
Vol.:(0123456789)

Collectanea Mathematica (2024) 75:379–394
https://doi.org/10.1007/s13348-022-00390-5

1 3

Weighted estimates for the multilinear maximal operator

Adam Osękowski1 

Received: 21 February 2022 / Accepted: 8 December 2022 / Published online: 7 January 2023 
© The Author(s) 2023

Abstract
The paper contains the study of the weighted Lp1 × Lp2 ×… × Lpm → Lp estimates for the 
multilinear maximal operator, in the context of abstract probability spaces equipped with 
a tree-like structure. Using the Bellman function method, we identify the associated opti-
mal constants in the symmetric case p

1
= p

2
= … = pm , and a tight constant for remaining 

choices of exponents.
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1 Introduction

The purpose of this paper is to study a class of weighted inequalities for the multilinear 
maximal operator, an important object in harmonic analysis. We will be particularly inter-
ested in the size of the constants involved. To present the results from an appropriate per-
spective, let us start with the necessary background. Fix a dimension N and suppose that 
D is the standard dyadic lattice in ℝN . Let M be the dyadic maximal operator, acting on 
locally integrable functions f on ℝN by

Here the symbol ⟨�⟩Q stands for the average of � over Q, calculated with respect to the 
Lebesgue measure: ⟨�⟩Q =

1

�Q� ∫Q � . Maximal operators play a prominent role in many 
areas of mathematics, and from the viewpoint of applications, it is often of interest to study 
the boundedness properties of these objects, treated as operators on various function 
spaces. A fundamental example is the sharp estimate

Mf (x) = sup
Q∈D

⟨�f �⟩Q�Q.

(1)‖Mf‖Lp ≤ p�‖f‖Lp , 1 < p ≤ ∞
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(here and below, p′ denotes the conjugate exponent to p, given by p� = p∕(p − 1) ). One 
can investigate numerous generalizations of this result, our motivation comes from an 
extension to the weighted theory. In what follows, the word ‘weight’ refers to a positive 
and locally integrable function on ℝN . Any weight w gives rise to the corresponding Borel 
measure, also denoted by w, and given by w(A) = ∫

A
w d x . One can also introduce the 

associated weighted Lp spaces, defined as the classes of all (equivalence classes of) func-
tions f ∶ ℝ

N
→ ℝ for which

Now one can study the following problem related to (1): given 1 < p < ∞ , character-
ize those weights w, for which the dyadic maximal operator M is bounded as an operator 
on Lp(w) . This problem was solved by Muckenhoupt [8] in the seventies: the bounded-
ness is true if and only if w satisfies the so-called dyadic Ap condition (or w belongs to 
the dyadic Ap class). The latter means that the quantity

called the Ap characteristic of w, is finite. Here � = w1−p� is the dual weight to w. There is a 
stronger, quantitative version of this result, established by Buckley at the beginning of the 
nineties. Namely, the problem is to find, for any fixed 1 < p < ∞ , the least exponent �(p) 
such that

where �p depends only on p. In other words, one is interested in the extraction of the opti-
mal dependence of ‖M‖Lp(w)→Lp(w) on the Ap characteristic [w]Ap

 . The aforementioned result 
of Buckley [1] asserts that the optimal choice is given by �(p) = (p − 1)−1 . This statement 
can be further improved: we need some additional notation for the further discussion. 
Given 1 < p < ∞ and c ≥ 1 , let d = d(p, c) be the unique positive root of the equation

This parameter has a nice geometric interpretation: see Fig. 1 below.
The paper [9] contains the proof of the following extension of Buckley’s result.

Theorem 1.1 For any 1 < p < ∞ we have the inequality

The constant on the right is the best possible: for any c ≥ 1 and 𝜀 > 0 there is an Ap weight 
w satisfying [w]Ap

≤ c such that

In our considerations below, we will be interested in the multilinear analogues of the 
above theorem. Suppose that m ≥ 1 is a fixed integer. Following [5], the m-linear dyadic 

‖f‖Lp(w) ∶=
�

∫
ℝN

�f �pw d x

�1∕p

< ∞, 0 < p < ∞.

[w]Ap
∶= sup

Q∈D

⟨w⟩Q⟨�⟩
p−1

Q
,

(2)‖M‖Lp(w)→Lp(w) ≤ �p[w]
�(p)

Ap
,

(3)c(1 + d)(p − 1 − d)p−1 = (p − 1)p−1.

‖M‖Lp(w)→Lp(w) ≤ p

p − 1 − d(p, [w]Ap
)

.

