problem

is (k + 2)-times differentiable in B1(0) , but Dk+2u is unbounded.

We would like to point out a dichotomy: although the Schauder theory fails when 
� = 0 for each k, it is indeed true if k = ∞ , since Δu ∈ C∞ does imply u ∈ C∞ by the 
elliptic theory.

According to Theorem 1.1, it would be rather natural to ask if unbounded Hessian is 
the only reason that hinders u from being C2 . Thus we propose the following problem.

Problem: If a function u is twice differentiable everywhere, Δu is continuous, and 
the Hessian of u is locally bounded, then is u always C2?

We remark that the method of construction for Theorem 1.1 will not yield examples 
of twice differentiable function with continuous Laplacian and bounded Hessian with-
out being C2 . On the other hand, if the function is not required to be twice differentiable 
everywhere, then there are simple examples of functions with continuous Laplacian and 

{
Δu(x) = f (x) in B1(0),

u(x) = 0 on �B1(0)

lim
s→∞

�(s) = ∞, lim
s→∞

��(s) = ⋯ = lim
s→∞

�(k+2)(s) = 0,

{
Δu(x) = f (x) in B1(0),

u(x) = 0 on �B1(0)
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bounded Hessian, such as the following function ( [4]) that is not twice differentiable at 
the origin.

We also observe that if Δu is continuous, then the modulus of continuity of Du is of 
o(L logL) . (If Δu is just bounded, then the modulus of continuity of Du is only of 
O(L log L) . [5]) Precisely, the following is true.

Proposition 1.5 Let u be a C1 solution of Δu = f  , where f is a continuous function on B1(0) 
in ℝn . Then for any x, y ∈ B 1

2

(0),

where d = |x − y| , 𝜔(r) = sup
|x−y|<r

|f (x) − f (y)| , and C is a constant depending only on n.

Here we notice that

which can be easily proved by considering two cases: lim
d→0∫

1

d

𝜔(r)

r
dr < ∞ or 

lim
d→0∫

1

d

�(r)

r
dr = ∞. It is this o(L logL) observation that motivated us to Theorems  1.1 

and 1.3.
Theorems 1.1 and 1.3 will be proved in Sects. 3 and 4, respectively, after a thorough 

study of a building block function in Sect. 2. One of the ideas in the construction has its 
origin in [2] (and also [1]), where the inhomogeneous Cauchy-Riemann equation in the 
complex plane was considered. Since the proof of Proposition 1.5 is almost identical to that 
for Corollary 1 in [5], we include a detailed proof in the Appendix for the convenience of 
the reader.

2  A building block function

In this section we will look at a function that will become a building block and provide 
some crucial insights for the construction of examples for Theorem 1.1.

Recall that � is a function satisfying

Thus for x = (x1,… , xn) ∈ ℝ
n , lim|x|→0

�(− ln |x|2) = ∞ . Nevertheless, the product of 
�(− ln |x|2) with positive powers of |x| is well controlled, as shown by the following two 
simple lemmas that will be repeatedly used later in the construction.

𝜙(x, y) =

{
(x2 − y2) sin(ln(− ln(x2 + y2))) 0 < x2 + y2 ≤ 1

4
,

0 (x, y) = (0, 0).

||Du(x) − Du(y)|| ≤ Cd

(
sup
B1

|u| + sup
B1

|f | + �
1

d

�(r)

r
dr

)
,

lim
d→0

d ∫ 1

d

�(r)

r
dr

d ln d
= 0,

(1)lim
s→∞

�(s) = ∞, lim
s→∞

��(s) = 0, lim
s→∞

���(s) = 0.
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Lemma 2.1 For any 𝛽 > 0 and � satisfying (1),

Proof Letting s = 1

|x| , lim|x|→0
|x|��(− ln |x|2) = lim

s→∞

�(ln s2)

s�
 is of ∞

∞
 type. By the L’Hopital’s 

Rule,

as long as 𝛽 > 0 .   ◻

Lemma 2.2 For any 0 < 𝛽 ≤ 1 and � satisfying (1), there is a constant C� depending only 
on � , such that

Proof By Lemma 2.1, we know

When |x| = 2

3
,

which is a constant independent of t.
It remains to show that the local maximum of �|x|� |||�

(
− ln |x|2)||| is also bounded by a 

constant depending only on � . Denote s = 1

|x| , then s > 1 , and

is equivalent to

We will find the local extremum of �(s) . Because

a critical point s0 must satisfy

At this point the local extremum of � is

lim|x|→0
|x|��(− ln |x|2) = 0.

lim
s→∞

�(ln s2)

s�
= lim

s→∞

2��(ln s2)

�s�
= 0,

sup

|x| ≤ 2

3

0 < 𝛽 ≤ 1

𝛽|x|𝛽 |||𝜑
(
− ln |x|2)||| ≤ C𝜑.

lim|x|→0
�|x|��(− ln |x|2) = 0.

�|x|� |||�
(
− ln |x|2)||| = �

(
2

3

)� ||||�
(
ln
(
9

4

))|||| ≤
||||�
(
ln
(
9

4

))||||,

�|x|��(− ln |x|2)

�(s) = �
�(ln s2)

s�
.

��(s) = �
2��(ln s2) − ��(ln s2)

s�+1
,

2��(ln s2
0
) = ��(ln s2

0
).
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and so

From (1) we know that |��(ln s2
0
)| is bounded by a constant depending only on � . Thus the 

local maximum of |�(s)| = �|x|� |||�
(
− ln |x|2)||| is also bounded by a constant depending 

only on � . This completes the proof.  ◻

It is worth noting that Lemma 2.2 would not be true without the coefficient of � in 
the function. For example, let {xk} be a sequence of points in ℝn with |xk| = e−2

k , and let 
�k =

1

2k
 , then |xk| → 0 and �k → 0 as k → ∞ , but

This difference will be crucial to our construction of functions with continuous Laplacian 
and unbounded Hessian.

For any |x| ≤ 1

2
 , define a function v(x) by

This function will be a building block for our construction, it generalizes the function w at 
the beginning of Sect. 1 from ℝ2 to ℝn . It satisfies almost all the conditions in Theorem 1.1, 
except one that it is not twice differentiable at the origin.

Lemma 2.3 The function v defined by (2) has continuous Laplacian and unbounded Hes-
sian, but it is not twice differentiable at 0.

Proof By definition, v(x) is C2 for all x ≠ 0 , and its derivatives are the following. (In the 
case n ≥ 3 , we use i and j to denote indices that are greater than or equal to 3.)

�(s0) = �
�(ln s2

0
)

s
�

0

= �

2

�
��(ln s2

0
)

s
�

0

=
2��(ln s2

0
)

s
�

0

,

|𝜆(s0)| =
||||||
2𝜑�(ln s2

0
)

s
𝛽

0

||||||
< 2

|||𝜑
�(ln s2

0
)
|||.

|xk|�k�
(
− ln |xk|2

)
= e−1�

(
2k+1

)
→ ∞.

