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Abstract This paper investigates the approximate controllability for Sobolev type stochastic
perturbed control systems of fractional order with fractional Brownian motion and Sobolev
fractional stochastic nonlocal conditions in a Hilbert space, A new set of sufficient condi-
tions are established by using semigroup theory, fractional calculus, stochastic integrals for
fractional Brownian motion, Banach’s fixed point theorem. The results are obtained under
the assumption that the associated linear system is approximately controllable. Finally, an
example is also given to illustrate the obtained theory.
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1 Introduction

The focus of this investigation is the approximate controllability problem for a class of
Sobolev type stochastic perturbed control systems of fractional order with fractional sobolev
stochastic nonlocal conditions and fractional Brownian motion of the form
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C Dq
t [Lx (t)] = (M + �M) x (t) + Bu (t) + f (t, x (t))

+ g1 (t)
dBH

1 (t)

dt
, t ∈ J = [0, T ], (1.1)

L D1−q
t [V x(0)] = g2(t)

dBH
2 (t)

dt
, (1.2)

where the state x(·) takes values in a separable real Hilbert space X with inner product 〈·, ·〉X
and norm ‖·‖X . Here 0 < q ≤ 1, C Dq

t and L D1−q
t are the generalized fractional derivative

in Caputo and Riemann–Liouville senses, BH = {
BH (t) , t ∈ J

}
is a cylindrical fractional

Brownianmotion with Hurst parameter H ∈ ( 12 , 1) defined on a filtered complete probability
space (�,F, {Ft }t≥0, P). The operators M : D (M) ⊂ X −→ X, L : D (L) ⊂ X −→ X
and V : D (V ) ⊂ X −→ X ,�M is a bounded linear operator in X . The control function u(·)
takes values in L2

F (J,U ), the Hilbert space of admissible control functions for a separable
Hilbert spaceU and B is a bounded linear operator fromU to X . f : J × X → X, g1 : J →
L0
2 and g2 : J → L0

2 are appropriate Lipschitz type functions satisfying certain conditions
to be specified later; x0 is an F0-measurable random variable independent of BH

1 and BH
2 .

The notion of controllability has played a central role throughout the history of mod-
ern control theory. Moreover, approximate controllable systems are more prevalent and
fundamental concepts in deterministic and stochastic control theory. often approximate
controllability is completely adequate in applications. Therefore, various approximate con-
trollability problems for different kinds of nonlinear fractional dynamical systems in infinite
dimensional spaces have been investigated in many publications; see [1,2] and references
therein.

Stochastic differential equations are generalization of deterministic differential equations
that incorporate a “noise term.” These equations can be useful in many applications where we
assume that there are deterministic changes combinedwith noisy fluctuations. Also, the study
of stochastic differential equations has attracted great interest because of its applications
in characterizing many problems in physics, biology,chemistry, mechanics, and so on. In
finance and insurance, one has to deal with events such as corporate defaults, operational
failures, or insured accidents, the theory and applications of stochastic differential equations
in infinite-dimensional spaces have received much attention, (see [3–7] and the references
therein).

On the other hand, some real world problems in science and engineering can be mod-
eled by stochastic differential equations driven by fractional Brownian motion (fBm, for
short). In particular, many types of stochastic differential equations driven by fBm in infi-
nite dimension received much attention, for example, Maslowski and Nualart [8] studied
nonlinear stochastic evolution equations in a Hilbert space driven by cylindrical fractional
Brownian motion with Hurst parameter H > 1

2 and nuclear covariance operator using tech-
niques of fractional calculus with semigroup estimates. Boufoussi and Hajji [9] proved the
existence and uniqueness of mild solutions of a neutral stochastic differential equations
with nite delay, driven by a fractional Brownian motion in a Hilbert space and established
some conditions ensuring the exponential decay to zero in mean square for the mild solu-
tion.

Approximate controllability for fractional stochastic systems are well investigated, we
refer to [10,11] and references therein.

Kerboua et al. [12] proved the approximate controllability of Sobolev type non-local
fractional stochastic dynamic systems in Hilbert spaces by using fixed point technique, frac-
tional calculus, stochastic analysis, and methods adopted directly from deterministic control
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problems. Kerboua et al. [13] introduced a new notion called fractional stochastic nonlocal
condition for establishing approximate controllability of class of fractional stochastic nonlin-
ear differential equations of Sobolev type in Hilbert spaces using Hölder’s inequality, fixed
point technique, fractional calculus, stochastic analysis and methods adopted directly from
deterministic control problems.

