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Abstract
Linear projections from ℙk to ℙh appear in computer vision as models of images of 
dynamic or segmented scenes. Given multiple projections of the same scene, the identi-
fication of sufficiently many correspondences between the images allows, in principle, to 
reconstruct the position of the projected objects. A critical locus for the reconstruction 
problem is a variety in ℙk containing the set of points for which the reconstruction fails. 
Critical loci turn out to be determinantal varieties. In this paper we determine and classify 
all the smooth critical loci, showing that they are classical projective varieties.

Keywords  Determinantal varieties · Minimal degree varieties · Multiview geometry · 
Critical loci

1  Introduction

In this paper we classify the smooth determinantal varieties arising in the multiview geom-
etry and computer vision settings as critical loci for reconstruction problems. Since criti-
cal loci and determinantal varieties belong to different research fields, it is mandatory to 
explain the relation between them.

Photos of static three-dimensional scenes taken from pinhole cameras are usually 
modelled by linear projections from ℙ3 to ℙ2 . Similarly, in computer vision, linear pro-
jections from ℙk to ℙh, are used to describe videos or images of particular dynamic and 
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segmented scenes ( [18, 19, 32]). For this reason a camera can be identified with a lin-
ear projection � ∶ ℙ

k
⤏ ℙ

h.
The reconstruction problem is the following: given a set of points in ℙk with 

unknown coordinates, called scene, and n images of it in n target spaces ℙhi , i = 1, ..., n , 
taken from unknown cameras, the goal is to recover the positions of cameras and scene 
points in the ambient space ℙk .

Sufficiently many images and sufficiently many corresponding points in the given 
images should in principle allow for a successful projective reconstruction, where cor-
responding points in the targets are images of the same point in the scene. Nonetheless, 
there exist sets of points in the ambient space ℙk, for which the projective reconstruction 
fails. These configurations of points are called critical, which means that there exist 
other non projectively equivalent sets of points and cameras that give the same images 
in the target spaces.

Critical loci turn out to be algebraic varieties and have been studied by many authors, 
indeed there is a wide literature on the subject. With analysis ad hoc, in the classical 
case of projections from ℙ3 to ℙ2 [11, 16, 17, 24–24, 31], the critical loci can be twisted 
cubic curves [11], or quadric surfaces [23, 24]. In the case of projections onto ℙ2 from 
higher dimensional spaces, [4, 5, 9], critical loci have been proven to be minimal degree 
varieties [9] for one projection, or, in a more general setting and under suitable generic-
ity assumptions, either hypersurfaces, if the ambient space is odd dimensional, or deter-
minantal varieties of codimension two if the ambient space is even dimensional [5].

Later, in [2, 7–8] the study of the ideal of critical loci has been formalized making use 
of the so-called Grassmann tensor introduced in [18]. A seminal case of this approach has 
been considered in [2], where the authors computed the equations of the critical locus for 
three projections from ℙ2 to ℙ1 . In [6, 8] the case of three projections from ℙ4 to ℙ2 is 
studied in detail. When the projections are general enough, critical loci are shown to be 
Bordiga surfaces, and conversely, every Bordiga surface is shown to be critical for suitable 
choices of three projections. When the genericity assumptions are not fulfilled, critical loci 
are shown to be not irreducible, with components of different dimensions. Finally, in [7], 
critical loci which are hypersurfaces in the ambient space are investigated.

On the other hand, the classification of embedded smooth projective varieties is a clas-
sical problem in algebraic geometry. For low degree or dimension and codimension, the 
classical approach to a classification problem consists in applying suitable techniques to 
get a finite list of possible cases, followed by the construction of explicit examples in order 
to establish the effectiveness of the list. Determinantal varieties are quite classical varieties, 
whose study takes advantage of homological techniques. The seminal result in the subject 
is Hilbert-Burch Theorem, but it is worth mentioning the structure theorem of codimension 
3 Gorenstein ideals by D. Buchsbaum and D. Eisenbud, or Buchsbaum-Rim and Eagon-
Northcott complexes. See [1, 10, 12, 25, 26] for results on determinantal varieties, and for 
further references on the subject.

Under this view point, since critical loci are in the class of determinantal varieties, in 
this paper we approach in full generality the problem of determining which smooth deter-
minantal varieties appear as critical loci and of classifying them. More precisely, we deter-
mine under what assumptions the critical locus for a reconstruction problem for n pro-
jections from ℙk to ℙhi for i = 1,… , n is a smooth variety, and provide a complete and 
effective classification of smooth varieties that can be critical.

The classification results are summarized as follows, where n is the number of 
projections.
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•	 n = 2

	   All smooth critical loci are minimal degree varieties. Conversely, with the only 
exception of Veronese surface in ℙ5 , every minimal degree variety embedded in ℙk , 
with codimension c, c ≤ k ≤ 2c + 1 , is the critical locus for suitable pairs of projec-
tions.

•	 n = 3

	   X in ℙk is a smooth critical locus if and only if X is

•	 a cubic plane curve, in the case of three projections from ℙ2 to ℙ1 , ℙ1 , and ℙ1;
•	 a cubic surface in ℙ3 , in the case of three projections from ℙ3 to ℙ1 , ℙ1 , and ℙ2;
•	 a Bordiga surface in ℙ4 in the case of three projections from ℙ4 to ℙ2 , ℙ2 , and ℙ2.

•	 n = 4

	   Smooth critical loci are quartic determinantal surfaces in ℙ3 , in the case of 4−uples 
of projections from ℙ3 to ℙ1 , ℙ1 , ℙ1 , and ℙ1 , containing four pairwise skew lines. Con-
versely, given four pairwise skew lines, it is possible to construct a smooth determinan-
tal surface of degree 4 through them that is the critical locus for a suitable reconstruc-
tion problem as above.

The plan of the paper is as follows. In Sect. 2, we introduce the setting of multiple view 
geometry and we recall the construction of the Grassmann tensor. In Sect. 3, we introduce 
critical loci and determine the generators of their ideals, showing in particular that criti-
cal loci are determinantal varieties. In Sect. 4, we give some numerical bounds for critical 
loci to be smooth, and in particular we show that a critical locus can be smooth only if the 
number n of projections is at most 4. The remaining Sects. 5, 6, 7 are devoted to the study 
of critical loci in the cases n = 2, n = 3, n = 4 , respectively.