(2)v(x) =

{
x1x2𝜑

(
− ln |x|2) 0 < |x| ≤ 1

2
,

0 x = 0.
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We observe that each term in these derivatives is of the form p(x)�
(
− ln |x|2) , 

p(x)��
(
− ln |x|2) , or p(x)���

(
− ln |x|2) , where p(x) is homogeneous in x. For first deriva-

tives, the degree of homogeneity is 1, and for second derivatives, the degree of homogene-
ity is 0. Because of this, by Lemma 2.1 and the choice of �,

Thus all the first and second derivatives of v approach 0 as |x| → 0 , except for

�v

�x1
(x) = x2�

(
− ln |x|2) − 2x2

1
x2

|x|2 ��
(
− ln |x|2),

�v

�x2
(x) = x1�

(
− ln |x|2) − 2x1x

2
2

|x|2 ��
(
− ln |x|2),

�v

�xi
(x) = −

2x1x2xi

|x|2 ��
(
− ln |x|2),

�2v

�x2
1

(x) = −
6x1x2

|x|2 ��
(
− ln |x|2) + 4x3

1
x2

|x|4 ��
(
− ln |x|2) + 4x3

1
x2

|x|4 ���
(
− ln |x|2),

�2v

�x2
2

(x) = −
6x1x2

|x|2 ��
(
− ln |x|2) + 4x1x

3
2

|x|4 ��
(
− ln |x|2) + 4x1x

3
2

|x|4 ���
(
− ln |x|2),

�2v

�x2
i

(x) = −
2x1x2

|x|2 ��
(
− ln |x|2) + 4x1x2x

2
i

|x|4 ��
(
− ln |x|2) + 4x1x2x

2
i

|x|4 ���
(
− ln |x|2),

�2v

�x1�x2
(x) = �

(
− ln |x|2) − 2(x2

1
+ x2

2
)

|x|2 ��
(
− ln |x|2)

+
4x2

1
x2
2

|x|4 ��
(
− ln |x|2) + 4x2

1
x2
2

|x|4 ���
(
− ln |x|2),

�2v

�x1�xi
(x) =

−2x2xi

|x|2 ��
(
− ln |x|2) + 4x2

1
x2xi

|x|4 ��
(
− ln |x|2) + 4x2

1
x2xi

|x|4 ���
(
− ln |x|2),

�2v

�x2�xi
(x) =

−2x1xi

|x|2 ��
(
− ln |x|2) + 4x1x

2
2
xi

|x|4 ��
(
− ln |x|2) + 4x1x

2
2
xi

|x|4 ���
(
− ln |x|2),

�2v

�xj�xi
(x) = −

2x1x2

|x|2 �ij�
�
(
− ln |x|2) + 4x1x2xixj

|x|4 ��
(
− ln |x|2) + 4x1x2xixj

|x|4 ���
(
− ln |x|2).

lim|x|→0

�v

�x1
(x) = lim|x|→0

�v

�x2
(x) = lim|x|→0

�v

�xi
(x) = 0,

lim|x|→0

�2v

�x2
1

(x) = lim|x|→0

�2v

�x2
2

(x) = lim|x|→0

�2v

�x2
i

(x)

= lim|x|→0

�2v

�x1xi
(x) = lim|x|→0

�2v

�x2xi
(x) = lim|x|→0

�2v

�xixj
(x) = 0.

�2v

�x1�x2
(x) =�

(
− ln |x|2) − 2(x2

1
+ x2

2
)

|x|2 ��
(
− ln |x|2)

+
4x2

1
x2
2

|x|4 ��
(
− ln |x|2) + 4x2

1
x2
2

|x|4 ���
(
− ln |x|2).
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As |x| → 0 , its first term goes to ∞ and all the other terms go to 0, thus �2v

�x1�x2
(x) is 

unbounded near the origin, which causes the Hessian of v to be unbounded.
On the other hand, because each diagonal entry of the Hessian has a removable discon-

tinuity at the origin,

Lastly, we check the differentiablity of v at 0. It is differentiable because by Lemma 2.1,

Therefore, all first derivatives of v equal 0 at the origin, and v is C1 throughout ℝn . Comput-
ing the partial derivative �

2v

�x2
1

(0) by definition, we have

Similarly, we also have

Therefore, Δv(0) = 0 . Consequently, Δv is continuous at 0. However, v is not twice differ-
entiable at 0. To see that, we check the differentiability of �v

�x1
 at 0:

Let x1 = x3 = ⋯ = xn = 0 , then |x2| = |x| and

hence �v
�x1

 is not differentiable at 0. Similarly, �v
�x2

 is not differentiable at 0 either.
Interestingly,

thus �v
�xi

 for all i ≥ 3 are differentiable at 0.

Δv(x) =
�2v

�x2
1

(x) +
�2v

�x2
2

(x) +

n∑
i=3

�2v

�x2
i

(x)

= −
(2n + 8)x1x2

|x|2 ��
(
− ln |x|2) + 4x1x2

|x|2
(
��
(
− ln |x|2) + ���

(
− ln |x|2)

)

→0 as |x| → 0.

|v(x) − v(0)|
|x| =

|||x1x2�
(
− ln |x|2)|||
|x| ≤ |x||||�

(
− ln |x|2)||| → 0 as |x| → 0.

�2v

�x2
1

(0) = lim
h→0

�v

�x1
((h, 0,… , 0)) −

�v

�x1
((0,… , 0))

h
= lim

h→0

0 − 0

h
= 0.

�2v

�x2
2

(0) = ⋯ =
�2v

�x2
n

(0) = 0.

|||
�v

�x1
(x) −

�v

�x1
(0)

|||
|x| =

||||x2�
(
− ln |x|2) − 2x2

1
x2

|x|2 �
�
(
− ln |x|2)||||

|x| .

|||
�v

�x1
(x) −

�v

�x1
(0)

|||
|x| =

|||x2�
(
− ln |x2|2

)|||
|x2| =

|||�
(
− ln |x2|2

)||| → ∞ as x2 → 0,

|||
�v

�xi
(x) −

�v

�xi
(0)

|||
|x| =

|||−
2x1x2xi

|x|2 ��
(
− ln |x|2)|||

|x| ≤ 2
|||�

�
(
− ln |x|2)||| → 0 as x → 0,
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Therefore, v fails to be twice differentiable at 0 because �v
�x1

 and �v
�x2

 are not differentiable 
at 0. This completes the proof of Lemma 2.3.  ◻

3  Construction for Theorem 1.1

In this section, we will first “smooth out" v into a function that is C2 at the origin, then 
we will combine a sequence of such functions through scaling and translation to create 
a desired function that is twice differentiable everywhere with continuous Laplacian and 
unbounded Hessian, thus proving Theorem 1.1.

Definition 3.1 Let � ∶ [0,∞) → [0, 1] be a fixed, non-increasing C∞ function such that

For any 0 < t ≤ 1

2
 , define a function ut ∶ ℝ

n
→ ℝ (n ≥ 2) by

It follows immediately from Lemma 2.1 and (3) that ut is continuous everywhere. Actu-
ally, it can be shown that ut ∈ C2(ℝn) , but we will not verify it here because it is not to be 
used in our construction.

What will be essential to our construction is the fact that all the first derivatives of ut and 
second derivatives of the form �

2ut

�x2
j

 are uniformly bounded by constants independent of t. 

However, that is not the case for �2ut

�x1�x2
 , as will be shown later in this section.

Lemma 3.2 There is a constant C�,� depending only on � and � , such that

Proof By the definition of ut,

and

(3)�(s) ≡ 1 for 0 ≤ s ≤ 1

2
and �(s) ≡ 0 for s ≥ 2

3
.

