CORRECTION

Correction to: A new concept of smoothness in Orlicz spaces

D. E. Ferreyra¹ · F. E. Levis¹ · M. V. Roldán²

Published online: 19 March 2022 © The Author(s), under exclusive licence to Universitat de Barcelona 2022

Correction to: Collectanea Mathematica https://doi.org/10.1007/s13348-021-00331-8

The goal of this erratum is to correct a mistake that appears in the proof of Corollary 3. In the second line of the proof we claim that if φ is a superadditive function and

$$M_0(t,\varphi) = \sup_{\epsilon>0} \frac{\varphi(\epsilon^n t)}{\varphi(\epsilon^n)},$$

then there exists $t_0 > 0$ such that $M_0(t, \varphi) \le t^{i_{\varphi}+1}$ for all $0 < t < t_0$, where

$$i_{\varphi} = \lim_{t \to 0^+} \frac{\ln(M_0(t,\varphi))}{\ln(t)}$$

This affirmation is not correct. For example the superadditive function $\varphi(t) = t^{3/2}$ satisfies $M_0(t, \varphi) = t^{3/2}, i_{\varphi} = \frac{3}{2}$, and $M_0(t, \varphi) > t^{i_{\varphi}+1}$ for all 0 < t < 1. However, Corollary 3 is still true. A proof is provided below.

Corollary 3 Assume $x_0 \in \mathbb{R}$ and $f \in c_n^{\Phi}(x_0)$ such that φ is a superadditive function. Let $\{P_{B(x_0,\epsilon)}(f)\}\$ be a net of best Φ -approximation of f from Π^n on $B(x_0,\epsilon)$. Then

$$\frac{1}{\epsilon\varphi(\epsilon^n)}\int_{B(x_0,\epsilon)}\varphi(|P_{B(x_0,\epsilon)}(f)-C_{x_0,n}(f)|)dx=o(1), \quad as \ \epsilon\to 0.$$

The original article can be found online at https://doi.org/10.1007/s13348-021-00331-8.

F. E. Levis flevis@exa.unrc.edu.ar

> D. E. Ferreyra deferreyra@exa.unrc.edu.ar

M. V. Roldán marinaroldan@ing.unlpam.edu.ar

- 1 CONICET, FCEFQyN, Universidad Nacional de Río Cuarto, Ruta 36 Km 601, 5800 Río Cuarto, Argentina
- 2 Facultad de Ingeniería, Universidad Nacional de La Pampa, Calle 110 No 390, 6360 General Pico, Argentina

п

Proof If n = 0, it is obvious by [1, formula (20)]. Assume n > 0 and let

$$M_0(t,\varphi) = \sup_{\epsilon>0} \frac{\varphi(\epsilon^n t)}{\varphi(\epsilon^n)}.$$

Since $M_0(\cdot, \varphi)$ is non-decreasing and non-negative, the limit $i = \lim_{t \to 0^+} M_0(t, \varphi)$ exists. We claim that i = 0. In fact, as φ is a superadditive function, it is easy to see that

$$\varphi\left(\frac{u}{2^k}\right) \le \frac{\varphi(u)}{2^k}, \text{ for all } u \ge 0 \text{ and } k \in \mathbb{N}.$$

Consequently $0 \le M_0\left(\frac{1}{2^k},\varphi\right) \le \frac{1}{2^k}$, for all $k \in \mathbb{N}$, which gives i = 0.

Now, let $\beta > 0$ and let $0 < \eta < 1$ be such that

$$M_0(\eta,\varphi) < \frac{\beta}{2}$$

Then

$$\frac{\varphi(\epsilon^n \eta)}{\varphi(\epsilon^n)} < \frac{\beta}{2} \quad \text{for all} \quad \epsilon > 0. \tag{1}$$

From [1, formula (20)], there exists $\epsilon_0 = \epsilon_0(\eta) > 0$, such that $\epsilon^{-n} |(P_{B(x_0,\epsilon)}(f) - C_{x_0,n}(f))(x)| \le \eta$, for all $x \in B(x_0, \epsilon)$ and $0 < \epsilon < \epsilon_0$. According to (1) we have

$$\frac{\varphi(|(P_{B(x_0,\epsilon)}(f) - C_{x_0,n}(f))(x)|)}{\varphi(\epsilon^n)} \le \frac{\varphi(\epsilon^n \eta)}{\varphi(\epsilon^n)} \le \frac{\beta}{2}$$

for all $x \in B(x_0, \epsilon), 0 < \epsilon < \epsilon_0$. Whence by integrating on $B(x_0, \epsilon)$ we can deduce that

$$\frac{1}{\epsilon\varphi(\epsilon^n)}\int_{B(x_0,\epsilon)}\varphi(|P_{B(x_0,\epsilon)}(f)-C_{x_0,n}(f)|)dx < \beta$$

for all $0 < \epsilon < \epsilon_0$. This completes the proof.

Finally, we observe that if $\varphi \in \mathcal{F}$ then $\varphi(u) > 0$ for all u > 0. Thus, if $\varphi \in \mathcal{F}$ is also superadditive then, for all $0 \le t < s$, $\varphi(s - t) > 0$, whence $\varphi(t) < \varphi(t) + \varphi(s - t) \le \varphi(s)$, that is, $\varphi \in \mathcal{F}$ is a strictly increasing function. So, in Theorem 5 and Corollary 4, we replace " φ is a superadditive strictly increasing function" by " φ is a superadditive function".

Acknowledgements The authors wants to acknowledge Federico Kovac (Universidad Nacional de La Pampa) for the useful comments and suggestions for improving the erratum.

Reference

 Ferreyra, D.E., Levis, F.E., Roldán, M.V.: A new concept of smoothness in Orlicz spaces. Collect. Math. (2021)

Publisher's Note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.