2 � On multiview geometry and Grassmann tensors

In this section we fix notation and terminology and give a short overview of classical facts 
in Computer Vision related to the problem of projective reconstruction of scenes and cam-
eras from multiple views.

In this context, a camera P is a linear projection from ℙk onto ℙh, from a linear subspace 
C of dimension k − h − 1 , called center of projection. The target space ℙh is called view. A 
scene is a set of points �i ∈ ℙ

k, i = 1,… ,N.
Using homogeneous coordinates in ℙk and ℙh, we identify P with a (h + 1) × (k + 1) 

matrix of maximal rank, defined up to a multiplicative constant. Hence C comes out to be 
the right annihilator of P.

Let us consider a set of n cameras Pj ∶ ℙ
k ⧵ Cj → ℙ

hj projecting the same scene in ℙk 
and the corresponding set of images in the different target spaces. In this setting, proper 
linear subspaces Li ⊆ ℙ

hi , i = 1,… , n , are said to be corresponding if there exists at least a 
point � ∈ ℙ

k such that Pi(�) ∈ Li for all i = 1,… , n.
In the context of multiple view geometry, the problem of projective reconstruction of a 

scene, given multiple images of it, is the following: given sufficiently many scene points in 
ℙ
k and identified a suitable number of corresponding subspaces on each image, one wants 

to get the projection matrices (up to projective transformations), i.e. the cameras, and the 
coordinates in ℙk of the scene points.
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2.1 � The Grassmann tensors

Hartley and Schaffalitzky, [18], have constructed a set of multiview tensors, called Grassmann 
tensors, encoding the relations between sets of corresponding subspaces. We recall here the 
basic elements of their construction.

We consider n projections Pj ∶ ℙ
k ⧵ Cj → ℙ

hj , j = 1,… , n, with centers C1,… ,Cn.
First generality assumption: we assume that the intersection C1 ∩⋯ ∩ Cn is empty.
Let Lj ⊆ ℙ

hj be a general linear subspaces of codimension �j , j = 1,… , n . We say that 
(L1,… , Ln) is a n–tuple of corresponding subspaces if and only if (P1)

−1(L1) ∩⋯ ∩ (Pn)
−1(Ln) 

is not empty, where Y is the Zariski closure of Y. We allow �j to be equal to 0 for some j. If this 
happens, the associated view does not impose any constrain to the reconstruction problem, 
and so the effect of setting �j = 0 is to decrease the number of views.

We remark that the Computer Vision community uses a slightly different definition of cor-
responding spaces: the spaces are said to be corresponding if (P1)

−1(L1) ∩⋯ ∩ (Pn)
−1(Ln) is 

not empty. The difference is that the centers Cj are not considered when the inverse images are 
intersected in this setting, while we prefer to include them, so to get projective varieties, and 
not only open subsets of them.

From the Grassmann formula, if 
∑

j �j = k + 1, the existence of points in the previous 
intersection gives a constrain which allows us to construct the Grassmann tensor. Hartley and 
Schaffalitzky call the n–tuple (�1,… , �n) a profile for the reconstruction problem. We remark 
that we allow �j = 0 , too, while, in [18], �j ≥ 1 for every j = 1,… , n.

Let L1,… , Ln be n general linear subspaces as above and let Sj be the maximal rank matrix 
of type (hj + 1) × (hj − �j + 1) whose columns are a basis for Lj . By definition, if the Lj ’s are 
corresponding subspaces, there exists a point � ∈ ℙ

k such that Pj(�) ∈ Lj for every j. In other 
words there exist n vectors �� ∈ ℂ

hj−�j+1 j = 1,… , n such that:

The coefficient matrix TP1,…,Pn

S1,…,Sn
 is square of order n +

∑
hj = k + 1 +

∑
(hj − �j + 1) , where 

the left side is the number of rows, the right side is the number of columns, and they coin-
cide due to our assumptions on the profile. The existence of a non–trivial solution 
(�, ��,… , ��) of system (1) implies that the determinant of TP1,…,Pn

S1,…,Sn
 is zero.

The determinant TP1,…,Pn (L1,… , Ln) = det(T
P1,…,Pn

S1,…,Sn
) can be thought of as a n–linear form 

(tensor) in the Plücker coordinates of the spaces Lj’s, in the corresponding Grassmann variety. 
This tensor is called Grassmann tensor. From the above discussion, it follows that this tensor 
vanishes if and only if the linear spaces L1,… , Ln are corresponding. In [18], the authors show 
that the Grassmann tensor allows the reconstruction of the projection matrices, up to the only 
case when all target spaces are ℙ1 . For this reason, the Computer Vision community does not 
consider the case above in reconstruction problems.

(1)

⎛⎜⎜⎜⎝

P1 S1 0 … 0 0

P2 0 S2 … 0 0

⋮ ⋮

Pn 0 0 … 0 Sn

⎞⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎝

�

��
��
⋮

��

⎞
⎟⎟⎟⎟⎠
=

⎛⎜⎜⎜⎝

0

0

⋮

0

⎞⎟⎟⎟⎠
.
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3 � Critical loci and their ideals

Roughly speaking, one guesses that the reconstruction problem can be successfully solved if 
sufficiently many views and sufficiently many sets of corresponding points in the given views 
are known. This is generally true, but even in the classical set–up of two projections from ℙ3 
to ℙ2 one can have non projectively equivalent pairs of scenes and cameras that produce the 
same images in the view planes, thus preventing reconstruction. Such configurations and the 
loci they describe are referred to as critical. In [5], critical loci for projective reconstruction of 
camera centers and scene points from multiple views for projections from ℙk to ℙ2 have been 
introduced and studied.

Now we recall the basic definition.

Definition 3.1  Given n projections Qi ∶ ℙ
k
⤏ ℙ

hi , a set of points {�1,… ,�N} in ℙk is 
said to be a critical configuration for projective reconstruction for Q1,… ,Qn if there exists 
another set of n projections Pi ∶ ℙ

k
⤏ ℙ

hi and another set {�1,… ,�N} ⊂ ℙ
k , non-projec-

tively equivalent to {�1,… ,�N}, such that, for all i = 1,… , n and j = 1,… ,N , we have 
Pi(�j) = Qi(�j) , up to homography in the targets. The two sets {�j} and {�j} are called 
conjugate critical configurations, with associated conjugate projections {Qi} and {Pi}.