(4)ut(x) =

⎧⎪⎨⎪⎩

0 x = 0,

𝜂(�x�)x1x2�x�2t𝜑(− ln �x�2) 0 < �x� < 1,

0 �x� ≥ 1.

(5)sup
x∈ℝn

||ut(x)|| ≤ C�,�.

(6)sup
x∈ℝn

|||||
�ut

�xj
(x)

|||||
≤ C�,� for j = 1,… , n.

(7)sup
x∈ℝn

||||||
�2ut

�x2
j

(x)

||||||
≤ C�,� for j = 1,… , n.

sup
x∈ℝn

||ut(x)|| = sup
|x|≤ 2

3

||ut(x)||, sup
x∈ℝn

|||||
�ut

�xj
(x)

|||||
= sup

|x|≤ 2

3

|||||
�ut

�xj
(x)

|||||
,
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so we assume |x| ≤ 2

3
 . Furthermore, since 0 < t ≤ 1

2
 , when 1

2
≤ |x| ≤ 2

3
 , we know ||ut(x)|| , ||||

�ut

�xj
(x)

|||| , and 
||||
�2ut

�x2
j

(x)
|||| are all bounded by a constant depending on � and � and independent of 

t. Therefore it remains to show that when |x| < 1

2
 , ||ut(x)|| , 

||||
�ut

�xj
(x)

|||| , and 
||||
�2ut

�x2
j

(x)
|||| are all 

bounded by a constant independent of t.
First, when |x| < 1

2
 , we have |ut(x)| ≤ |x|2�(− ln |x|2) . Then since 

lim|x|→0
|x|2�(− ln |x|2) = 0 by Lemma  2.1, we know sup

|x|< 1

2

||ut(x)|| is bounded by a constant 

independent of t. Thus (5) is true.
Since �(|x|) ≡ 1 for |x| ≤ 1

2
 , the derivatives of ut when 0 < |x| < 1

2
 are the following.

In the case n ≥ 3 , for any i ≥ 3,

The first and second terms in (8) are bounded by

Because |x| < 1

2
 , we have |x|2t+1 ≤ |x|, so

By Lemma  2.1, |x|�(− ln |x|2) has a removable discontinuity at 0, therefore on the set 
|x| < 1

2
 it is bounded by a constant depending only on � . Thus the first and second terms in 

(8) are bounded by a constant depending only on � . The last term in (8),

is bounded by

It is further bounded by

sup
x∈ℝn

||||||
�2ut

�x2
j

(x)

||||||
= sup

|x|≤ 2

3

||||||
�2ut

�x2
j

(x)

||||||
,

(8)

�ut

�x1
(x) = x2|x|2t�(− ln |x|2) + 2tx2

1
x2|x|2t−2�(− ln |x|2)

− 2x2
1
x2|x|2t−2��(− ln |x|2).

(9)

�u
t

�x2
(x) = x1|x|2t�(− ln |x|2) + 2tx1x

2

2
|x|2t−2�(− ln |x|2)

− 2x1x
2

2
|x|2t−2��(− ln |x|2).

(10)
�ut

�xi
(x) = 2tx1x2xi|x|2t−2�(− ln |x|2) − 2x1x2xi|x|2t−2��(− ln |x|2).

|x|2t+1|||�(− ln |x|2)|||.

|x|2t+1|||�(− ln |x|2)||| ≤ |x||||�(− ln |x|2)|||.

2x2
1
x2|x|2t−2��(− ln |x|2),

2|x|2t+1|||�
�(− ln |x|2)|||.
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since |x| < 1

2
 . Because of (1), we know |x|��(− ln |x|2) has a removable discontinuity at 0, 

therefore on the set |x| < 1

2
 it is bounded by a constant depending only on � . Thus the last 

term in (8) is also bounded by a constant depending only on � . Therefore, �ut
�x1

 is bounded by 
a constant depending on � only. In the same way, we can prove that �ut

�x2
 and �ut

�xi
(i ≥ 3) are 

also bounded by a constant depending on � only. This proves (6).
Lastly, we prove (7). When 0 < |x| < 1

2
,

In the case n ≥ 3 , for any i ≥ 3,

To prove (7) we need to estimate each term of (11), (12), and (13).
We start with (11). Note that since |x| < 1

2
 , the 3rd through 6th terms are bounded by

which is further bounded by

By (1), ��(− ln |x|2) has a removable discontinuity at 0, therefore on the set |x| < 1

2
 it is 

bounded by a constant depending only on � . Similarly the 7th term is also bounded by a 
constant depending only on �.

The first term,

and the second term,

2|x||||�
�(− ln |x|2)|||

(11)

�2ut

�x2
1

(x) = 6tx1x2|x|2t−2�(− ln |x|2) + 2t(2t − 2)x3
1
x2|x|2t−4�(− ln |x|2)

− 2x1x2|x|2t−2��(− ln |x|2) − 4tx3
1
x2|x|2t−4��(− ln |x|2)

− 6x1x2|x|2t−2��(− ln |x|2) − 2(2t − 2)x3
1
x2|x|2t−4��(− ln |x|2)

+ 4x3
1
x2|x|2t−4���(− ln |x|2).

(12)

�2ut

�x2
2

(x) = 6tx1x2|x|2t−2�(− ln |x|2) + 2t(2t − 2)x1x
3
2
|x|2t−4�(− ln |x|2)

− 2x1x2|x|2t−2��(− ln |x|2) − 4tx1x
3
2
|x|2t−4��(− ln |x|2)

− 6x1x2|x|2t−2��(− ln |x|2) − 2(2t − 2)x1x
3
2
|x|2t−4��(− ln |x|2)

+ 4x1x
3
2
|x|2t−4���(− ln |x|2).

(13)

�2ut

�x2
i

(x) = 2tx1x2|x|2t−2�(− ln |x|2) + 2t(2t − 2)x1x2x
2
i
|x|2t−4�(− ln |x|2)

+ (4 − 8t)x1x2x
2
i
|x|2t−4��(− ln |x|2) − 2x1x2x

2
i
|x|2t−3��(− ln |x|2)

− 2x1x2|x|2t−2��(− ln |x|2) + 4x1x2x
2
i
|x|2t−4���(− ln |x|2).

C|x|2t|||�
�(− ln |x|2)|||,

C
|||�

�(− ln |x|2)|||.

6tx1x2|x|2t−2�(− ln |x|2),
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are bounded by

By Lemma 2.2,

where C� depends only on � . Hence the first and second terms are bounded by a con-
stant depending on � . Therefore, we have proved that all the terms in (11) are uniformly 
bounded by a constant independent of t.

All the terms in (12) and (13) can be estimated in the same way, so this completes the 
proof of (7).  ◻

Now we are ready to construct the main function, u, by “piecing together" a sequence of 
functions utk as follows.

Choose two decreasing sequences of numbers Rk → 0 and rk → 0 , such that

and for geometric reasons that will be explained later we also require

for example, we may choose Rk = 10−k and rk = 10−(k+1).
We use �0 to denote the point 

�
1√
2
,

1√
2
,… ,

1√
2

�
 in ℝn and choose a sequence {tk} such 

that 0 < tk <
1

4
 and lim

k→∞
tk = 0 . Define the function u(x) by

where the only conditions on �k for now are 𝜖k > 0 and lim
k→∞

�k = 0 , we do not need to 
assign specific values to �k until near the end of this section.