‖M‖Lp(w)→Lp(w) ≥ p

p − 1 − d(p, c)
− �.
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maximal operator M acts on vectors f⃗ = (f1, f2,… , fm) of locally integrable functions on 
ℝ

N by the formula

A straightforward combination of (1) and the Hölder inequality implies that if 
P⃗ = (p1, p2,… , pm) is a sequence of exponents satisfying 1 < p1, p2,… , pm ≤ ∞ and 
1

p
=

1

p1
+

1

p2
+…+

1

pm
, then we have the sharp bound

One can ask about the weighted version of this estimate, motivated by the above dis-
cussion for M. The precise answer was given by Lerner et  al.   [5]. Given a vector 
w⃗ = (w1,w2,… ,wm) of weights on ℝN , we set

and say that w⃗ satisfies the dyadic multilinear condition A
P⃗
 , if

Here, as before, �j = w
1−p�

j

j
 is the dual weight to wj , j = 1, 2, … , m . Note that for m = 1 , 

the above requirement reduces to the classical Muckenhoupt’s condition Ap . Actually, the 
connection to the one-dimensional setting goes deeper: as proved in [5], we have w⃗ ∈ A

P⃗
 if 

Mf⃗ = sup
Q∈D

m�

j=1

⟨�fj�⟩Q𝜒Q.

‖Mf⃗‖Lp ≤
m�

j=1

p�
j
‖fj‖Lpj .

vw⃗ =

m∏

j=1

w
p∕pj

j

[w⃗]A
P⃗
∶= sup

Q∈D

⟨vw⃗⟩Q
m�

j=1

⟨𝜎j⟩
p∕p�

j

Q
< ∞.

Fig. 1  The tangent to the curve xyp−1 = c at the point (1, c1∕(p−1)) intersects the curve xyp−1 = 1 at 
(1 + d, (1 + d)1∕(p−1))
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and only if �j ∈ Amp�
j
 for all j and vw⃗ ∈ Amp . The multilinear A

P⃗
 condition provides us with 

the answer to the above question: M is bounded as an operator from 
Lp1 (w1) × Lp2 (w2) ×… × Lpm (wm) to Lp(vw⃗) if and only if w⃗ ∈ A

P⃗
 . In [3], the authors estab-

lished the following version of (2):

with 𝛽(P⃗) satisfying m

mp−1
≤ 𝛽(P⃗) ≤ 1

p

�
1 +

∑m

j=1

1

pj−1

�
 . Furthermore, in the special case 

p1 = p2 = … = pm = mp , they showed that the estimate holds with 𝛽(P⃗) = m∕(mp − 1) = p�
1
∕p , 

which is optimal. The question about the best exponent for an arbitrary vector P⃗ was answered in 
[6]: the optimal choice is 𝛽(P⃗) = max

{
p�
1
∕p, p�

2
∕p,… , p�

m
∕p

}
.

The purpose of this paper is to present a different approach to the estimate (4), which 
will yield the further information about the size of the constant 𝜅

P⃗
 . In addition, it will allow 

us to identify the best constant in the special case p1 = p2 = … = pm = mp . Actually, we 
will work in the more general context of probability spaces equipped with a tree-like struc-
ture. Here is the precise definition (cf. [7]).

Definition 1.2 Suppose that (X,�) is a nonatomic probability space. A set T  of measurable 
subsets of X will be called a tree if the following conditions are satisfied: 

(1) X ∈ T  and for every Q ∈ T  we have 𝜇(Q) > 0.
(2) For every Q ∈ T  there is a finite subset C(Q) ⊂ T  containing at least two elements such 

that (a) the elements of C(Q) are pairwise disjoint subsets of Q, (b) Q =

⋃
C(Q).

(3) T =

⋃
n≥0 Tn , where T0 = {X} and Tn+1

=

⋃
Q∈Tn C(Q).

(4) We have limn→∞
supQ∈Tn �(Q) = 0.

An important example, which links this definition with the preceding considerations, is 
the cube X = [0, 1)N endowed with Lebesgue measure and the tree of its dyadic subcubes. 
Any probability space equipped with a tree gives rise to the corresponding multilinear 
maximal operators M = MX,T  and Muckenhoupt’s classes A

P⃗
= A

P⃗
(X, T) : the definitions 

are word-by-word the same, one only needs to change the base space ℝN to X and replace 
the dyadic lattice D by the tree T .

Our main results are gathered in two statements below.

Theorem 1.3 Let (X,�) be an arbitrary nonatomic probability space with a tree structure 
T  . Fix m−1 < p < ∞ and put p1 = p2 = … = pm = mp . Then for any vector w⃗ ∈ A

P⃗
(X, T) 

we have the inequality

The constant on the right is the best possible: for any c ≥ 1 and 𝜀 > 0 there is a weight w⃗ 
satisfying [w⃗]A

P⃗
≤ c such that

(4)‖Mf⃗‖Lp(vw⃗) ≤ 𝜅
P⃗
[w⃗]

𝛽(P⃗)
A
P⃗

m�

j=1

‖fj‖Lpj (wj)
,

(5)‖MX,T‖Lp1 (w1)×L
p2 (w2)×…×Lpm (wm)→Lp(vw⃗)

≤
�

mp

mp − 1 − d(mp, [w]A
P⃗
)

�m

.
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Theorem 1.4 Let (X,�) be an arbitrary nonatomic probability space with a tree structure 
T  . Suppose that P⃗ = (p1, p2,… , pm) with 1 < p1, p2,… , pm < ∞ and let 
1

p
=

1

p1
+

1

p2
+…+

1

pm
 . Then the optimal constant K

P⃗,c
 in the estimate

satisfies

where p
∗
= min{p1, p2,… , pm} and q = p∕p�

∗
+ 1.