In Proposition 3.1, we prove that points in critical configurations fill an algebraic vari-
ety, called critical locus X  , whose ideal can be obtained by making use of the Grassmann 
tensor introduced above.

Indeed, the Grassmann tensor TP1,…,Pn (L1,… ,Ln) encodes the algebraic relations 
between corresponding subspaces in the different views of the projections P1,… ,Pn . 
Hence by definition of critical set, if {�j,�j} are conjugate critical configurations, then, for 
each j, the projections Q1(�j),… ,Qn(�j) are corresponding points not only for the projec-
tions Q1,… ,Qn, but for the projections P1,… ,Pn , too.

Following the construction above, we first choose a point � in the critical locus and a 
profile (�1,… , �n) , where �i is the codimension of Li in ℙhi , for i = 1,… , n . If Qi(�) ∈ Li , 
for every i = 1,… , n , then TP1,…,Pn (L1,… , Ln) = 0 . The previous condition is fulfilled if 
Li is spanned by Qi(�) and any other hi − �i independent points in ℙhi . So, we can suppose

of maximal rank hi − �i + 1 , that is to say, S′
i
 is a general (hi + 1) × (hi − �i) matrix of rank 

hi − �i . Due to this choice, the matrix TP1,…,Pn

S1,…,Sn
 becomes

The determinant det(TP1,…,Pn

S1,…,Sn
) is a sum of products of maximal minors of S�

1
,… , S�

n
 , and 

maximal minors of the matrix

Si =
(
Qi(�) �i1 … �i,hi−�i

)
=
(
Qi(�) S�

i

)

T
P1,…,Pn

S1,…,Sn
=

⎛⎜⎜⎜⎝

P1 Q1(�) S�
1

0 0 0 … 0 0 0

P2 0 0 Q2(�) S�
2
0 … 0 0 0

⋮ ⋮

Pn 0 0 0 0 0 … 0 Qn(�) S�
n

⎞⎟⎟⎟⎠
.

(2)M
P1,…,Pn

Q1,…,Qn
=

⎛⎜⎜⎜⎝

P1 Q1(�) 0 0 … 0 0

P2 0 Q2(�) 0 … 0 0

⋮ ⋮

Pn 0 0 0 … 0 Qn(�)

⎞⎟⎟⎟⎠
.
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Such a matrix is a (n +
n∑
i=1

hi) × (n + k + 1) matrix, the last n columns of which are of lin-

ear forms, while the first k + 1 columns are of constants.
More explicitly, if we consider MP1,…,Pn

Q1,…,Qn
 as a block matrix, the coefficients are the minors 

obtained by delating hi − �i rows from the i–th block

for every block.
If we allow the profile to change, because � is in the critical locus independently from the 

profile, we get all the possible maximal minors of MP1,…,Pn

Q1,…,Qn
 . The discussion above is part of 

the proof of the following result.

Proposition 3.1  The ideal I(X) of the critical locus X  is generated by the maximal minors 
of MP1,…,Pn

Q1,…,Qn
 , and so X  is a determinantal variety. Moreover, X  contains the centers of the 

projections Qj’s.

Proof  We only have to prove that the center C′
j
 of Qj is contained in X  for every j = 1,… , n . 

C′
j
 is the zero locus of Qj(�) , and so MP1,…,Pn

Q1,…,Qn
 drops rank at every point in C′

j
 , for each j. 	

� ◻

We remark that, if �i ≥ 1 , then some maximal minors of MP1,…,Pn

Q1,…,Qn
 do not appear in 

det(T
P1,…,Pn

S1,…,Sn
) for whatever profile, and so they should not be among the generators of I(X) . 

This fact supports our choice to allow �i = 0.
From the first generality assumption, it follows both that the first k + 1 columns of MP1,…,Pn

Q1,…,Qn
 

are linearly independent, and that the linear forms in the last n columns of the above matrix 
span a linear space of dimension k + 1 in R1 =

(
R = K[x0,… , xk]

)
1
 , where ℙk = Proj (R) . In 

fact, no point is common to either the centers of the Pi ’s or of the Qj’s.
As in [8], we write the matrix MP1,…,Pn

Q1,…,Qn
 as the following block matrix

where A is a (n − k − 1 +

n∑
i=1

hi) × (k + 1) matrix, B is a (n − k − 1 +

n∑
i=1

hi) × n matrix, C 

is an order (k + 1) square matrix, and, finally, D is a (k + 1) × n matrix.

Due to the first generality assumption, 
(
A

C

)
 has rank k + 1 . Hence, it contains an inverti-

ble square submatrix of order k + 1 . Up to row exchanges, we can assume that the last k + 1 
rows give us the required invertible matrix, so we will assume C to be invertible.

By performing elementary operations on columns and rows, we can reduce MP1,…,Pn

Q1,…,Qn
 to the 

following easier form

(
Pi 0 … 0 Qi(�) 0 …

)
,

M
P1,…,Pn

Q1,…,Qn
=

(
A B

C D

)

(
0 NX

Ik+1 0

)
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where NX = B − AC−1D is a (n − k − 1 +

n∑
i=1

hi) × n matrix of linear forms. Furthermore, 

the maximal minors of MP1,…,Pn

Q1,…,Qn
 span the same ideal as the maximal minors of NX . Hence, 

we have the following result.

Corollary 3.1  I(X) is generated by the maximal minors of NX = B − AC−1D , with the same 
notations as above.

Since the critical locus X  is a determinantal variety whose ideal is generated by the 
maximal minors of a matrix of linear forms, the expected dimension of X  is

From Porteous’s formula ( [1], formula 4.2, p. 86),we get, if dim(X) = edX,

Second generality assumption: we assume projections P1,… ,Pn , and Q1,… ,Qn are gen-
eral enough to guarantee that the critical locus X  has the expected dimension 2k −

∑n

i=1
hi.