Condition (14) ensures that the balls centered at the points Rk�0 with radii rk are mutu-
ally disjoint.

2t(2t − 2)x3
1
x2|x|2t−4�(− ln |x|2),

Ct|x|2t|||�(− ln |x|2)|||.

2t|x|2t|||�(− ln |x|2)||| ≤ C�,

Rk > rk,

(14)Rk − rk > Rk+1 + rk+1;

(15)u(x) =

∞∑
k=1

�kr
2
k
utk

(
x − Rk�0

rk

)
,
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For each k ∈ ℕ , let Bk be the ball centered at the point Rk�0 with radius 2
3
rk , then these Bk 

are also mutually disjoint. By (3) and (4), the support of each function utk
(

x−Rk�0

rk

)
 is the ball 

{x ∈ ℝ
n ∶ |x − Rk�0| ≤ 2

3
rk} , which is Bk . Therefore, although the definition of u(x) appears 

to be an infinite sum, it actually is only a single term. For any given x ∈ ℝ
n , if x is not in any 

of the Bk , then

otherwise

As k → ∞ , the radius of Bk goes down to 0 and its center moves toward the origin, but 
none of the balls Bk contains the origin. In fact, for any j = 1,… , n , the xj-th coordinate 
hyperplane does not intersect any of the ball Bk . To see this, let

be an arbitrary point on the xj-th coordinate hyperplane. The distance from this point to the 
center of the ball, Rk�0 =

�
Rk√
2
,… ,

Rk√
2

�
 , is

u(x) = 0,

u(x) = �kr
2
k
utk

(
x − Rk�0

rk

)
for some k.

(x1,… , xj−1, 0, xj+1,… , xn)
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since 1√
2
≈ 0.71 and 2

3
≈ 0.67 . Thus u = 0 on all of the n coordinate hyperplanes, and con-

sequently u(0) = 0. By (5) utk is uniformly bounded by a constant independent of tk , hence 
by definition lim|x|→0

u(x) = 0 . Therefore u is continuous at the origin, and thus continuous 
everywhere in ℝn.

Lemma 3.3 The function u(x) as defined in (15) is twice differentiable everywhere in ℝn , 
and all its first and second order partial derivatives at the origin are equal to 0.

Proof By definition u(x) is C2 for all x ≠ 0 , so we only need to show it is twice differenti-
able at the origin. Because u = 0 on all the coordinate hyperplanes, for any i, j = 1,… , n,

Thus

Recall that the balls Bk are mutually disjoint, so for any given x ∈ ℝ
n , either

or

By (5) we have |utk | ≤ C�,� which only depends on � and � . Thus

Hence we know that

which means u is twice differentiable at the origin. This completes the proof.  ◻

Lastly, we will show that u has continuous Laplacian but unbounded Hessian.

�����
�

Rk√
2
− x1

�2

+⋯ +

�
Rk√
2
− xj−1

�2

+

�
Rk√
2

�2

+

�
Rk√
2
− xj+1

�2

+⋯ +

�
Rk√
2
− xn

�2

≥ Rk√
2
>

rk√
2
>

2

3
rk,

�u

�xj
(0) = 0 and

�2u

�xi�xj
(0) = 0.

lim�x�→0

u(x) − u(0) −
∑n

i=1

�u

�xi
(0)xi −

1

2

∑n

i,j=1

�2u

�xi�xj
(0)xixj

�x�2 = lim�x�→0

u(x)

�x�2

u(x) = 0,

u(x) = �kr
2
k
utk

(
x − Rk�0

rk

)
for some k.

|u(x)|
|x|2 ≤ 𝜖kr

2
k
C𝜂,𝜑(

Rk −
2

3
rk

)2
=

𝜖kC𝜂,𝜑(
Rk

rk
−

2

3

)2
<

𝜖kC𝜂,𝜑(
1 −

2

3

)2
→ 0 as k → ∞.

lim�x�→0

u(x) − u(0) −
∑n

i=1

�u

�xi
(0)xi −

1

2

∑n

i,j=1

�2u

�xi�xj
(0)xixj

�x�2 = 0,
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Lemma 3.4 The function u(x) as defined in (15) has continuous Laplacian everywhere in 
ℝ

n , and the partial derivative �2u

�x1�x2
 is unbounded near the origin.

Proof Because u = 0 on all the coordinate hyperplanes,

For any given x ∈ ℝ
n , either

or

By (7) in Lemma 3.2,

Thus lim|x|→0

�2u

�x2
j

(x) = 0 , which implies that �
2u

�x2
j

(x) is continuous at 0. Since it is also continu-

ous for all x ≠ 0 , it is continuous everywhere. This proves that Δu =
∑n

j=1

�2u

�x2
j

 is continu-

ous everywhere in ℝn.
Next we will show �2u

�x1�x2
 is unbounded near the origin. For general t,

For each k, choose x(k) ∈ ℝ
n such that

Then x(k) is in the ball Bk and

�2u

�x2
j

(0) = 0.

�2u

�x2
j

(x) = 0,

�2u

�x2
j

(x) = �k

�2utk

�x2
j

(
x − Rk�0

rk

)
for some k.

�k

||||||
�2utk

�x2
j

(
x − Rk�0

rk

)||||||
≤ �kC�,� → 0 as k → ∞.

(16)

�2ut

�x1�x2
(x) = ���(|x|)x2

1
x2
2
|x|2t−2�(− ln |x|2) + ��(|x|)(x2

1
+ x2

2

)|x|2t−1�(− ln |x|2)
+ (4t − 1)��(|x|)x2

1
x2
2
|x|2t−3�(− ln |x|2) − 4��(|x|)x2

1
x2
2
|x|2t−3��(− ln |x|2)

+ �(|x|)|x|2t�(− ln |x|2) + 2t�(|x|)(x2
1
+ x2

2

)|x|2t−2�(− ln |x|2)
− 2�(|x|)(x2

1
+ x2

2

)|x|2t−2��(− ln |x|2) + 2t(2t − 2)�(|x|)x2
1
x2
2
|x|2t−4�(− ln |x|2)

+ (4 − 8t)�(|x|)x2
1
x2
2
|x|2t−4��(− ln |x|2) + 4�(|x|)x2

1
x2
2
|x|2t−4���(− ln |x|2).

x(k) − Rk�0

rk
=

(
e
−

1

4tk , 0,… 0

)
.