Fěckan et al. [14] presented the controllability results corresponding to two admissible
control sets for fractional functional evolution equations of Sobolev type in Banach spaces
with the help of two new characteristic solution operators and their properties, such as bound-
edness and compactness, the results are obtained by using Schauder fixed point theorem.

It should be mentioned that there is no work yet reported on the approximate controlla-
bility of Sobolev type perturbed control systems of fractional order. Motivated by this facts,
our main objective is to study the approximate controllability for a class of Sobolev type
nonlinear stochastic differential equations of fractional order (1.1). The result is obtained
under the assumption that the associated linear system is approximately controllable. In par-
ticular, the controllability question is transformed to a fixed point problem for an appropriate
nonlinear operator in a function space. For that we need to construct a suitable set of sufficient
conditions.

A brief outline of this paper is given. In Sect. 2, we present ssome basic notations and
preliminaries on the stochastic integrals with respect to fBm in Hilbert space. In Sect. 3, the
approximate controllability results of stochastic perturbed system of fractional order (1.1) is
investigated by means of fractional calculus, semigroup theory and control theory. The last
section deal with an illustrative example and a discussion for possible future work in this
direction.

2 Preliminaries

Throughout of this paper, we assume that H ∈ ( 12 , 1) unless otherwise specified. In this
section, we briefly introduce some useful results about fBm and the corresponding stochastic
integral taking values in a Hilbert space.

2.1 Fractional Brownian motion

We begin by recalling the definition of a fractional Brownian motion. Let (�,F, {Ft }t≥0, P)

be a filtered complete probability space. A real-valued Gauss process {βH (t), t ≥ 0} defined
on (�,F, {Ft }t≥0, P) is called a fBm with Hurst parameter H ∈ (0, 1) if E

[
βH (t)

] = 0
and the covariance function is given by RH (t, s) = E

[
βH (t)βH (s)

] = 1
2 (|t |2H + |s|2H −

|t − s|2H ), t, s ∈ R (see [15]).
Let T > 0. It is known that fBm {βH (t), t ≥ 0} with H > 1

2 admits the Wiener integral
representation of the following form βH (t) = ∫ t

0 KH (t, s) dw(s),where w = {w(t), t ≥ 0}
is a standard Brownian motion and the kernel KH (t, s) is given by

KH (t, s) = cH

∫ t

s
(u − s)H− 3

3

(u
s

)H− 1
2
du, s < t,

where cH =
√

H(2H−1)

β
(
2−2H,H− 1

2

) and β(·, ·) denotes the Beta function.
For any deterministic function ψ ∈ L2([0, T ]), the Wiener integral of ψ with respect to

βH is defined by
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∫ T

0
ψ(s)dβH (s) =

∫ T

0

(
K ∗

Hψ
)
(s) dw (s) ,

where
(
K ∗

Hϕ
)
(s) = ∫ T

s ϕ (r) ∂KH
∂r (r, s) dr.

2.2 Stochastic integral with respect to fBm

Let (�,F, {Ft }t≥0, P) be a filtered complete probability space and and Ft = F BH
1 ,BH

2
t ,

where F BH
1 ,BH

2
t is the sigma algebra generated by {(BH

1 (s), BH
2 (s)) : 0 ≤ s ≤ t}.

Let U = (
U, 〈··〉U , ‖·‖U

)
and Y = (Y, 〈··〉Y , ‖·‖Y ) be real separable Hilbert spaces.

Denote by L(U, Y ) the space of bounded linear operators from U to Y. A Y -valued, Ft -
adapted fBms can be defined by

BH
1 (t) =

∞∑

n=1

√
λ1,ne1,nβ

H
1,n(t),

BH
2 (t) =

∞∑

n=1

√
λ2,ne2,nβ

H
2,n(t),

where {βH
1,n, β

H
2,n}n≥1 are sequences of independent fBmswith the sameHurst parameter H ∈

( 12 , 1), {e1,n; e2,n}n≥1 are complete orthonormal basis in Y, {λ1,n, λ2,n}n≥1 are a bounded
sequences of non-negative real numbers satisfying Qe1,n = λ1,ne1,n, Qe2,n = λ2,ne2,n
and Q is non-negative self-adjoint trace class operator with TrQ = ∑∞

n=1 λi,n < +∞ for
i = 1, 2.

