Skip to main content
Log in

A new concept of smoothness in Orlicz spaces

  • Published:
Collectanea Mathematica Aims and scope Submit manuscript

A Correction to this article was published on 19 March 2022

This article has been updated

Abstract

In a 2015 article Cuenya and Ferreyra defined a class of functions in \(L^p\)-spaces, denoted by \(c_n^p(x)\). The class \(c_n^p(x)\) contains the class of \(L^p\)-differentiability functions, denoted by \(t_n^p(x)\), introduced in a 1961 article by Calderón-Zygmund. A more recent paper by Acinas, Favier and Zó introduced a new class of functions in Orlicz spaces \(L^\Phi\), called \(L^\Phi\)-differentiable functions in the present article. The class of \(L^\Phi\)-differentiable functions is closely related to the class \(t_n^p(x)\). In this work, we define a class of functions in \(L^\Phi\), denoted by \(c_n^{\Phi }(x)\). The class \(c_n^{\Phi }(x)\) is more general than the class of \(L^{\varPhi}\)-differentiable functions. We prove the existence of the best local \(\Phi\)-approximation for functions in \(c_n^{\varPhi }(x)\) and study the convexity of the set of cluster points of the set of best \(\Phi\)-approximations to a function on an interval when their measures tend to zero.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Change history

References

  1. Acinas, S., Favier, S., Zó, F.: Extended Best Polynomial Approximation Operator in Orlicz Spaces. Numer. Funct. Anal. Optim. 36 (7), 817–829 (2015)

    Article  MathSciNet  Google Scholar 

  2. Acinas, S., Favier, S., Zó, F.: Inequalities for the extended best polynomial approximation operator in Orlicz spaces. Acta. Math. Sin.-English Ser. 35, 185-203 (2019)

    Article  MathSciNet  Google Scholar 

  3. Bruckner, A.M., Ostrow, E.: Some function classes related to the class of convex functions. Pacific J. Math. 12 (4), 1203–1215 (1962)

    Article  MathSciNet  Google Scholar 

  4. Calderón, A.P., Zygmund, A.: Local properties of solution of elliptic partial differential equation. Studia Math. 20, 171–225 (1961)

    Article  MathSciNet  Google Scholar 

  5. Chui, C.K., Shisha, O., Smith, P.W.: Best local approximation. Approx. Theory. 15, 371–381 (1975)

    Article  MathSciNet  Google Scholar 

  6. Chui, C.K., Smith, P.W., Ward, I.D.: Best L2-local approximation. Approx. Theory. 22, 254–261 (1978)

    Article  Google Scholar 

  7. Chui, C.K., Diamond, D., Raphael, R.A.: On best data approximation. Approx. Theory Appl. 1 (1), 37–56 (1984)

    MathSciNet  MATH  Google Scholar 

  8. Cuenya, H., Favier, S., Zó, F.: Inequalities in Lp-1 for the extended Lp best approximation operator. J. Math. Anal. Appl. 393, 80–88 (2012)

    Article  MathSciNet  Google Scholar 

  9. Cuenya, H.H., Favier, S., Levis, F., Ridolfi, C.: Weighted best local -approximation in Orlicz spaces. Jaen J. Approx. 2 (1), 113–127 (2010)

    MathSciNet  MATH  Google Scholar 

  10. Cuenya, H.H., Ferreyra, D.E.: Best local approximation and differentiability lateral. Jaen J. Approx. 5 (1), 35–53 (2013)

    MathSciNet  MATH  Google Scholar 

  11. Cuenya, H.H., Ferreyra, D.E.: Cp condition and the best local approximation. Anal. Theory Appl. 31, 58–67 (2015)

    Article  Google Scholar 

  12. Cuenya, H.H., Ferreyra, D.E., Ridolfi, C.V.: Best L2 local approximation on two small intervals. Numer. Funct. Anal. Optim. 37 (2), 145–158 (2016)

    Article  MathSciNet  Google Scholar 

  13. Cuenya, H.H., Ferreyra, D.E., Ridolfi C.V.: An extension on best L2 local approximation. Rev. Un. Mat. Argentina. 58 (2), 331–342 (2017)

    MathSciNet  MATH  Google Scholar 

  14. Cuenya, H.H., Rodriguez, C.N.: Differentiability and best local approximation. Rev. Un. Mat. Argentina. 54 (1), 15–25 (2013)

    MathSciNet  MATH  Google Scholar 

  15. Ferreyra, D.E., Levis, F.E., Roldán, M.V.: A new approach to derivatives in L2-spaces. Numer. Funct. Anal. Optim. 41 (10), 1272–1285 (2020)

    Article  MathSciNet  Google Scholar 

  16. Levis, F.E.: Polynomial inequalities on measurable sets in Lorentz spaces and their applications. Math. Inequal. Appl. 23 (2), 759–764 (2020)

    MathSciNet  MATH  Google Scholar 

  17. Maligranda, L.: Orlicz Spaces and Interpolation. Seminars in Mathematics 5, Univ. Estadual de Campinas, Campinas SP (1989)

  18. Marano, M.: Mejor Aproximación Local. Ph. D. Dissertation, Universidad Nacional de San Luis (1986)

  19. Rao, M.M., Ren, Z.O.: Theory of Orlicz spaces. Dekker, New York (1991)

    MATH  Google Scholar 

  20. Walsh, J.L.: On approximation to an analitic function by rational fnctions of best approximation. Math. Z. 38, 163–176 (1934)

    Article  MathSciNet  Google Scholar 

  21. Walsh. J.L.: Padé Approximants as limits of rational functions of best approximations, real domain. Approx. Theory. 11, 225-230 (1974)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to F. E. Levis.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Partially supported by Universidad Nacional de Río Cuarto (grant PPI 18/C559), Universidad Nacional de La Pampa, Facultad de Ingeniería (grant Resol. Nro. 165/18), CONICET (Grant PIP 112-201501-00433CO), and ANPCyT (grant PICT 2018-03492).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ferreyra, D.E., Levis, F.E. & Roldán, M.V. A new concept of smoothness in Orlicz spaces. Collect. Math. 73, 505–520 (2022). https://doi.org/10.1007/s13348-021-00331-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13348-021-00331-8

Keywords

Mathematics Subject Classification

Navigation