(17)�2u

�x1�x2

(
x(k)

)
= �k

�2utk

�x1�x2

(
x(k) − Rk�0

rk

)
= �k

�2utk

�x1�x2

((
e
−

1

4tk , 0,… 0

))
.
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Because tk <
1

4
 , we know e−

1

4tk < e−1 <
1

2
 , so in a neighborhood of e−

1

4tk , �(|x|) ≡ 1 and 

��(|x|) = ���(|x|) = 0. Also note that x2 = 0 at the point 
(
e
−

1

4tk , 0,… 0

)
 , then by (16) we 

have

where we purposefully did not simplify the second term. Thus (17) becomes

The second term in (18) goes to 0 because

by Lemma 2.2. The third term in (18) goes to 0 because 1
2tk

→ ∞ and lim
s→∞

��(s) = 0.
Now choose

The first term in (18) becomes

Therefore,

This shows that �2u

�x1�x2
 is not bounded near the origin, and the lemma is proved.  ◻

�2utk

�x1�x2

((
e
−

1

4tk , 0,… 0

))

=

(
e
−

1

4tk

)2tk

�

(
− ln

(
e
−

1

4tk

)2
)

+ 2tk

(
e
−

1

4tk

)2tk

�

(
− ln

(
e
−

1

4tk

)2
)

− 2

(
e
−

1

4tk

)2tk

��

(
− ln

(
e
−

1

4tk

)2
)

= e
−

1

2�

(
1

2tk

)
+ 2tk

(
e
−

1

4tk

)2tk

�

(
− ln

(
e
−

1

4tk

)2
)

− 2e−
1

2��

(
1

2tk

)
,

(18)

�2u

�x1�x2

(
x(k)

)
= �ke

−
1

2�

(
1

2tk

)
+ �k ⋅ 2tk

(
e
−

1

4tk

)2tk

�

(
− ln

(
e
−

1

4tk

)2
)

− 2�ke
−

1

2��

(
1

2tk

)
.

�k

||||||
2tk

(
e
−

1

4tk

)2tk

�

(
− ln

(
e
−

1

4tk

)2
)||||||

≤ �kC�

�k =
1√

�

(
1

2tk

) .

�ke
−

1

2�

(
1

2tk

)
= e

−
1

2

√
�

(
1

2tk

)
→ ∞ as k → ∞.

lim
k→∞

�2u

�x1�x2

(
x(k)

)
= ∞.
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4  Construction for Theorem 1.3

The idea for constructing higher order examples for Theorem 1.3 is the same as that for 
Theorem 1.1, and we only need to replace x1x2 by the real or imaginary part of (x1 + ix2)

k+2 , 
where k ∈ ℕ . For example, if k = 1 , then

so we may use either x3
1
− 3x1x

2
2
 or 3x2

1
x2 − x3

2
 in the construction. For general k,

Evidently, the expressions for its real and imaginary parts are inconvenient to compute. 
Thus to simplify the calculations we use complex variable for the first two components of 
x: for any x = (x1, x2, x3,… , xn) ∈ ℝ

n , denote

Then

and consequently

Our strategy is to create a complex-valued function such that it is (k + 2)-times differenti-
able in ℝn , its Laplacian is Ck , but Dk+2u is unbounded. The real and imaginary parts of 
u are two real-valued functions, and at least one of them would be a desired function that 
satisfies all the conditions in Theorem 1.3. The proof is similar to that for Theorem 1.1, so 
we will only present the key calculations and noticeable differences without repeating the 
entire proof.

Recall that in the higher order case �(s) needs to be (k + 2)-times differentiable and 
satisfy

The building block function in this case needs to be modified into

The Laplacian of v is

(x1 + ix2)
3 =

(
x3
1
− 3x1x

2
2

)
+ i

(
3x2

1
x2 − x3

2

)
,

(x1 + ix2)
k+2 =

k+2∑
l=0

(
k + 2

l

)
xk+2−l
1

(
ix2

)l
.

z = x1 + ix2 and z̄ = x1 − ix2.

x2
1
+ x2

2
= zz̄, |x|2 = zz̄ +

n∑
j=3

x2
j
, and

𝜕2

𝜕x2
1

+
𝜕2

𝜕x2
2

= 4
𝜕2

𝜕z̄𝜕z
,

𝜕|x|
𝜕z

=
z̄

2|x| ,
𝜕|x|
𝜕z̄

=
z

2|x| , and
𝜕|x|
𝜕xj

=
xj

|x| (when j ≥ 3).

(19)lim
s→∞

�(s) = ∞, lim
s→∞

��(s) = ⋯ = lim
s→∞

�(k+2)(s) = 0.

v(x) = zk+2�(− ln |x|2).

Δv = 4
𝜕2v

𝜕z̄𝜕z
+

n∑
j=3

𝜕2v

𝜕x2
j

= − (2n + 4k)zk+2|x|−2𝜑�(− ln |x|2) + 4zk+2|x|−2𝜑��(− ln |x|2).
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It can be verified that Δv is Ck , the partial derivative �
k+2v

�zk+2
 is unbounded, and v is not 

(k + 2)-times differentiable. Because this fact is not to be used in our constructions, we will 
not verify it here.

As in Sect. 3, the next step is to smooth out the function v. Define ut ∶ ℝ
n
→ ℝ (n ≥ 2) 

by

where � is the same as in (3) and � satisfies (19). This ut is a complex-valued Ck+2 function. 
The following is a key fact that will be used later.

Lemma 4.1 For ut defined by (20), the k-th partial derivatives of Δut are all bounded by a 
constant independent of t.

Proof As in the proof of Lemma 3.2, we only need to prove that when |x| < 1

2
 , all k-th par-

tial derivatives of Δut are bounded by a constant independent of t. Since �(|x|) ≡ 1 when 
|x| ≤ 1

2
 , the Laplacian of ut is

where

and for j = 3,… , n,

We will show that all the k-th partial derivatives of each term in (21) and (22) are bounded 
by a constant independent of t. In the subsequent discussions in this section, we will use C 
to denote a constant that depends on � , n, k and is independent of t.

We start with (21). The first term of (21) is bounded by

Its first derivatives may be taken with respect to z, z̄ , or xj (j ≥ 3).

(20)ut(x) =

⎧
⎪⎨⎪⎩

0 x = 0,

𝜂(�x�)zk+2�x�2t𝜑(− ln �x�2) 0 < �x� < 1,

0 �x� ≥ 1,

Δut = 4
𝜕2ut

𝜕z̄𝜕z
+

n∑
j=3

𝜕2ut

𝜕x2
j

,

(21)

𝜕2ut

𝜕z̄𝜕z
(x) = (k + 3)tzk+2|x|2t−2𝜑(− ln |x|2) + t(t − 1)zk+3z̄|x|2t−4𝜑(− ln |x|2)

− (k + 2)zk+2|x|2t−2𝜑�(− ln |x|2) − (2t − 1)zk+3z̄|x|2t−4𝜑�(− ln(|x|2)
+ zk+3z̄|x|2t−4𝜑��(− ln |x|2),

(22)

�2ut

�x2
j

(x) = 2tzk+2|x|2t−2�(− ln |x|2) + 2t(2t − 2)zk+2x2
j
|x|2t−4�(− ln |x|2)

+ (4 − 8t)zk+2x2
j
|x|2t−4��(− ln |x|2) − 2zk+2|x|2t−2��(− ln |x|2)

+ 4zk+2x2
j
|x|2t−4���(− ln |x|2).

(23)(k + 3)tzk+2|x|2t−2|||�(− ln |x|2)||| ≤ Ct|x|k+2t|||�(− ln |x|2)|||.
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• If we take its derivative with respect to z, then 

 where the first term and the second term are bounded by 

 and the third term is bounded by 

 Therefore, this derivative is bounded by 

• If we take its derivative with respect to z̄ , then 

 By similar argument we know that this derivative is also bounded by 

• If we take its derivative with respect to xj , then 

 Again, this derivative is bounded by 

In conclusion, regardless of which variable we differentiate with, the first partial deriva-
tive of (k + 3)tzk+2|x|2t−2�(− ln |x|2) is bounded by

𝜕

𝜕z

(
(k + 3)tzk+2|x|2t−2𝜑(− ln |x|2))

= (k + 3)(k + 2)tzk+1|x|2t−2𝜑(− ln |x|2) + (k + 3)tzk+2(2t − 2)|x|2t−3(
z̄

2|x|
)
𝜑(− ln |x|2) + (k + 3)tzk+2|x|2t−2

(
𝜑�(− ln |x|2) −z̄|x|2

)
,

Ct|x|k−1+2t|||�(− ln |x|2)|||,

Ct|x|k−1+2t|||�
�(− ln |x|2)|||.