In particular, in (6) we recover the optimal dependence on the characteristic [w⃗]A
P⃗
 . Inter-

estingly, the lower and the upper bound for K
P⃗,[w]A

P⃗

 involves the multiplicative constant of 

the same type: (1 + d(⋅, c))p
�

∗
∕p (unfortunately, these constants can be quite distant if p

∗
 is 

close to 1). We would also like to emphasize that the estimate (5) is sharp for each individ-
ual probability space. Finally, let us mention that standard translation and scaling argu-
ments allow to extend the above results to the non-probabilistic, dyadic context studied at 
the beginning.

Our reasoning will rest on a multilinear version of Carleson embedding theorem and a 
tight ‘testing’ estimate (10) below. To show the latter bound, we will exploit the so-called 
Bellman function method, a powerful tool for establishing inequalities, used widely in 
probability and analysis. Quite interestingly, the function we invent involves as many as 
m + 2 variables, and still, as we will see, the calculations are quite quick and do not require 
elaborate analysis.

The paper is organized as follows. In the next section, we present the proof of the esti-
mates (5) and (6). Section 3 is devoted to the lower bounds for the constants involved in 
these estimates.

2  Proof of (5) and (6)

Throughout, P⃗ = (p1, p2,… , pm) is a vector of exponents belonging to (1,∞) and the 
parameter p is given by 1

p
=

1

p1
+

1

p2
+…+

1

pm
 . By symmetry, we may and will assume that 

p1 is the smallest exponent.
Let us briefly describe the idea behind our approach. We will exploit the following mul-

tilinear version of Carleson embedding theorem established in [2] (see also [4]). Here and 
below, the symbol ⟨f ⟩Q,� stands for the weighted average 1

�(Q)
∫
Q
f d �.

Theorem 2.1 Suppose that a sequence (aQ)Q∈T  of nonnegative numbers satisfies the follow-
ing condition: for any R ∈ T  we have the estimate

‖MX,T‖Lp1 (w1)×L
p2 (w2)×…×Lpm (wm)→Lp(vw⃗)

>

�
mp

mp − 1 − d(mp, [w]A
P⃗
)

− 𝜀

�m

.

(6)‖MX,T‖Lp1 (w1)×L
p2 (w2)×…×Lpm (wm)→Lp(vw⃗)

≤ K
P⃗,[w]A

P⃗

m�

j=1

p�
j

([w]A
P⃗
(1 + d(q, c)))p

�

∗
∕p ≤ K

P⃗,[w]A
P⃗

≤ ([w]A
P⃗
(1 + d(p

∗
, c)))p

�

∗
∕p,



384 A. Osękowski 

1 3

Then for any vector f⃗ = (f1, f2,… , fm) such that fj ∈ Lpj (�j) for all j, we have

It is well known (see [6], for example) that the appropriate choice of the sequence 
(aQ)Q∈T  transforms the estimate (8) into (5) and (6). Thus the problem reduces to the iden-
tification of the appropriate constant C in (7). To handle this, we will apply the Bellman 
function method. We introduce the auxiliary constants

where the last equality follows from (3). Consider the Bellman function 
B = B

P⃗,c
∶ ℝ

m+2
+

→ ℝ given by

Sometimes, for the sake of brevity, it will be convenient to write B(s,  t, u) instead of 
B(s1, s2,… , sm, t, u) . The function B is the key ingredient of the proof of the weighted esti-
mates (5) and (6). Let us study several crucial properties of this object.

Lemma 2.2 

(1) For any fixed t and u, the function

is concave.
(2) For any fixed s and u, the function t ↦ B(s, t, u) is nonincreasing on the interval �

0,
�
c
∏m

j=1
s
p∕pj−p∕p1

j
u−1

�p�
1
∕p
�

.

(3) If u ≥ ∏m

j=1
s
−p∕p�

j

j
 , then we have the majorization

Proof 

(1) If �1 , �2 , … , �m is a sequence of positive numbers summing up to 1, then the function 
(s1, s2,… , sm) ↦ s

�1
1
s
�2
2
… s

�m
m  is concave. Furthermore, if �1 , �2 , … , �m are nonpositive 

numbers, then the function (s1, s2,… , sm) ↦ s
�1
1
s
�2
2
… s

�m
m  is convex. Both these facts 

can be easily proved by the induction on m, and they immediately yield the desired 
claim.