In Computer Vision, real experiments are performed on noisy measurements, and com-
puter simulations are performed on randomly generated data. Both practises have the effect 
of producing projections that are as general as possible. The associated critical locus has 
then the smallest dimension allowed by the number and dimension of the views. In par-
ticular, the dimension of the critical locus is the expected one when the views satisfy the 
bounds we discuss in next section. Nevertheless, it is worthwhile to analyse the cases in 
which this assumption is not fulfilled, both from a Computer Vision point of view and 
from the geometric one. In fact, from the Computer Vision perspective, when the projec-
tions are close to cases in which the critical locus has dimension bigger than expected, that 
is to say the second generality assumption is not fulfilled, the reconstruction procedure is 
numerically unstable, in general, and so one tries to avoid such cases. On the other hand, 
from a geometric point of view, such cases are quite interesting and a full classification 
seems to be not available, yet. For example, in [17] the authors study in details the case of 
three projections from ℙ3 to ℙ2 , while in [6], the case of three projections from ℙ4 to ℙ2 is 
considered. In both papers, the classification of the possible cases is achieved by ad hoc 
arguments and is quite involved.

From now on, every time we assert we are in the general case, we assume that both the 
generality assumptions hold.

4 � Numerical bounds

In this section, we deduce both a lower bound for 
∑

hi , and an upper bound on the number 
n of views to get smooth critical loci.

Lemma 4.1  In the same notations as above, we have

(3)edX = k −

(
1 + (n − k − 1 +

n∑
i=1

hi) − n

)
= 2k −

n∑
i=1

hi.

(4)deg(X) =

�
n − k − 1 +

∑n

i=1
hi

n − 1

�
.
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Proof  As 0 ≤ �i ≤ hi for every i = 1,… , n , and 
∑n

i=1
�i = k + 1 , then we have 

k + 1 ≤

n∑
i=1

hi . 	�  ◻

We are interested in studying the case X  is irreducible and non–singular. To begin, 
we relate the projection centers to singular critical loci.

Lemma 4.2  If two centers of the projections Q1,… ,Qn intersect, the critical locus is 
singular.

Proof  If the centers of Q1 and Q2 , for example, have a common point, two columns of 
matrix (2) vanish, and so its rank is at most k + n − 1 . From generalities on determinantal 
varieties, it follows that the critical locus is singular. 	�  ◻

Now, we can compute an upper bound on the number n of views to get an associated 
smooth critical locus.

Theorem 4.1  Let X  be the codimension c ≥ 2 critical locus for a couple of n ≥ 4 projec-
tions P1,… ,Pn and Q1,… ,Qn from ℙk to ℙhi , i = 1,… , n . Then, either X  is not irreduc-
ible, or is singular.

Proof  The center Ci of Qi has dimension k − hi − 1 . Since Ci ⊆ X  , we have that 
dimCi ≤ dimX  , and so k − hi − 1 ≤ k − c , or equivalently,

Let us assume that c − 1 ≤ h1 ≤ ⋯ ≤ hn.
If h1 = c − 1 , then the center C1 of Q1 has codimension c and is contained in X  . Then, X  

is not irreducible.
Assume now that h1 ≥ c . Since dimX = 2k −

∑n

i=1
hi = k − c , we get

On the other hand, the center Cj of projection Qj has dimension

It is easy to check that (n − 2)c ≥ c + 2 for every n ≥ 4 and c ≥ 2 . On the other 
hand, since hi ≥ c , we have 

∑n−2

i=1
hi ≥ c + 2 . This last inequality implies that 

dim(Cn) + dim(Cn−1) − k ≥ 0 , and so Cn and Cn−1 meet. This implies that X  is singular, as 
stated. 	�  ◻

The same proof allows us to state also the following result.

(5)k + 1 ≤

n∑
i=1

hi.

hi ≥ c − 1.

k =

n∑
i=1

hi − c.

dimCj = k − hj − 1 =
∑
i≠j

hi − c − 1.



465Smooth determinantal varieties and critical loci in multiview…

1 3

Theorem 4.2  Let X  be the codimension 1 critical locus for a couple of n ≥ 5 projections 
P1,… ,Pn and Q1,… ,Qn from ℙk to ℙhi , i = 1,… , n . Then, either X  is not irreducible, or 
is singular.

Hence, we have to study the cases n = 2 and n = 3 , for every codimension c and n = 4 
for c = 1 , only.

5 � The n = 2 view case

In this section, we want to prove that, under some mild assumptions, the critical locus for 
n = 2 is a smooth and irreducible variety of minimal degree, and, conversely, that every 
smooth irreducible variety of minimal degree, but the Veronese surface, is critical for a 
suitable couple of projections. In this way, we classify all smooth critical loci in Com-
puter Vision for 2 views. E.g., when the codimension is 1, the critical locus for two projec-
tions from ℙ3 to ℙ2 is a quadric surface, and this is well–known in the Computer Vision 
community; when c = 2 , the critical locus for two projections from ℙ4 to ℙ3 is a rational 
normal scroll; when c = 3 the critical locus for two projections from ℙ5 to ℙ4 is either 
ℙ(O

ℙ1 (2)⊕O
ℙ1 (2)) , or ℙ(O

ℙ1 (1)⊕O
ℙ1 (3)).

When n = 2 , we have h1 + h2 = k + c . Moreover, k > h2 ≥ h1 ≥ c + 1 . We remark that 
the last inequality on the right is a consequence of the previous equality.

Now, we prove that the critical locus is a variety of minimal degree.

Proposition 5.1  In the general case, the codimension c critical loci for two views are mini-
mal degree varieties.

Proof  Corollary 3.1 implies that the ideal I(X) is generated by the maximal minors of NX 
whose type is (c + 1) × 2 , and so it is generated by quadrics. Furthermore, from Eq. (4), we 
get that deg(X) = 1 + c . This description proves that X ⊆ ℙ

k is a minimal degree variety 
(see [13]). 	�  ◻

The generality assumption in Proposition  5.1 implies that the minors of NX define a 
variety of the expected codimension c.

From the classification of minimal degree varieties in [13], we get that X  is singular as 
soon as k ≥ 2(c + 1) . Hence, smooth irreducible varieties of minimal degree that can be 
critical loci are embedded in ℙk for c + 2 ≤ k ≤ 2c + 1.

Now, we consider the converse of Proposition 5.1.