Ct|x|k−1+2t|||�(− ln |x|2)||| + Ct|x|k−1+2t|||�
�(− ln |x|2)|||.

𝜕

𝜕z̄

(
(k + 3)tzk+2|x|2t−2𝜑(− ln |x|2))

= (k + 3)tzk+2
(
(2t − 2)|x|2t−3 z

2|x|
)
𝜑(− ln |x|2)

+ (k + 3)tzk+2|x|2t−2
(
𝜑�(− ln |x|2) −z|x|2

)
.

Ct|x|k−1+2t|||�(− ln |x|2)||| + Ct|x|k−1+2t|||�
�(− ln |x|2)|||.

�

�xj

(
(k + 3)tzk+2|x|2t−2�(− ln |x|2))

= (k + 3)tzk+2
(
(2t − 2)|x|2t−3 xj

|x|
)
�(− ln |x|2)

+ (k + 3)tzk+2|x|2t−2
(
��(− ln |x|2)−2xj|x|2

)
.

Ct|x|k−1+2t|||�(− ln |x|2)||| + Ct|x|k−1+2t|||�
�(− ln |x|2)|||.
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Comparing the first term of this bound, Ct|x|k−1+2t||�(− ln |x|2)|| , to the right hand side of 
(23), we see that the power of |x| decreased from k + 2t to k − 1 + 2t . By the same type of 
calculations, the k-th partial derivatives of (k + 3)tzk+2|x|2t−2�(− ln |x|2) will be bounded 
by

Because

∑k

l=1
Ct�x�k−l+2t���(l)(− ln �x�2)�� is bounded by a constant independent of t. By Lemma 2.2, 

Ct|x|2t|||�(− ln |x|2)||| is also bounded by a constant independent of t. Therefore, the k-th 
derivatives of the first term of (21) are bounded by a constant independent of t.

All the other terms in (21) and (22) can be estimated in the same way. This completes 
the proof of the lemma.  ◻

Then we define u by

where Rl , rl , �0 , tl , and �l are the same as in Sect.  3; namely, Rl and rl are decreasing 
sequences and

Thus by the same argument as in Sect. 3 we know that this infinite sum actually only has a 
single term for any given x value.

We first show that Δu is Ck . Note that here the power of rl is k + 2 as opposed to 2 in 
Sect. 3, so

By Lemma 4.1, the k-th derivatives of Δutl are uniformly bounded by a constant independ-
ent of tl . Then since lim

l→∞
�l = 0 , we conclude that the k-th derivatives of Δu all approach 0 

as |x| → 0 . Recall that by construction u = 0 on all of the coordinate hyperplanes, so all 
partial derivatives of u of any order is 0 at the origin. In particular, all the k-th derivatives 
of Δu at the origin is 0. Therefore, all the k-th derivatives of Δu are continuous at the ori-
gin, and consequently Δu is Ck throughout ℝn.

Ct|x|k−1+2t|||�(− ln |x|2)||| + Ct|x|k−1+2t|||�
�(− ln |x|2)|||.

Ct|x|2t|||�(− ln |x|2)||| +
k∑

l=1

Ct|x|k−l+2t|||�
(l)(− ln |x|2)|||.

lim
s→∞

��(s) = ⋯ = lim
s→∞

�(k+2)(s) = 0,

u(x) =

∞∑
l=1

�lr
k+2
l

utl

(
x − Rl�0

rl

)
,

Rl − rl > Rl+1 + rl+1, 𝜁0 =

�
1√
2
,

1√
2
,… ,

1√
2

�
, lim

l→∞
tl = 0, 𝜖l =

1�
𝜑

�
1

2tl

� .

Δu(x) =

∞∑
l=1

�lr
k
l
Δutl

(
x − Rl�0

rl

)
.
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Next, we show that some of the (k + 2)-th derivatives of u is unbounded. Precisely, we 
will show that �

k+2u

�zk+2
 is unbounded. We start with a close look at the first and second partial 

derivatives of ut with respect to z.
Note that the power of z in

is k + 2 . After one differentiation with respect to z, one of the terms in its derivative is

which is the first term in the following formula for �ut
�z

:

After another differentiation with respect to z, there will be one term,

where the power of z is k. That is the first term in the following formula for �
2ut

�z2
:

After (k + 2)-times of differentiation with respect to z, one of the terms in 
�k+2ut

�zk+2
 is

As will be shown later, this term is crucial to proving that �
k+2u

�zk+2
 is unbounded.

For each l, as we did in Sect. 3, choose x(l) ∈ ℝ
n such that

As discussed in Sect.  3, in a neighborhood of 
(
e
−

1

4tl , 0,… , 0

)
, �(|x|) ≡ 1 and 

��(|x|) = ���(|x|) = 0 . Therefore, when we evaluate �ut

�z
 and �2ut

�z2
 in a neighborhood of (

e
−

1

4tl , 0,… , 0

)
, all the terms in (24) and (25) that have an �′ or �′′ factor will disappear. 

For that reason in the discussion that follows, we will only consider the terms that have an 
� factor.

Then (24) becomes

ut = �(|x|)zk+2|x|2t�(− ln |x|2)

(k + 2)�(|x|)zk+1|x|2t�(− ln |x|2),

(24)
𝜕ut

𝜕z
(x) = (k + 2)𝜂(|x|)zk+1|x|2t𝜑(− ln |x|2) + 1

2
𝜂�(|x|)zk+2z̄|x|2t−1𝜑(− ln |x|2)

+ t𝜂(|x|)zk+2z̄|x|2t−2𝜑(− ln |x|2) − 𝜂(|x|)zk+2z̄|x|2t−2𝜑�(− ln |x|2).

(k + 1)(k + 2)�(|x|)zk|x|2t�(− ln |x|2).