Let L0
2 (Y, X) denote the space of all ψ ∈ L (Y, X) such hat ψQ

1
2 is a Hilbert–Schmidt

operator. The norm is defined by ‖ψ‖2
L0
2

= ∑∞
n=1

√
λnenβH

n (t). Generally, ψ is called a

Q-Hilbert–Schmidt operator from Y to X .
Let ψ : J → L0

2 (Y, X) such that

∞∑

n=1

∥∥∥K ∗
H

(
ψQ

1
2 en

)∥∥∥
2

L0
2

< ∞.

Then the stochastic integral of ψ with respect to fBm BH is defined by

∫ t

0
ψ(s)dBH (s) =

∞∑

n=1

∫ t

0
ψ (s) Q

1
2 endβ

H
n (s)

=
∞∑

n=1

∫ t

0

(
K ∗

H

(
ψQ

1
2 en

))
(s) dw (s) .

Lemma 2.1 (see [9]) If ψ : J → L0
2 (Y, X) satisfying

∞∑

n=1

∥∥∥ψQ
1
2 en

∥∥∥
2

L
1
H (J,X)

< ∞,

and for u, v ∈ J with v > u, then

E

∥∥∥∥

∫ v

u
ψ(s)dBH (s)

∥∥∥∥

2

≤ cH (2H − 1) (v − u)2H−1
∞∑

n=1

∫ v

u

∥∥∥ψ (s) Q
1
2 en

∥∥∥
2
ds,
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where c = c(H). If, in addition,
∑∞

n=1

∥∥∥ψ (t) Q
1
2 en

∥∥∥ is uniformly convergent for t ∈ J , then

E

∥∥∥∥

∫ v

u
ψ(s)dBH (s)

∥∥∥∥

2

≤ cH (2H − 1) (v − u)2H−1
∫ v

u
‖ψ (s)‖2

L0
2
ds.

Let L2(FT , X) be the Hilbert space of all FT -measurable square integrable random
variables with values in the Hilbert space X. Let LF

2 (J, X) is the Hilbert space of all square
integrable and Ft -adapted processes with values in X. Let CT denote the Banach space of all
X-valued Ft -adapted processes ζ(t, ω) : J × � → X, which are continuous in t for a.e.
fixed ω ∈ � and satisfy

‖ζ‖CT
= E

(
sup
t∈J

‖ζ (t, ω)‖2X
) 1

2

.

Lemma 2.2 (see [16]) Let M be the infinitesimal generator of an analytic semigroup
{S(t), t ≥ 0}onaHilbert space X. If�M isabounded linear operator on X then (M + �M)

is the infinitesimal generator of an analytic semigroup
{
S̃(t), t ≥ 0

}
on X.

The operators M + �M : D(M + �M) ⊂ X → X, L : D(L) ⊂ X → X and
V : D(V ) ⊂ X → X satisfy the following conditions:

(A1) L, (M + �M) and V are closed linear operators.
(A2) D(V ) ⊂ D(L) ⊂ D(M + �M) and L and V are bijective.
(A3) L−1 : X → D(L) ⊂ X and V−1 : X → D(V ) ⊂ X are linear, bounded, and

compact operators.

From (A3), we deduce that L−1 is bounded operators. Note (A3) also implies that L is
closed since the fact: L−1 is closed and injective, then its inverse is also closed. It comes
from (A1)–(A3) and the closed graph theorem, we obtain the boundedness of the linear
operator (M + �M)L−1 : X → X. Consequently, (M + �M)L−1 generates a semigroup{
S̃(t) = e(M+�M)L−1t , t ≥ 0

}
. We suppose that K0 = supt≥0

∥∥∥S̃(t)
∥∥∥ < ∞, and for short,

we denote by C0 = ∣∣∣∣L−1
∣∣∣∣ and C1 = ∣∣∣∣V−1

∣∣∣∣.
Now, we recall the following known definitions on the fractional integral and derivative.

Definition 2.1 The fractional integral of order α > 0 of a function f ∈ L1([a, b],R+) is
given by

Iα
a f (t) = 1

� (α)

∫ t

a
(t − s)α−1 f (s)ds,

where � is the gamma function. If a = 0, we can write I α f (t) = (gα ∗ f )(t), where

gα (t) =
{ 1

�(α)
tα−1, t > 0,

0, t ≤ 0,

and as usual, ∗ denotes the convolution of functions. Moreover, lim
α→0

gα(t) = δ(t), with δ the

delta Dirac function.