Proposition 5.2  With the only exception of Veronese surfaces in ℙ5 , every codimension c 
minimal degree variety embedded in ℙk with c + 2 ≤ k ≤ 2c + 1 , is the critical locus for a 
suitable pair of projections.

Proof  Let us consider matrix M in the case of 2 projections, and the matrix NX we obtain 
from it, as discussed in Sect. 2. In the 2 view case, we have

M =

(
P1 Q1(X) 0

P2 0 Q2(X)

)
=

(
A B

C D

)
,
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where P1 ( P2 , respectively) is a (h1 + 1) × (k + 1) ( (h2 + 1) × (k + 1) , respectively) full rank 
matrix, and, up to transposition, Q1(X) = (Q11(X),… ,Q1,h1+1

(X)) and 
Q2(X) = (Q21(X),… ,Q2,h2+1

(X)) and the linear forms in each one of them are linearly 
independent. Moreover, A is of type (c + 1) × (k + 1) , C is of type (k + 1) × (k + 1) , and we 
assume it is invertible, B is of type (c + 1) × 2 , and finally, D is of type (k + 1) × 2 . The 
assumption on the rank of C is always fulfilled up to collecting rows of M in a different 
way. Notice that we can take all rows from P2 and make suitable exchanges among the rows 

of P1 so to get that the last k + 1 rows of 
(
A

C

)
 are linearly independent.

We recall that hi ≥ c + 1 for i = 1, 2.
When computing NX , we get

where AC−1 = (E|F) . It is evident that the first column of NX depends on the first view, and 
the second from the second view.

Let us consider now a codimension c variety V of minimal degree, and let N be the 
(c + 1) × 2 matrix of linear forms associated to V (see [13]). To fix notation, let nij be the 
elements of N. By comparing N and NX , we can choose E and Q1,c+2(X),… ,Q1,h1+1

(X) as 
general as possible, and we get

We choose F as (−I|F�) , F′ being general, and Q2,c+2(X),… ,Q2,h2+1
(X) arbitrary. Similarly 

to the previous case, we get

Once we choose a general invertible matrix C of order k + 1 , we compute A = (E|F)C 
and so we get the matrix M as required. We remark that the assumptions on the ranks of 
P1,P2,Q1(X) and Q2(X) are satisfied by the generality of the choices in the construction. 	
� ◻

6 � The n = 3 view case

In this section, we classify all smooth varieties that can be obtained as critical loci for cou-
ples of three projections.

Before approaching the problem, we briefly recall the list of codimension c smooth 
determinantal varieties associated to matrices of type (c + 2) × 3 . In the case under consid-
eration, since there are three views, we have h1 + h2 + h3 = k + c . From the proof of Theo-
rem 4.1, we know that, if a view verifies hi ≤ c − 1 , then either the critical locus does not 

NX =

⎛⎜⎜⎝

⎛⎜⎜⎝

Q11(X)

⋮

Q1,c+1(X)

⎞⎟⎟⎠
−E

⎛⎜⎜⎝

Q1,c+2(X)

⋮

Q1,h1+1
(X)

⎞⎟⎟⎠

�������
−F

⎛⎜⎜⎝

Q21(X)

⋮

Q2,h2+1
(X)

⎞⎟⎟⎠

⎞⎟⎟⎠

⎛⎜⎜⎝

Q11(X)

⋮

Q1,c+1(X)

⎞⎟⎟⎠
=

⎛⎜⎜⎝

n11
⋮

nc+1,1

⎞⎟⎟⎠
+ E

⎛⎜⎜⎝

Q1,c+2(X)

⋮

Q1,h1+1
(X)

⎞⎟⎟⎠
.

⎛⎜⎜⎝

Q21(X)

⋮

Q2,c+1(X)

⎞⎟⎟⎠
=

⎛⎜⎜⎝

n12
⋮

nc+1,2

⎞⎟⎟⎠
+ F�

⎛⎜⎜⎝

Q2,c+2(X)

⋮

Q2,h2+1
(X)

⎞⎟⎟⎠
.
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have codimension c, or is not irreducible. Then, we can assume hi ≥ c for i = 1, 2, 3 , from 
which we get that k ≥ 2c . On the other hand, a determinantal variety of codimension c as 
the ones we consider, is singular when embedded in ℙk with k ≥ 2c + 2 . Hence, smooth 
determinantal varieties can be critical loci for two triples of projection only if embedded in 
a projective space ℙk with k = 2c or k = 2c + 1 . The degree of such varieties is the expected 

one, namely deg(X) =
(
c + 2

2

)
 , as it follows from Eq. (4). Thanks to classification results 

on smooth varieties with small invariants, in the case we are dealing with, the list of 
smooth varieties is complete for c ≤ 3 . This is not a limitation for us because, as we will 
see in Theorem 6.1, smooth critical loci appear only when c ≤ 2.

For sake of completeness, we list the smooth determinantal varieties of degree 
(
c + 2

2

)
 

for c ≤ 3 : 

c = 1	� plane cubic curves: they can be critical for a couple of three projections from ℙ2 
to ℙ1 . Even if this case is not of interest for the Computer Vision community, we 
include it for completeness from a geometric perspective;

c = 1	� cubic surfaces: they can be critical for a couple of three projections from ℙ3 to 
ℙ
1,ℙ1,ℙ2;

c = 2	� Bordiga surfaces: they can be critical for a couple of three projections from ℙ4 to 
ℙ
2;

c = 2	� Bordiga scrolls: they can be critical for a couple of three projections from ℙ5 to 
ℙ
2,ℙ2,ℙ3;

c = 3	� 3-fold scrolls on ℙ2 : they can be critical for a couple of three projections from ℙ6 to 
ℙ
3;

c = 3	� 4-fold scrolls on ℙ2 : they can be critical for a couple of three projections from ℙ7 to 
ℙ
3,ℙ3,ℙ4.

The codimension 1 cases are part of classical results on the classification of smooth 
hypersurfaces, the codimension 2 ones are in [20], while the codimension 3 ones are in 
[14]. We briefly describe the codimension 2 and 3 varieties.