(7)
∑

Q⊆R

aQ ≤ C �R

m∏

j=1

𝜎
p∕pj

j
d 𝜇.

(8)

�
�

Q∈T

aQ

m�

j=1

⟨fj⟩
p

Q,�j

�1∕p

≤ C1∕p

m�

j=1

p�
j
‖fj‖Lpj (�j).

� = 1 +
1

d(p1, c)
and C =

c(1 + d(p1, c))(p1 − 1)

p1 − 1 − d(p1, c)
=

(
c(1 + d(p1, c))

)p�
1 ,

B(s1, s2,… , sm, t, u) = �

(
tpu + c(p1 − 1)

m∏

j=1

s
p∕pj

j
− cp1t

p∕p1

m∏

j=1

s
p∕pj−p∕p1

j

)
.

(s1, s2,… , sm) → B(s1, s2,… , sm, t, u)

(9)B(s, t, u) ≥ tpu − Cs
p∕p1
1

s
p∕p2
2

… sp∕pm
m

.
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(2) This is straightforward: we have

(3) The assertion is equivalent to

The left-hand side is an increasing function of u, so it is enough to prove the estimate 
for u =

∏m

j=1
s
−p∕p�

j

j
 . Divide both sides by (� − 1)p1

∏m

j=1
s
p∕pj

j
 to obtain the equivalent 

bound

This will follow immediately from Young’s inequality (with exponents p1 and p′
1
 ), as 

soon as we show that

Plugging the formulas for � and C, we transform the above identity into

which holds true by the very definition (3) of the parameter d(p1, c) .   ◻

The following result will imply the validity of (7).

Theorem 2.3 Suppose that (X,�) is a probability space with a tree structure T  . Fix c ≥ 1 
and let w⃗ be a vector of weights on X, satisfying [w⃗]A

P⃗
≤ c . Then for any R ∈ T  , the vector 

�⃗� = (𝜎1, 𝜎2,… , 𝜎m) of dual weights satisfies

Proof It is convenient to split the reasoning into a few intermediate parts. 

Step 1. An auxiliary notation. Fix w and R as in the statement and let n0 be the unique 
integer such that R ∈ T

n0 . We introduce the auxiliary functional sequences (xn)n≥n0 , 
(yn)n≥n0 and (zn)n≥n0 as follows: for any n ≥ n0 and � ∈ Ω,

Bt(s, t, u) = �ptp∕p1−1

(
tp∕p

�

1u − c

m∏

j=1

s
p∕pj−p∕p1

j

)
.

(� − 1)tpu + (C + �c(p1 − 1))

m∏

j=1

s
p∕pj

j
≥ �cp1t

p∕p1

m∏

j=1

s
p∕pj−p∕p1

j
.

1

p1
⋅

(
t

s1s2 … sm

)p

+
1

p�
1

⋅
C + �c(p1 − 1)

(� − 1)(p1 − 1)
≥ �c

� − 1

(
t

s1s2 … sm

)p∕p1

.

C + �c(p1 − 1)

(� − 1)(p1 − 1)
=

(
�c

� − 1

)p�
1

.

p1 − 1

p1 − 1 − d(p1, c)
=

(
c(1 + d(p1, c))

)1∕(p1−1),

(10)�R

M(�⃗�𝜒R)
pvw⃗ d 𝜇 ≤ C �R

m∏

j=1

𝜎
p∕pj

j
d 𝜇.

xn(𝜔) = (xn1(𝜔), xn2(𝜔),… , xnm(𝜔)) =
�
⟨𝜎1⟩Qn(𝜔)

, ⟨𝜎2⟩Qn(𝜔)
,… , ⟨𝜎m⟩Qn(𝜔)

�

yn(𝜔) = max
n0≤k≤n

�
xk1(𝜔)xk2(𝜔)… xkm(𝜔)

�
,

zn(𝜔) = ⟨vw⃗⟩Qn(𝜔)
,
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where Qn(�) is the unique element of T n which contains � . There is a nice probabil-
istic interpretation of these sequences: (xn)n≥n0 and (zn)n≥n0 are martingales induced 
by the filtration (T n)n≥n

0

 , with the terminal variables equal to (�1, �2,… , �m) and vw⃗ , 
respectively; in addition, (yn)n≥n0 is the maximal process associated with the sequence 
of products (xk1xk2 … xkm)k≥n0 . Observe that by Lebesgue’s differentiation theorem (or 
rather, by Doob’s martingale convergence theorem), we have xnj → �j , yn → M(�⃗�𝜒R) 
and zn → vw⃗ almost surely as n → ∞.
Step 2. Monotonicity. Now we will show that the sequences (xn)n≥n0 , (yn)n≥n0 and 
(zn)n≥n0 combine nicely with the Bellman function B defined previously. More specifi-
cally, we will prove that the sequence

is nonincreasing. To see this, fix an integer n ≥ n0 , let Q be an arbitrary element of T n 
and let Q1 , Q2 , … , Q