Definition 2.2 The Riemann–Liouville derivative of order n − 1 < α < n, n ∈ N, for a
function f ∈ C([0,+∞)) is given by

L Dα f (t) = 1

� (n − α)

dn

dtn

∫ t

0

f (s)

(t − s)α+1−n
ds, t > 0.
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Definition 2.3 The Caputo derivative of order n − 1 < α < n, n ∈ N, for a function
f ∈ C([0,+∞)) is given by

C Dα f (t) =L Dα

(

f (t) −
n−1∑

k=0

tk

k! f
(k)(0)

)

, t > 0.

Remark 2.1 The following properties hold. Let n − 1 < α < n, n ∈ N

(i) If f (t) ∈ Cn ([0,∞)), then

C Dα f (t) = 1

� (n − α)

∫ t

0

f (n)(s)

(t − s)α+1−n
ds = I n−α f (n)(s), t > 0.

(ii) The Caputo derivative of a constant is equal to zero.
(iii) The Riemann–Liouville derivative of a constant function is given by

L Dα
a+C = C

� (1 − α)
(x − a)−α .

If f is an abstract functionwith values in X , then integralswhich appear inDefinitions 2.1–2.3
are taken in Bochner’s sense.

According to previous definitions, it is suitable to rewrite problem (1.1)–(1.2) as the
equivalent integral equation

Lx(t) = Lx (0) + 1

� (q)

∫ t

0
(t − s)q−1 [(M + �M) x (s) + Bu(s) + f (s, x (s))] ds

+ 1

� (q)

∫ t

0
(t − s)q−1 g1(s)dB

H
1 (s) (2.1)

Remark 2.2 We note that:

(a) For the nonlocal condition, the function x(0) is dependent on t .
(b) L D1−q

t [V x(0)] is well defined, i.e., if q = 1 and V is the identity, then (1.2) reduces to
the usual nonlocal condition..

(c) The function x(0) takes the form

V−1x0 + 1

�(1 − q)

∫ t

0
(t − s)−qV−1g2(s)dB

H
2 (s),

where V x(0)|t=0 = x0.
(d) The explicit and implicit integrals given in (2.1) exist (taken in Bochner’s sense).

Definition 2.4 A stochastic process x ∈ H2(J, X) is a mild solution of (1.1)–(1.2) if for
each control u ∈ L2

�(J,U ), it satisfies,

1. x(0) ∈ L2(�, X), where x (0) = V−1x0 + 1
�(1−q)

∫ t
0 (t − s)−qV−1g2(s)dBH

2 (s) and
V x(0)|t=0 = x0;

2. x(t) ∈ X has cádlág paths on t ∈ J almost surely and for each t ∈ J , x(t) satisfies the
integral equation
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x(t) = S̃q(t)LV−1
[
x0 + 1

�(1 − q)

∫ t

0
(t − s)−q g2(s)dB

H
2 (s)

]

+
∫ t

0
(t − s)q−1T̃q(t − s)[Bu(s) + f (s, x(s))]ds

+
∫ t

0
(t − s)q−1 T̃q(t − s)g1(s)dB

H
1 (s), (2.2)

where S̃q(t)x = ∫ +∞
0 L−1hq(s)S̃ (tq s) xds and T̃q(t)x = q

∫ +∞
0 L−1shq(s)S̃ (tq s) xds.

Here, S̃(t) is a C0-semigroup generated by a linear operator (M + �M)L−1 : X → X ,
hq is a probability density function defined on (0,∞), that is hq(s) ≥ 0, s ∈ (0,∞ ) and∫∞
0 hq(s)ds = 1.
The following lemma follows from the results in [16–20] and will be used throughout this

paper.

Lemma 2.3 (see [21]) The operators S̃q(t) and T̃q(t) have the following properties:

1. For any fixed t ≥ 0, S̃q(t) and T̃q(t) are linear and bounded operators in X,

i.e.for any x ∈ Xα,
∣∣∣∣S̃q(t)x

∣∣∣∣ ≤ C0K0 ||x || , ∣∣∣∣T̃q(t)x
∣∣∣∣ ≤ C0K0

� (q)
||x || .

2. The operators {S̃q(t) : t ≥ 0} and {T̃q(t) : t ≥ 0} are strongly continuous.
We impose the following assumptions on the data of the problem (1.1)–(1.2).