(25)

𝜕2u
t

𝜕z2
(x) = (k + 1)(k + 2)𝜂(|x|)zk|x|2t𝜑(− ln |x|2) + 1

4
𝜂��(|x|)zk+2z̄2|x|2t−2𝜑(− ln |x|2)

+ (k + 2)𝜂�(|x|)zk+1z̄|x|2t−1𝜑(− ln |x|2) + 4t − 1

2
𝜂�(|x|)zk+2z̄2|x|2t−3𝜑(− ln |x|2)

+ 2t(k + 2)𝜂(|x|)zk+1z̄|x|2t−2𝜑(− ln |x|2) + t(t − 1)𝜂(|x|)zk+2z̄2|x|2t−4𝜑(− ln |x|2)
− 𝜂�(|x|)zk+2z̄2|x|2t−3𝜑�(− ln |x|2) − 2(k + 2)𝜂(|x|)zk+1z̄|x|2t−2𝜑�(− ln |x|2)
− (2t − 1)𝜂(|x|)zk+2z̄2|x|2t−4𝜑�(− ln |x|2) + 𝜂(|x|)zk+2z̄2|x|2t−4𝜑��(− ln |x|2),

(k + 2)!�(|x|)|x|2t�(− ln |x|2).

x(l) − Rl�0

rl
=

(
e
−

1

4tl , 0,… 0

)
.
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Except the first term, the other terms in (24) are bounded by

And (25) becomes

Except the first term, all the other terms in (25) are bounded by

By the same process, in a neighborhood of 
(
e
−

1

4tl , 0,… 0

)
, 
�k+2utl

�zk+2
 is equal to

plus some other terms that are bounded by

By Lemma 2.2 and the fact that

we know (26) is bounded by a constant independent of tl.
Now we look at

If we evaluate (26) at the point 
(
e
−

1

4tl , 0,… , 0

)
 and multiply the value with �l , the result 

will go to 0 as �l → 0.
The first term of �

k+2u

�zk+2
(x(l)) is equal to

Recall that

(k + 2)zk+1|x|2tl𝜑(− ln |x|2) + tlz
k+2z̄|x|2tl−2𝜑(− ln |x|2) − zk+2z̄|x|2tl−2𝜑�(− ln |x|2).

|x|k+1+2tl |||�(− ln |x|2)||| + |x|k+1+2tl |||�
�(− ln |x|2)|||.

(k + 1)(k + 2)zk|x|2tl𝜑(− ln |x|2) + 2tl(k + 2)zk+1z̄|x|2tl−2𝜑(− ln |x|2)
+ tl(tl − 1)zk+2z̄2|x|2tl−4𝜑(− ln(|x|2) − 2(k + 2)zk+1z̄|x|2tl−2𝜑�(− ln |x|2)
− (2tl − 1)zk+2z̄2|x|2tl−4𝜑�(− ln |x|2) + zk+2z̄2|x|2tl−4𝜑��(− ln |x|2).

Ct
l
|x|k+2tl |||�(− ln |x|2)||| + C|x|k+2tl |||�

�(− ln |x|2)||| + C|x|k+2tl |||�
��(− ln |x|2)|||.

(k + 2)!|x|2tl�(− ln |x|2)

(26)Ct
l
|x|2tl |||�(− ln |x|2)||| + C|x|2tl |||�

�(− ln |x|2)||| +⋯C|x|2tl |||�
(k+2)(− ln |x|2)|||.

lim
s→∞

��(s) = ⋯ = lim
s→∞

�(k+2)(s) = 0,

�k+2u

�zk+2
(x(l)) = �l

�k+2utl

�zk+2

(
(e

−
1

4tl , 0,… , 0)
)
.

�l(k + 2)!

�
e
−

1

4tl

�2tl

�

�
− ln

�
e
−

1

4tl

�2
�

=
(k + 2)!√

e
�l�

�
1

2tl

�
.

�l =
1√

�

(
1

2tl

) ,
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hence �l�
(

1

2tl

)
→ ∞ as l → ∞ . Consequently, �

k+2u

�zk+2
(x(l)) → ∞ as l → ∞ , which implies 

that �
k+2u

�zk+2
 is unbounded near the origin. Since �

�z
=

1

2

(
�

�x1
− i

�

�x2

)
, as a result we know 

that some of the partial derivatives of u with respect to the x1 and x2 variables are 
unbounded near the origin.

Finally, we need to show that u is (k + 2)-times differentiable at the origin. Recall that 
because u = 0 on all the coordinate hyperplanes, all partial derivatives of any order of u at 
the origin is 0. Then

Note that |x| ≥ Rl −
2

3
rl , and similar to (5) in Sect. 3 we can prove utl is uniformly bounded 

by a constant C�,� depending only on � and � , therefore

It follows that lim|x|→0

u(x)

|x|k+2 = 0 , which implies u is (k + 2)-times differentiable at the origin.

Thus we can conclude that as a complex-valued function, u is (k + 2)-times differenti-
able at 0, Δu is Ck throughout ℝn , but Dk+2u is unbounded near 0. The real and imagi-
nary parts of u are two real-valued functions that are (k + 2)-times differentiable at 0, their 
Laplacian are Ck throughout ℝn , and at least one of them has some unbounded (k + 2)-th 
partial derivatives. Therefore, we have found a function that satisfies all the conditions in 
Theorem 1.3.

Appendix: Proof of Proposition 1.5

The proof of Proposition 1.5 is based on a method that was introduced in [5] and elabo-
rated in detail in [3]. Note that after a translation we can assume x or y is at the origin, so 
we only need to prove that for |z| < 1

16
 , (here z is a point in ℝn , not a complex variable as 

was used in the previous section), we have

For |z| ≥ 1

16
 the estimate is also true by a covering argument (see [3]).

First, we recall three elementary estimates (see [3]) that will be used frequently in this 
proof.

If a function v satisfies Δv = 0 in Br , then for any positive integer k,

where C only depends on n and k.

lim�x�→0

u(x) −
∑

���≤k+2 D�u(0)

�!
x�

�x�k+2 = lim�x�→0

u(x)

�x�k+2 .

|u(x)|
|x|k+2 ≤

𝜖
l
r
k+2

l

||||utl
(

x−R
l
𝜁0

r
l

)||||(
R
l
−

2

3
r
l

)
k+2

≤ 𝜖
l
C𝜂,𝜑(

R
l

r
l

−
2

3

)
k+2

<
𝜖
l
C𝜂,𝜑(

1 −
2

3

)
k+2

.

(27)||Du(z) − Du(0)|| ≤ C|z|
(
sup
B1

|u| + sup
B1

|f | + �
1

|z|
w(r)

r
dr

)
.

(28)‖Dkv‖L∞(B r
2
) ≤ Cr−k‖v‖L∞(Br)

,
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If a function v satisfies Δv = � in Br , where � is a constant and r < 1 , then

If a function v satisfies Δv = f  in Br , where f is a given bounded function, then the scaled 
maximum principle states that

Now we are ready to prove (27). For k = 0, 1, 2,… , let uk be the solution to

Then Δ(uk − u) = f (0) − f  in B2−k and uk − u = 0 on �B2−k . By the scaled maximum princi-
ple it follows that

and therefore

Then since uk+1 − uk is harmonic, by (28) we have

For any |z| ≤ 1

16
 , choose k ∈ ℕ such that

We will estimate |Du(z) − Du(0)| by

We are going to estimate these three terms separately. First, we claim that

To see this, let ũ(x) = u(0) + x ⋅ Du(0) be the linear approximation of u at 0. Then 
Du(0) = Dũ(0) and |ũ(x) − u(x)| = o(|x|) . Thus

(29)‖Dv‖L∞(B r
2
) ≤ C

�
r−1‖v‖L∞(Br)

+ r����.

(30)‖u‖L∞(Br)
≤ ‖u‖L∞(�Br)

+ Cr2‖f‖L∞(Br)
.

{
Δuk = f (0) in B2−k ,

uk = u on �B2−k .

(31)
‖uk − u‖L∞(B2−k )

≤C�2−2k�‖f (0) − f‖L∞(B2−k )

≤C�2−2k��(2−k),

(32)

‖uk+1 − uk‖L∞(B2−k−1 )
≤‖uk+1 − u‖L∞(B2−k−1 )

+ ‖uk − u‖L∞(B2−k )

≤C�2−2(k+1)��(2−(k+1)) + C
�
2−2k

�
�(2−k)

≤C�2−2k��(2−k).