�
 be the collection of all children of Q in T n+1 . The functions xn , yn , 

zn are constant on Q, while xn+1 , yn+1 and zn+1 are constant on each Qj . It is easy to check 
that these constant values satisfy

(This is nothing but the martingale property, expressed in analytic terms). Next, observe 
that for any j we have

Indeed, if yn+1 = yn on Qj , then there is nothing to prove; on the other hand, 
if yn+1 ≠ yn on Qj , then by the definition of the sequence y we must have 
yn < yn+1 = x

(n+1)1x(n+1)2 … x
(n+1)m . The latter product is equal to

where the estimate follows from the condition A
P⃗
 . By Lemma 2.2 (ii), this implies 

B(xn+1, yn+1, zn+1) ≤ B(xn+1, yn, zn+1) on Qj and hence (12) follows. Summing over j, we 
thus obtain

Now, by the very definition of B, the second identity in (11) and the fact that yn is con-
stant on Q, the right-hand side above is equal to ∫

Q
B(xn+1, yn, zn) d �. Finally, by the 

first part of Lemma 2.2 and the first identity in (11), we have

(

�Q

B(xn, yn, zn) d �

)

n≥n0

(11)⟨xn⟩Q =

��

j=1

�Qj�
�Q� ⟨xn+1⟩Qj

, ⟨zn⟩Q =

��

j=1

�Qj�
�Q� ⟨zn+1⟩Qj

.

(12)�Qj

B(xn+1, yn+1, zn+1) d � ≤ �Qj

B(xn+1, yn, zn+1) d �.

⟨𝜎1⟩Qj
⟨𝜎2⟩Qj

… ⟨𝜎m⟩Qj
≤
�
c

m�

k=1

⟨𝜎k⟩
p∕pk−p∕p1
Qj

⟨vw⃗⟩−1Qj

�p�
1
∕p

=

�
c

m�

k=1

x
p∕pk−p∕p1
(n+1)k

⋅ z−1
n+1

�p�
1
∕p

,

�Q

B(xn+1, yn+1, zn+1) d � ≤ �Q

B(xn+1, yn, zn+1) d �.
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Hence, summing over all Q ∈ T
n contained in R, we obtain the aforementioned 

monotonicity.
Step 3. Completion of the proof. By the previous step, we obtain that for any n ≥ n0 we 
have

Let us inspect the expression on the right. By the very definition of y, we have 
yn0 = xn01xn02 … xn0m ; furthermore, by the A

P⃗
 condition, we obtain zn0 ≤ c

∏m

j=1
x
−p∕p�

j

n0j
 . 

Consequently,

To handle the left-hand side of (13), we apply the third part of Lemma 2.2. As the result, 
we get

It remains to let n → ∞ and carry out an appropriate limiting procedure. Recall that we 
have the almost sure convergence xnj → �j , yn → M(�⃗�𝜒R) and zn → vw⃗ . Therefore, the 
left-hand side above can be handled by Fatou’s lemma:

To deal with the right hand side, we will apply Lebesgue’s dominated convergence 
theorem: we have 

∏m

j=1
x
p∕pj

nj
→

∏m

j=1
�
p∕pj

j
 almost surely, so all we need is a suitable 

majorant. The inclusion w⃗ ∈ A
P⃗
 implies �j ∈ Amp�

j
 (cf. [5]), which gives that �j , and 

hence also the maximal function M�j , belongs to Lr for some r > 1 . Thus, by the 

Hölder inequality, the majorant 
∏m

j=1

�
supn≥0 xnj

�p∕pj
 is integrable and the assertion 

follows.   ◻

We are ready for the proof of our main estimates.

Proof of (5) and (6) Fix a vector w⃗ ∈ A
P⃗
(X, T) and an arbitrary sequence f⃗ = (f1, f2,… , fm) 

of functions on X such that fj ∈ Lpj (wj) for each j. Clearly, we may assume that fj > 0 for 
all j. Let 𝜀 > 0 be a fixed parameter. By the definition of the multilinear maximal operator, 
for any � ∈ X there is a set Q(�) containing � such that

�Q

B(xn+1, yn, zn) d � ≤ �Q

B(xn, yn, zn) d �.

(13)�R

B(xn, yn, zn) d � ≤ �R

B(xn0 , yn0 , zn0 ) d �.

B(xn0 , yn0 , zn0 ) ≤ �

(
c

m∏

j=1

x
p∕pj

n0j
+ c(p1 − 1)

m∏

j=1

x
p∕pj

n0j
− cp1

m∏

j=1

x
p∕pj

n0j

)
= 0.