(H1) The functions f : J × X → X satisfy linear growth and Lipschitz conditions. More-
over, there exist positive constants N1, N2 > 0 such that

‖ f (t, x) − f (t, y)‖2 ≤ N1‖x − y‖2, ‖ f (t, x)‖2 ≤ N2(1 + ‖x‖2),
(H2) The function gi : J → L0

2 for i = 1, 2, satisfies
∫ T
0 ‖gi (s)‖2L0

2
ds < ∞.

(H3) The linear stochastic system is approximately controllable on J .

For each 0 ≤ t < T , the operator z(z I + �T
0 )−1 → 0 in the strong operator topology

as z → 0+, where �T
0 = ∫ T

0 (T − s)2(q−1)T̃q(T − s)BB∗T̃ ∗
q (T − s)ds is the controllability

Gramian, here B∗ denotes the adjoint of B and T̃ ∗
q (t) is the adjoint of T̃q(t).

Observe that Sobolev type linear fractional deterministic control system

C Dq
t [Lx(t)] = (M + �M) x(t) + Bu(t), t ∈ J, (2.3)

x(0) = x0, (2.4)

corresponding to (1.1)–(1.2) is approximately controllable on J iff the operator z(z I +
�T

0 )−1 → 0 strongly as z → 0+. The approximate controllability for linear fractional
deterministic control system (2.3)–(2.4) is a natural generalization of approximate control-
lability of linear first order control system (q = 1 and L is the identity) [22].

Definition 2.5 System (1.1)–(1.2) is approximately controllable on J if(T ) = L2(�, �T ,

X), where
(T ) = {x(T ) = x(T, u) : u ∈ L2

�(J,U )},
here L2

�(J,U ), is the closed subspace of L2
�(J × �;U ), consisting of all �t adapted, U

-valued stochastic processes.
The following lemma is required to define the control function [23].
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Lemma 2.4 For any x̃T ∈ L2(�T , X), there exists ϕ̃ ∈ L2
�(�; L2([0, T ] ; L0

2)) such that

x̃T = Ex̃T + ∫ T
0 ϕ̃(s)dBH (s). Now for any λ > 0 and x̃T ∈ L2(�T , X), we define the

control function in the following form

uλ(t, x) = B∗(T − t)q−1T̃ ∗
q (T − t)

[
(z I + �T

0 )−1

{
Ex̃T − S̃q(T )LV−1

(
x0 + 1

�(1 − q)

∫ t

0
(t − s)−qg2(s)dB

H
2 (s)

)}

+
∫ t

0
(z I + �T

0 )−1ϕ̃(s)dBH
1 (s)

]

− B∗(T − t)q−1T̃ ∗
q (T − t)

∫ t

0
(z I + �T

0 )−1(T − s)q−1T̃q(T − s) f (s, x(s))ds

− B∗(T − t)q−1T̃ ∗
q (T − t)

∫ t

0
(z I + �T

0 )−1(T − s)q−1T̃q(T − s)g1(s)dB
H
1 (s).

Lemma 2.5 There exist positive real constants M̂, N̂ such that, for all x, y ∈ H2, we have

E
∣∣∣∣uλ(t, x) − uλ(t, y)

∣∣∣∣2 ≤ M̂ E ||x(t) − y(t)||2 , (2.5)

E
∣∣∣∣uλ(t, x)

∣∣∣∣2 ≤ N̂

(
1

T
+ E ‖x(t)‖2

)
. (2.6)

Proof The proof of this lemma similar to the proof of the Lemma 2.4 (see [13]). ��

3 Approximate controllability

In this section, we formulate and prove conditions for the existence and approximate con-
trollability results of the nonlocal fractional stochastic perturbed control system of Sobolev
type (1.1)–(1.2) using the contraction mapping principle.

Theorem 3.1 Assume assumptions (H1)–(H3) are satisfied. Then, for all T > 0, the system
(1.1)–(1.2) has a mild solution on [0, T ].
Proof For any λ > 0, define the operator Fλ : H2 → H2 by

Fλx(t) = S̃q(t)LV−1
[
x0 + 1

�(1 − q)

∫ t

0
(t − s)−q g2(s)dB

H
2 (s)

]

+
∫ t

0
(t − s)q−1T̃q(t − s)[Buλ(s, x) + f (s, x(s))]ds

+
∫ t

0
(t − s)q−1T̃q(t − s)g1(s)dB

H
1 (s). (3.1)

It will be shown that, for all λ > 0, the operator Fλ has a fixed point. This fixed point is
then a solution of Eqs. (1.1)–(1.2). To prove this result, we divide the subsequent proof into
two steps.