The Bordiga surface is the embedding in ℙ4 of the blow–up of ℙ2 at 10 general points 
via the linear system of plane quartics through the points. Let Z ⊆ ℙ

2 be a set of 10 gen-
eral points, and B ⊆ ℙ

4 the associated Bordiga surface. The ideal sheaves IZ and IB are 
described from the following exact sequences:

The matrices NZ and NB are not independent since it holds

where x0,… , x4 are coordinates in ℙ4 and z0, z1, z2 are coordinates in ℙ2.
The Bordiga scroll X is ℙ(E) embedded in ℙ5 via the tautological bundle � , where E is 

any rank 2 vector bundle defined by the extension

0 → O
4

ℙ2 (−5)
NZ

⟶O
5

ℙ2 (−4) → IZ → 0 and 0 → O
3

ℙ4 (−4)
NB

⟶O
4

ℙ4 (−3) → IB → 0.

(6)(x0,… , x4)NZ = (z0, z1, z2)N
T
B

0 → O
ℙ2 → E → IZ(4) → 0
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where Z ⊆ ℙ
2 is a set of 10 general points, as for the Bordiga surface (see [27]). By com-

paring the resolution of IZ and the defining extension for E , we get the following exact 
sequence

The minimal free resolution of X is

and, as for the Bordiga surface, the matrices NX and NE are related in the equation

In the codimension 3 case, the resolutions of the two scrolls are obtained by means of the 
Eagon–Northcott complex, and it follows that they both have sectional genus 6. In such a 
case, we can construct them both similarly to the case of the Bordiga scroll. We remark 
that, in principle, the 3–fold scroll could be constructed as blow–up of a scroll at four dou-
ble points, but it is not known whether it exists. The starting point is now a set Z of 15 gen-
eral points in ℙ2 , and a rank 2 vector bundle E defined by the extension

Since the minimal free resolution of IZ is

we get the following presentation of E:

Let NX be the 5 × 3 matrix that satisfy the equation

Then, the defining ideal I(X) of X is generated by the 3 × 3 minors of NX.
Since the construction of the 4–fold scroll is analogous to the one of the 3–fold scroll, 

we only stress the differences. This time, the vector bundle to consider is the rank 3 one 
defined by the extension

where Z is a set of 15 general points as in the previous case. Then, the matrix NX is 
obtained as in the previous case, but NE is now a matrix with type 8 × 5.

Now, we address the problem of getting the above smooth varieties as critical loci for 
the reconstruction problem. As we have seen above, we consider a codimension c, determi-
nantal variety X ⊆ ℙ

k , with k = 2c or k = 2c + 1 , whose defining ideal is generated by the 
3 × 3 minors of a (c + 2) × 3 matrix N of linear forms. The result is contained in the follow-
ing classification Theorem.

0 → O
4

ℙ2 (−1)
NE

⟶O
6

ℙ2 → E → 0.

0 → O
3

ℙ5 (−4)
NX

⟶O
4

ℙ5 (−3) → IX → 0,

(x0,… , x5)NE = (z0, z1, z2)N
T
X
.

0 → O
ℙ2 → E → IZ(5) → 0.

0 → O
5

ℙ2 (−6) → O
6

ℙ2 (−5) → IZ → 0,

0 → O
5

ℙ2 (−1)
NE

⟶O
7

ℙ2 → E → 0.

(x0,… , x6)NE = (z0, z1, z2)N
T
X
.

0 → O
2

ℙ2 → E → IZ(5) → 0,
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Theorem 6.1  Let X ⊆ ℙ
k be a smooth codimension c variety.

X is the critical locus for a suitable couple of three projections from ℙk if and only if 
either X ⊆ ℙ

2 is a cubic curve, or X ⊆ ℙ
3 is a cubic surface, or, finally, X ⊆ ℙ

4 is a Bor-
diga surface. In particular, c ≤ 2.

Proof  From the previous discussion, it follows that h1 = h2 = c , and h3 = c + � for 
k = 2c + � , � = 0 or 1. Let us consider general projections Pi,Qi ∶ ℙ

k
→ ℙ

hi for i = 1, 2, 3.
At first, we compute the matrix NX as in Corollary 3.1, and so we get

To write NX as above, we need that the centers of P2 and P3 do not meet. If this is not the 
case, we select rows from P1,P2 and P3 to get an invertible submatrix C. In such a case, NX 
is computed by using different submatrices of MX , but the result holds as well.

If we multiply the matrices above, and perform elementary operations on the rows, we 
get the matrix N = (nij) such that: (i) its j-th column depend on Qj only, for j = 1, 2, 3 ; (ii) 
nc+2,1 = nc+1,2 = 0 . In the case h3 = c , it is possible to perform elementary operations of 
the rows of N so that (iii) nc,3 = 0.

It follows that the critical locus is actually a codimension c scheme whose defining ideal 
is generated by the 3 × 3 minors of a matrix with type (c + 2) × 3 of linear forms.

It is known that the defining equation of every smooth cubic surface X ⊆ ℙ
3 can be 

written as L1L2L3 +M1M2M3 = 0 for suitable linear forms Li,Mi , i = 1, 2, 3 . An equation 
of this kind for the cubic surface is called Cayley–Salmon. We remark that, for a given 
surface, there are 120 different Cayley–Salmon equations that define it (see [15]). The lines 
defined by Li = Mj = 0 are contained in the cubic surface X. The Cayley–Salmon equation 
is the locus where

drops rank. If we add scalar multiples of the first two columns to the third one, we get 
a matrix NX that verifies constrains (i),  (ii) above, and the linear forms on the third col-
umn are linearly independent. If we compare matrices NX and NX under the simplifying 
assumption that

we get Q11 = L1,Q12 = M1,Q21 = e31M2 + L2,Q22 = M2 , and Q3j = nj3 for j = 1, 2, 3 , and 
so we obtain the projections Q1,Q2,Q3 . If we choose a general invertible matrix C of order 
4, we get A = (E|F)C , and so we obtain also the projections P1,P2,P3.

NX =

⎛⎜⎜⎜⎝

Q11(X) 0 0

⋮

Q1,c+1(X) 0 0

0 Q21(X) 0

⎞⎟⎟⎟⎠
− AC−1

⎛
⎜⎜⎜⎜⎜⎜⎝

0 Q22(X) 0

⋮

0 Q2,c+1(X) 0

0 0 Q31(X)

⋮

0 0 Q3,h3+1
(X)

⎞
⎟⎟⎟⎟⎟⎟⎠

.