�R

yp
n
zn d � ≤ C �R

m∏

j=1

x
p∕pj

nj
d �.

�R

M(�⃗�𝜒R)
pvw⃗ d 𝜇 ≤ lim inf

n→∞ �R

yp
n
zn d 𝜇.

Mf⃗ (𝜔) ≤ (1 + 𝜀)⟨f1⟩Q(𝜔)⟨f2⟩Q(𝜔) … ⟨fm⟩Q(𝜔).
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Of course, such a set Q(�) need not be unique: to avoid ambiguity, we take 
Q(�) belonging to Tn with n as small as possible. Now, for any Q ∈ T  , we define 
E(Q) = {� ∈ X ∶ Q(�) = Q} and let

By the very definition, we have E(Q) ⊆ Q and the sets E(Q) corresponding to different 
Q’s are disjoint. Furthermore, we have aQ ≤ (M(�⃗�𝜒Q)(𝜔))

pvw⃗(E(Q)) for � ∈ Q . Conse-
quently, for any R ∈ T  we get

where the second inequality is due to (10). Thus, by the Carleson embedding theorem 
applied to the vector �������⃗f𝜎−1

= (f1𝜎
−1
1
, f2𝜎

−1
2
,… , fm𝜎

−1
m
) , we obtain

Now, by the definition of aQ and the identity ⟨fj�−1
j
⟩Q,�j = ⟨fj⟩Q⟨�j⟩−1Q  , we get

Since � was arbitrary, the desired estimates follow. Let us remark that in the symmetric 
case p1 = p2 = … = pm , the obtained constant is

as we have announced in the statement of Theorem 1.3.   ◻

3  On the lower bound for the constant

3.1  Sharpness for p
1
= p

2
= … = pm.

First we will show that in the symmetric case the constant we have obtained is the best pos-
sible. Fix an integer m, an exponent p ∈ (m−1,∞) and a constant c ∈ [1,∞) . By the result 
of [9], for any 𝜀 > 0 there is a weight w ∈ Amp with [w]Amp

= c and a function f ∈ Lmp(w) 
such that the (one-dimensional) maximal function M satisfies

aQ =

m�

j=1

⟨𝜎j⟩
p

Q
⋅ vw⃗(E(Q)).

∑

Q⊆R

aR ≤ �R

(M(�⃗�𝜒Q))
pvw⃗ d 𝜇 ≤ C �R

m∏

j=1

𝜎
p∕pj

j
d 𝜇,

�
�

Q∈T

aQ

m�

j=1

⟨fj�−1
j
⟩p
Q,�j

�1∕p

≤ C1∕p

m�

j=1

p�
j
‖fj�−1

j
‖Lpj (�j) = C1∕p

m�

j=1

p�
j
‖fj‖Lpj (wj)

.

�

Q∈T

aQ

m�

j=1

⟨fj𝜎−1
j
⟩p
Q,𝜎j

=

�

Q∈T

vw⃗(E(Q))

m�

j=1

⟨fj⟩
p

Q
≥ (1 + 𝜀)−1 �X

(Mf⃗ )pvw⃗ d 𝜇.

C1∕p

m∏

j=1

p�
j
= (c(1 + d(mp, c)))m∕(mp−1) ⋅

(
mp

mp − 1

)m

=

(
mp − 1

mp − 1 − d(mp, c)

)m

⋅

(
mp

mp − 1

)m

=

(
mp

mp − 1 − d(mp, c)

)m

,
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We consider the vectors f⃗ = (f , f ,… , f ) and w⃗ = (w,w,… ,w) , each consisting of m 
coordinates. Then vw⃗ =

∏m

j=1
wp∕mp

= w , so for any Q ∈ T ,

In particular, this implies [w⃗]A
P⃗
= [w]Amp

= c . Furthermore,

which establishes the desired sharpness.

3.2  The lower bound in the asymmetric case

Here the calculations will be more involved. It is convenient to split the construction into 
a few parts. We may and do assume that c > 1 : when c = 1 , then the vector w⃗ consists of 
constant weights and the claim follows easily from the unweighted theory.

Step 1. Auxiliary geometrical facts and parameters. Pick c̃ ∈ (1, c) and set q = p∕p�
1
+ 1 . 

There are two lines passing through the point K = (1, c̃1∕(q−1)) which are tangent to the 
curve xyp−1 = c ; we take the line � for which the x-coordinate of the tangency point is 
smaller than 1. This line intersects the curve xyq−1 = 1 at two points: pick the point L 
with bigger x-coordinate and denote this coordinate by 1 + d(c̃) . Furthermore, the line � 
intersects the curve xyq−1 = c̃ at two points: one of them is K, while the second, denoted 
by M, is of the form 

(
1 − 𝛿, (c̃(1 − 𝛿))1∕(1−q)

)
 . See Fig. 2 below.