(33)
‖Duk+1 − Duk‖L∞(B2−k−2 )

≤C�2k+1�‖uk+1 − uk‖L∞(B2−k−1 )

≤C�2−k��(2−k).

2−k−4 ≤ |z| ≤ 2−k−3.

(34)|Du(z) − Du(0)| ≤ ||Du(0) − Duk(0)
|| + ||Du(z) − Duk(z)

|| + ||Duk(z) − Duk(0)
||.

lim
k→∞

Duk(0) = Du(0).
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Then we can write Duk(0) − Du(0) =

∞∑
j=k

(
Duj(0) − Duj+1(0)

)
, and consequently

Next, we estimate the term ||Du(z) − Duk(z)
|| . Let vj be the solution of

By the same argument as before we can show

Because Δ(uk − vk) = f (0) − f (z) in B2−k (0) ∩ B2−k (z) and B2−k−1 (z) ⊂ B2−k (0) ∩ B2−k (z),

Then

By (31) we know

|

|

Duk(0) − Du(0)|
|

≤ ‖Duk − Dũ‖L∞(B2−k−1 )

≤ C
(

2k
)

‖uk − ũ‖L∞(B2−k )
(

by (28)
)

= C
(

2k
)

(

‖uk − ũ‖L∞(�B2−k )
+ 2−2k|f (0)|

)

(

apply (30) to Δ(uk − ũ) = f (0)
)

= C
(

2k
)

‖u − ũ‖L∞(�B2−k )
+ C

(

2−k
)

|f (0)|

≤ C
(

2k
)

⋅ o(2−k) + C
(

2−k
)

|f (0)|
→ 0 as k → ∞.

(35)

|Duk(0) − Du(0)| ≤
∞
∑

j=k
|Duj(0) − Duj+1(0)|

≤ C
∞
∑

j=k

(

2−j
)

�(2−j)
(

by (33)
)

≤ C
∞
∑

j=k

(

2−j
)

�(2−k)

= C(2−k)�(2−k)
≤ C|z|�(2−k).

{
Δvj = f (z) inB2−j (z),

vj = u on �B2−j (z).

|Dvk(z) − Du(z)| ≤ C|z|�(2−k).

|Dvk(z) − Duk(z)| ≤ ‖D(vk − uk)‖L∞(B2−k−2 (z))

≤ C
(

2k+1‖vk − uk‖L∞(B2−k−1 (z)) + 2−k−1|f (0) − f (z)|
)

(

by (29)
)

= C
(

2k+1
)

‖vk − uk‖L∞(B2−k−1 (z)) + C
(

2−k−1
)

�(2−k−3).

(36)

|

|

Du(z) − Duk(z)|| ≤ |

|

Duk(z) − Dvk(z)|| + |

|

Dvk(z) − Du(z)|
|

≤ C
(

2k+1
)

‖vk − uk‖L∞(B2−k−1 (z)) + C
(

2−k−1
)

�(2−k−3) + C|z|�(2−k)

≤ C
(

2k+1
)

‖vk − uk‖L∞(B2−k−1 (z)) + C|z|�(2−k).
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and similarly we can prove

so

Using this in (36) we have

Now we only need to estimate |Duk(z) − Duk(0)| . Let

hj is harmonic, so by (28)

Thus,

Consequently,

‖uk − u‖L∞(B2−k−1 (z))
≤ ‖uk − u‖L∞(B2−k (0))

≤ C
�
2−2k

�
�(2−k),

‖v
k
− u‖

L
∞(B2−k−1

(z)) ≤ C

�
2−2k

�
�(2−k),

‖uk − vk‖L∞(B2−k−1 (z))
≤‖uk − u‖L∞(B2−k−1 (z))

+ ‖vk − u‖L∞(B2−k−1 (z))

≤C�2−2k��(2−k).

(37)
|

|

Du(z) − Duk(z)|| ≤ C
(

2k+1
)(

2−2k
)

�(2−k) + C|z|�(2−k)
≤ C|z|�(2−k).

hj = uj − uj−1 for j = 1,… , k.

‖D2hj‖L∞(B2−j−1
(0)) ≤ C

�
22j

�‖hj‖L∞(B2−j
(0)).

|Dhj(z) − Dhj(0)|
|z|

≤ ‖D2hj‖L∞(B2−k−3 (0))

≤ x‖D2hj‖L∞(B2−j−1 (0))
≤ C

(

22j
)

‖hj‖L∞(B2−j (0))
= C

(

22j
)

‖uj − uj−1‖L∞(B2−j (0))
≤ C

(

22j
)(

2−2(j−1)
)

�(2−(j−1)) by (32)
≤ C�(2−(j−1)).

|Duk(z) − Duk(0)| ≤ |Du1(z) − Du1(0)| +
k
∑

j=2
|Dhj(z) − Dhj(0)|

≤ |Du1(z) − Du1(0)| +
k
∑

j=2
C|z|�(2−j+1)

≤ |z|‖D2u1‖L∞
(

B 1
4

) + C|z|
k
∑

j=2
�(2−j+1).
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Now we need to estimate ‖D2u1‖L∞(B 1
4

).

Define a function

Then � is harmonic because Δ� = Δu1 − f (0) = 0 , and � = u1 = u on �B 1

2

(0).
Furthermore, Dij� = Diju1 when i ≠ j , and Dii� = Diiu1 −

f (0)

n
.

Therefore,

It follows that

Combining (34), (35), (37), and (38), we have

Finally, note that since �(r) is increasing with r increasing,

Thus

� (x) = u1(x) −
f (0)

2n
|x|2 + f (0)

8n
.

‖D2u1‖L∞(B 1
4
) ≤ ‖D2�‖L∞(B 1

4
) + |f (0)|

≤ C‖�‖L∞(B 1
2
) + |f (0)|

= C‖�‖L∞(�B 1
2
) + |f (0)|

= C‖u‖L∞(�B 1
2
) + |f (0)|

≤ C‖u‖L∞(B1) + |f (0)|.

(38)�Duk(z) − Duk(0)� ≤ C�z�‖u‖L∞(B1)
+ �z��f (0)� + C�z�

k�
j=2

�(2−j+1).

�Du(z) − Du(0)� ≤C�z��(2−k) + C�z�‖u‖L∞(B1)
+ �z��f (0)� + C�z�

k�
j=2

�(2−j+1)

= �z�
�
‖u‖L∞(B1)

+ �f (0)� +
k+1�
j=2

�(2−j+1)

�
.

�
1

|z|
�(r)

r
dr ≥�

1

1

2k+3

�(r)

r
dr

≥�
1

2k+2

1

2k+3

�

(
1

2k+3

)

r
dr + �

1

2k+1

1

2k+2

�

(
1

2k+2

)

r
dr +⋯ + �

1

1

2

�

(
1

2

)

r
dr

= (ln 2)�
(

1

2k+3

)
+ (ln 2)�

(
1

2k+2

)
+⋯ + (ln 2)�

(
1

2

)
.

k+1∑
j=2

𝜔(2−j+1) < 𝜔

(
1

2

)
+⋯ + 𝜔

(
1

2k+3

) ≤ C �
1

|z|
𝜔(r)

r
dr.
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Therefore, we have proved that

and this implies (27).
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