NX =

⎛⎜⎜⎝

L1 M2 0

M1 0 L3
0 L2 M3

⎞⎟⎟⎠

(E�F) = −

⎛⎜⎜⎝

1 1 0 0

0 0 1 0

−e31 0 0 1

⎞⎟⎟⎠
,
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We have then proven that every smooth cubic surface is the critical locus for a suitable 
couple of three projections from ℙ3 to ℙ1,ℙ1,ℙ2 , as claimed.

A plane cubic curve is obtained as a section of a smooth cubic surface with a general 
plane. Hence, the argument above shows also that every plane cubic curve is critical for a 
suitable couple of three projections from ℙ2 to ℙ1 , as claimed. We remark that, for plane 
cubic curves, one has to start from the Cayley–Salmon equation and does not have to per-
form further elementary operations on the columns of the matrix.

The Bordiga surface has been considered from the point of view of critical loci in [8]. In 
that paper, the authors proved that the critical locus for a couple of three projections from 
ℙ
4 to ℙ2 is in the irreducible component of the Hilbert scheme containing the Bordiga sur-

face as general element ( [8], Proposition 5.1), and conversely, that every Bordiga surface 
X is actually critical for suitable couples of three projections ( [8], Theorem 5.1). The key 
point of the proof of Theorem 5.1 is that, if the unit points in ℙ2 are in Z, then the matrix 
NX fulfils the constraints (i), (ii), (iii) above, since it is related to NZ in Eq. (6).

To complete the proof, we’ll prove that the critical locus X  is never smooth in the 
remaining cases.

To this end, we consider a general critical locus X  , its associated matrix NX as obtained 
at the beginning of the proof, and we take the codimension c + 3 linear space L ⊆ X  
defined by n11 = ⋯ = nc+1,1 = nc+2,2 = nc+2,3 = 0 . As X  is at least 3–dimensional in the 
cases we are considering, L is not empty. To prove that the points in L are singular for 
X  , we evaluate the Jacobian matrix at them. Without loss of generality, we can make a 
change of coordinates, so that ni,1 = xi for i = 1,… , c + 1 , nc+2,2 = xc+2 and nc+2,3 = xc+3 . 
Furthermore, we assume that, at a point in L, the rank of the (c + 1) × 2 matrix obtained 
by removing the first column and the last row in NX is 2. In the case this does not hold, 
the point is singular by general properties of determinantal varieties. To simplify notation, 
we denote (i1i2) the determinant of the minor of the above matrix obtained by taking rows 
i1 and i2 . Let fijh be the determinant of the submatrix of NX obtained by taking rows i, j, h 
with 1 ≤ i < j < h ≤ c + 2 . The derivative of fijh with respect to any variable is the sum 
of 3 determinants, two columns of which are from NX and the third column is the deriva-
tive of the corresponding column in NX . We have to evaluate the derivatives at P ∈ L . 
If h = c + 2 , then the gradient of fij,c+2 at P is the null matrix, as it is easy to check. If 
h ≤ c + 1 , we get

where e⃗k is the k–th element of the canonical basis. Without loss of generality, we can 
assume (12) ≠ 0 , equivalent to the rank two assumption. The matrices ∇f123(P),… , 
∇f12,c+1(P) are linearly independent, since (12)Ic−1 is a submatrix of the Jacobian matrix 
corresponding to the above generators. Let us consider now fijh with 2 < j < h ≤ c + 1 and 
i = 1 or i = 2 . We have

because the equation in square brackets is a Plücker relation that holds for rank 2 matrices 
of type (c + 1) × 2 for every c ≥ 3 . Finally, we consider fijh with 2 < i < j < h ≤ c + 1 . We 
have

∇fijh(P) = (jh)e⃗i − (ih)e⃗j + (ij)e⃗h

(12)∇fijh(P) − (ij)∇f12h(P) + (ih)∇f12j(P) = [(12)(jh) − (1j)(2h) + (1h)(2j)]e⃗i = 0

(12)∇fijh(P) − (ij)∇f12h + (ih)∇f12j(P) − (jh)∇f12i(p) =

= [(2i)(jh) − (2j)(ih) + (2h)(ij)]e⃗1 + [(1i)(jh) − (1j)(ih) + (1h)(ij)]e⃗2 = 0
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because we get Plücker relations once more. Hence, ∇fijh(P) is in the span of ∇f123(P), 
… ,∇f12,c+1(P) for every 1 ≤ i < j < h ≤ c + 2 , and so the Jacobian matrix has rank c − 1 at 
most at every P ∈ L . This proves that every P ∈ L is singular for the critical locus X  , and 
so the proof is complete. 	�  ◻

7 � The n = 4 view case

According to Theorem 4.2, when we have 4 views, the codimension of the critical locus 
is 1, otherwise the critical locus is either not irreducible or singular. In such a case, 
h1 + h2 + h3 + h4 = k + 1 . On the other hand, a degree 4, determinantal hypersurface is 
singular if embedded in ℙk with k ≥ 4 . Hence, the only possible case is k = 3 , and hi = 1 
for every i = 1,… , 4 . As previously said, this case is not of interest for the Computer 
Vision community, and we insert it for sake of completeness from a geometrical point of 
view.

The study of quartic determinantal surfaces in ℙ3 is a classical topic, and we briefly 
recall the main results (see [21] for more results on the subject).

Quartic surfaces in ℙ3 are parameterized by points in ℙ34 . It is known that the general 
quartic surface in ℙ3 is not determinantal, and that the locus of determinantal ones is a 
divisor in ℙ34 . Determinantal quartic surfaces are characterized as the ones that contain 
a non–hyperelliptic curve C of degree 6 and genus 3 (see, e.g., [3]). Such a curve is also 
called Schur’s sextic.

Moreover, a general quartic surface does not contain any line. It is known that not ruled 
quartic surfaces can contain any number of lines in the range 1 to 52, or 54, 56, 60, 64 
lines. In [30–30], the author studied quartic determinantal surfaces containing one or two 
lines. In particular, if N is an order 4 matrix of linear forms in ℙ3 whose determinant is the 
defining equation of the quartic surface S, and � ⊂ S is a line, then, up to elementary opera-
tions on rows and columns of N, the linear forms defining � are either in a row or column 
of N, or in a 3 × 2 or 2 × 3 submatrix of N.