The points K, L, M are colinear: some simple algebra transforms this into the equality

which will be useful later.
Step 2. Construction. Now, recall the following simple measure-theoretic fact, which 
can be found in [7].

Lemma 3.1 For every Q ∈ T  and every � ∈ (0, 1) there is a subfamily F(Q) ⊂ T  con-
sisting of pairwise disjoint subsets of Q such that

We use this fact recursively and construct an appropriate sequence A0 ⊃ A1 ⊃ A2 ⊃ … 
of subsets of X. The starting point is the choice A0 = X . To describe the induc-

‖Mf‖Lmp(w) >
�

mp

mp − 1 − d(mp, c)
− 𝜀

�
‖f‖Lmp(w).

⟨vw⃗⟩Q
m�

j=1

⟨w
1−p�

j

j
⟩
p∕p�

j

Q
= ⟨w⟩Q⟨w1−(mp)�⟩mp−1

Q
.

‖Mf⃗‖Lp(vw⃗) = ‖Mf‖m
Lmp(w)

>

�
mp

mp − 1 − d(mp, c)
− 𝜀

�m

‖f‖m
Lmp(w)

=

�
mp

mp − 1 − d(mp, c)
− 𝜀

�m m�

j=1

‖f‖Lmp(w),

(14)(c̃(1 + d(c̃)))1∕(q−1)
(
d(c̃) + 𝛿 − d(c̃)(1 − 𝛿)1∕(1−q)

)
= 𝛿,

�

(
⋃

R∈F(Q)

R

)
=

∑

R∈F(Q)

�(R) = ��(Q).



390 A. Osękowski 

1 3

tive step, assume we have constructed An , which is a union of pairwise almost dis-
joint elements of T  , called the atoms of An . Of course, this condition is satisfied 
for n = 0 : we have A0 = X ∈ T  . Then, for each atom Q of An , we apply the above 
lemma with 𝛽 = d(c̃)∕(d(c̃) + 𝛿) and get the corresponding subfamily F(Q). Put 
An+1 =

⋃
Q

⋃
Q�∈F(Q) Q

� , the first union taken over all atoms Q of An . Directly from the 
definition, this set is a union of the family {F(Q) ∶ Q an atom of An} , which consists of 
pairwise disjoint elements of T  . We call these elements the atoms of An+1 and conclude 
the description of the induction step.As an immediate consequence of the above con-
struction, we see that if Q is an atom of Ak , then for any n ≥ k we have

and hence

Now, introduce the weights w1, w2, … , wm on X by the formula

and w2 = w3 = … = wm ≡ 1 . Furthermore, for j = 1, 2, … , m , we let

𝜇(Q ∩ An) = 𝜇(Q)

(
d(c̃)

d(c̃) + 𝛿

)n−k

(15)𝜇(Q ∩ (An ⧵ An+1)) = 𝜇(Q)

(
d(c̃)

d(c̃) + 𝛿

)n−k
𝛿

d(c̃) + 𝛿
.

w
p∕p1
1

=

∞∑

n=0

�An⧵An+1
(1 − �)n

Fig. 2  The crucial three points K = (1, c̃1∕(q−1)) , L =

(
1 + d(c̃), (1 + d(c̃))1∕(1−q)

)
 and 

M =

(
1 − 𝛿, (c̃(1 − 𝛿))1∕(1−q)

)
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where a1 = (p1d(c̃))
−1

+ p−1 − 𝜀∕p1 and, for j ≥ 2 , aj = (pjd(c̃))
−1

− 𝜀∕pj . Here � is a 
fixed positive parameter (which will be sent to zero at the end of the proof).

Step 3. We have [w]A
P⃗
≤ c . The equality w2 = w3 = … = wm = 1 implies that vw⃗ = w

p∕p1
1

 

and v−p
�

1
∕p

w⃗
= w

1−p�
1

1
 . Hence [w]A

P⃗
≤ c is equivalent to showing that vw⃗ ∈ Aq . This in turn 

amounts to saying that for any Q ∈ T ,

To prove this, we use (15) to obtain that for each atom Q of Ak we have

and

where in the last line we have used (14). Suppose that R is an arbitrary element of T  . 
Then there is an integer k such that R ⊆ Ak−1 and R ⊈ Ak . We have

By (16), applied to each atom Q of Ak contained in R, we get

and hence, setting � ∶= �(R ∩ Ak)∕�(R) , we rewrite the preceding equality as

Similarly, we obtain

which implies

fj =

∞∑

n=0

�An⧵An+1
(1 + aj�)

n,

⟨vw⃗⟩Q
�
v
1∕(1−q)

w⃗

�q−1

Q
≤ c.