Now we discuss the connections between quartic determinantal surfaces containing 
lines and the reconstruction problem in Computer Vision.

Proposition 7.1  Let Pi,Qi ∶ ℙ
3
→ ℙ

1, i = 1,… , 4 , be two 4–tuples of projections. Then, in 
the general case, the associated critical locus is a smooth quartic determinantal surface.

Proof  The matrix M associated to the two 4–tuples of projections is described in Eq. (2), 
and is a square matrix of order 8. From M, we get matrix NX = B − AC−1D of order 4 
whose determinant defines the critical locus X  . In the considered case, matrices B, D are

Also in this case, we can repeat analogous arguments as in Theorem 6.1 on the construc-
tion of NX.

Then, the first two columns of NX are the first two columns of B, while the last two col-
umns of NX depend of the two non–zero columns of D. Then, the critical locus is a quartic 

B =

⎛⎜⎜⎜⎝

Q11(X) 0 0 0

Q12(X) 0 0 0

0 Q21(X) 0 0

0 Q22(X) 0 0

⎞⎟⎟⎟⎠
, D =

⎛⎜⎜⎜⎝

0 0 Q31(X) 0

0 0 Q32(X) 0

0 0 0 Q41(X)

0 0 0 Q42(X)

⎞⎟⎟⎟⎠
.
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determinantal surface. When computing X  in a random case, we get a smooth surface, and 
so the general critical locus is smooth. 	�  ◻

Remark 7.1  In the notation of [28], the four lines, centers of projections Q1,… ,Q4 , are of 
type 4′′.

Now we highlight a geometrical property of such critical loci.

Proposition 7.2  In the same hypotheses as above, the critical locus contains twisted cubic 
curves meeting three of the four lines at two points.

Proof  Let NX be the matrix constructed in the proof of Proposition 7.1, and let N′ its suma-
trix consisting of the first three columns. The maximal minors of N′ define a Schur curve 
containing the centers of projections Q1,Q2,Q3 as components. To fix notation, we set

where the center of Q1 is the line Q11(X) = Q12(X) = 0 , the center of Q2 is the line 
Q21(X) = Q22(X) = 0 and the center of Q3 is n�

13
= n�

23
= 0 , also defined by n�

33
= n�

43
= 0 . 

The two couples of generators of the third line are related by the equation

where A = (aij) is invertible. The residual curve is the twisted cubic curve defined by the 
2 × 2 minors of

as it can be checked. Each center meets the twisted cubic curve above at two points, 
because the generators of each line vanish two quadrics of the three that generate the 
twisted cubic. 	�  ◻

Now, we consider a partial converse of the above Proposition.

Proposition 7.3  Let �1,… ,�4 ⊂ ℙ
3 be 4 lines, pairwise skew. Then there is a quartic 

determinantal surface S containing the 4 lines that is critical for two 4–tuples of projec-
tions from ℙ3 to ℙ1 . The given lines are centers for the four projections Q1,… ,Q4.

Proof  Let �i be the line defined by I(�i) = ⟨qi1, qi2⟩ , where qi1, qi2 are linearly independent 
linear forms in ℂ[x0,… , x3] . Let us consider the matrix

N� =

⎛⎜⎜⎜⎝

Q11(X) 0 n�
13

Q12(X) 0 n�
23

0 Q21(X) n�
33

0 Q22(X) n�
43

⎞⎟⎟⎟⎠

(
n�
33

n�
43

)
=

(
a11 a12
a21 a22

)(
n�
13

n�
23

)

(
Q11(X)

Q12(X)

|||| Adj (A)
(
Q21(X)

Q22(X)

)|||||
n�
13

n�
23

)
,
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and let S be the surface defined by det(N) = 0 . We assume E = (eij) to be invertible. Hence, 
we can reconstruct M from N by choosing a general invertible matrix C and by setting 
A = −EC . Hence, S is critical for suitable projections as claimed. 	� ◻

To complete the section, we make some final remarks on quartic surfaces that contain 
four skew lines that explain why it is not possible to give a stronger converse of Proposition 
7.1.

Remark 7.2  Given 4 pairwise skew general lines in ℙ3 , the linear subspace V of ℂ35 con-
taining quartic surfaces through the lines has dimension 15. Here, four lines are general 
if they are not contained in the same quadric. Since the conditions of being determinantal 
and of containing lines are independent, we expect that the quartic determinantal surfaces 
containing the four lines are a locus of dimension 14 in V.

From a parameter count, quartic determinantal surfaces that are critical loci depend on 
the elements of E. Since we can get the same quartic surface for different choices of matrix 
E (see the proof of Proposition 7.3), we have that the parameters are actually less than 
16. Algebraically, from every rows of E, different from the first one, an element can be 
disregarded. So, the locus in V of critical surfaces has dimension 13. From a geometrical 
point of view, a quartic determinantal surface containing 4 lines as above is critical if, and 
only if, it contains a twisted cubic curve meeting three of the four lines at 2 points, and not 
meeting the last line, for every choice of three among the four lines. Since a twisted cubic 
curve is uniquely determined by 6 points, we get such a curve by choosing two points of 
the first three lines. If we choose a second twisted cubic curve meeting all lines but the 
third one, we need 6 more points, two for each of the three selected lines. Once those two 
twisted cubics are selected, the quartic surface through the four lines is given, and it is 
possible to get its defining equation as determinant of a matrix as in the proof of Proposi-
tion 7.3. The parameters from which this construction depends are 12 (the points on the 
lines), and one more because we can multiply the matrix by a scalar so that the determinant 
defines the same surface. Hence, we get once more a locus of dimension 13.

In conclusion, we expect the critical quartic surfaces to fill a codimension 2 subset in V.
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⎜⎜⎜⎝

q11 0 e11q31 + e12q32 e13q41 + e14q42
q12 0 e21q31 + e22q32 e23q41 + e24q42
0 q21 e31q31 + e32q32 e33q41 + e34q42
0 q22 e41q31 + e42q32 e43q41 + e44q42

⎞
⎟⎟⎟⎠
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