(16)⟨vw⃗⟩Q =

∞�

n=k

�
d(c̃)

d(c̃) + 𝛿

�n−k

(1 − 𝛿)n ⋅
𝛿

d(c̃) + 𝛿
=

(1 − 𝛿)k

1 + d(c̃)

⟨
v
1∕(1−q)

w⃗

⟩
Q
=

∞∑

n=k

(
d(c̃)

d(c̃) + 𝛿

)n−k

(1 − 𝛿)n∕(1−q) ⋅
𝛿

d(c̃) + 𝛿

=
𝛿

d(c̃) + 𝛿
(1 − 𝛿)k∕(1−q) ⋅

(
1 −

d(c̃)

d(c̃) + 𝛿
(1 − 𝛿)1∕(1−q)

)
−1

=
c1∕(q−1)(1 − 𝛿)k∕(1−q)

(1 + d(c̃))1∕(1−q)
,

⟨vw⃗⟩R =
1

𝜇(R) ∫R⧵Ak

vw⃗ d 𝜇 +
1

𝜇(R) ∫R∩Ak

vw⃗ d 𝜇

=
1

𝜇(R) ∫R⧵Ak

(1 − 𝛿)k−1 d 𝜇 +
1

𝜇(R) ∫R∩Ak

vw⃗ d 𝜇.

intR∩Ak
vw⃗ d 𝜇 =

𝜇(R ∩ Ak)(1 − 𝛿)k

1 + d(c̃)

⟨vw⃗⟩R = (1 − 𝜂)(1 − 𝛿)k−1 + 𝜂 ⋅
(1 − 𝛿)k

1 + d(c̃)
.

⟨v1∕(1−q)
w⃗

⟩R = (1 − 𝜂)(1 − 𝛿)(k−1)∕(1−q) + 𝜂 ⋅
c1∕(q−1)(1 − 𝛿)k∕(1−q)

(1 + d(c̃))1∕(1−q)
,
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This number does not exceed c. Indeed, the right-hand side can be rewritten as

where Mx, My and Lx , Ly are the coordinates of the points M and L (see Fig. 2). As � 
ranges from 0 to 1, the point �M + (1 − �)L runs over the line segment ML which is 
entirely contained in {(x, y) ∶ xyq−1 ≤ c} . Since R was arbitrary, we obtain the desired 
A
P⃗
 condition: [w]A

P⃗
≤ c.

Step 4. Completion of the proof. In the same manner as above, one verifies that if Q is 
an atom of Ak , then

Note that the ratio of the above geometric series, is equal to

so the series is convergent. Hence, on Ak (and hence also on Ak ⧵ Ak−1 ) we have

and therefore

The ratio of the geometric series in the parentheses is given by

as � → 0 . Thus the series is convergent and we obtain

On the other hand, an analogous computation shows that

⟨vw⃗⟩R⟨v
1∕(1−q)

w⃗
⟩q−1
R

=

�
𝜂(1 − 𝛿) + (1 − 𝜂)(1 + d(c̃))

��
𝜂(1 − 𝛿)

1

1−q + (1 − 𝜂)(1 + d(c̃))
1

1−q

�q−1

.

(�Mx + (1 − �)Lx)(�My + (1 − �)Ly)
q−1,

⟨fj⟩Q =

�

n≥k
(1 + aj𝛿)

n

�
d(c̃)

d(c̃) + 𝛿

�n−k
𝛿

d(c̃) + 𝛿
=

(1 + aj𝛿)
k

1 − ajd(c̃)
.

(1 + aj𝛿)d(c̃)

d(c̃) + 𝛿
= 1 +

(ajd(c̃) − 1)𝛿

d(c̃) + 𝛿
< 1 +

(p−1
j

− 1)𝛿

d(c̃) + 𝛿
< 1,

Mf⃗ ≥
m�

j=1

⟨fj⟩Q =

m�

j=1

(1 + aj𝛿)
k

1 − ajd(c̃)

‖Mf⃗‖Lp(vw⃗) ≥
�
�

n≥0

�
m�

j=1

(1 + aj𝛿)
n

1 − ajd(c̃)

�p

(1 − 𝛿)n
�

d(c̃)

d(c̃) + 𝛿

�n
𝛿

d(c̃) + 𝛿

�1∕p

.

m∏

j=1

(1 + aj𝛿)
p
(1 − 𝛿)

(
d(c̃)

d(c̃) + 𝛿

)

= 1 +
[
p(a1 + a2 +…+ am) − 1 − (d(c̃))−1

]
𝛿 + o(𝛿)

= 1 − 𝜀𝛿 + o(𝛿)

‖Mf⃗‖Lp(vw⃗) ≥ (d(c̃)�)−1∕p
m�

j=1

(1 − ajd(c̃))
−1

+ O(𝛿).
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and for j ≥ 2,

Putting the above facts together (and noting that d(c̃) → d(q, c) as � → 0 ), we get

Finally, we check that the constant on the right converges, as � → 0 , to

This yields the desired lower bound for the optimal constant.
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