Step 1 For arbitrary x ∈ H2, let us prove that t → Fλ (x) (t) is continuous on the interval
J in L2 -sense.
Let 0 < t < t + h < T , where t, t + h ∈ [0, T ], and let |h| be sufficiently small.
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Then for any fixed x ∈ H2, it follows from Holder’s inequality and the assumptions on the
theorem that

E ‖Fλ (x) (t + h) − Fλ (x) (t)‖2

≤ 4E

∥∥∥∥
(
S̃q(t + h) − S̃q(t)

)
LV−1

[
1

�(1 − q)

∫ t+h

t
(t − s)−q g2(s)dB

H
2 (s)

]∥∥∥∥

2

+ 4E

∥∥∥∥

∫ t

0
(t − s)q−1 (T̃q(t + h − s) − T̃q(t − s)

)
Buλ(s, x)ds

∥∥∥∥

2

+ 4E

∥∥∥∥

∫ t+h

t
(t − s)q−1T̃q(t + h − s)Buλ(s, x)ds

∥∥∥∥

2

+ 4E

∥∥∥∥

∫ t

0
(t − s)q−1 (T̃q(t + h − s) − T̃q(t − s)

)
f (s, x (s))ds

∥∥∥∥

2

+ 4E

∥∥∥∥

∫ t+h

t
(t − s)q−1T̃q(t + h − s) f (s, x (s))ds

∥∥∥∥

2

+ 4E

∥∥∥∥

∫ t

0
(t − s)q−1 (T̃q(t + h − s) − T̃q(t − s)

)
g1(s)dB

H
1

∥∥∥∥

2

+ 4E

∥∥∥∥

∫ t+h

t
(t − s)q−1T̃q(t + h − s)g1(s)dB

H
1

∥∥∥∥

2

≤ 4C1 ‖L‖2 E
∥∥∥∥
(
S̃q(t + h) − S̃q(t)

) [ 1

�(1 − q)

∫ t+h

t
(t − s)−q g2(s)dB

H
2 (s)

]∥∥∥∥

2

+ 4
t2q−1

2q − 1

∫ t

0
E

∥∥∥∥
(
T̃q(t + h − s) − T̃q(t − s)

)
Buλ(s, x)

∥∥∥∥

2

ds

+ 4
h2q−1

1 − 2q

(
C0K0

� (q)

)2

‖B‖2
∫ t+h

t
E

∥∥∥∥u
λ(s, x)

∥∥∥∥

2

ds

+ 4
t2q−1

2q − 1

∫ t

0
E

∥∥∥∥
(
T̃q(t + h − s) − T̃q(t − s)

)
f (s, x (s))

∥∥∥∥

2

ds

+ 4
h2q−1

1 − 2q

(
C0K0

� (q)

)2 ∫ t+h

t
E

∥∥∥∥ f (s, x (s))

∥∥∥∥

2

ds

+ 8
t2q−1

2q − 1
Ht2H−1

∫ t

0
E

∥∥∥∥
(
T̃q(t + h − s) − T̃q(t − s)

)
g1(s)

∥∥∥∥

2

L0
2

ds

+ 8
h2q−1

1 − 2q
Hh2H−1

(
C0K0

� (q)

)2 ∫ t+h

t
E

∥∥∥∥g1(s)
∥∥∥∥

2

L0
2

ds.

Hence using the strong continuity of the operators
{
S̃q(t), T̃q(t)

}
t≥0 andLebesgue’s dom-

inated convergence theorem, we conclude that the right-hand side of the above inequalities
tends to zero as h −→ 0.

Thus, we conclude Fλ (x) (t) is continuous from the right of [0, T ). A similar argument
shows that it is also continuous from the left of (0, T ].

Step 2 Now, we are going to show that Fλ is a contraction mapping in H2.

123



292 K. Mourad et al.

Let x, y ∈ H2, we obtain for any fixed t ∈ [0, T ]

E ‖Fλ (x) (t) − Fλ (y) (t)‖2 ≤ 2E

∥∥∥∥

∫ t

0
(t − s)q−1Tq(t − s)B

[
uλ(s, x) − uλ(s, y)

]
ds

∥∥∥∥

2

+ 2E

∥∥∥∥

∫ t

0
(t − s)q−1Tq(t − s) [ f (s, x (s)) − f (s, y (s))] ds

∥∥∥∥

2

Using assumptions (H1)–(H2), Lemma 2.5, and standard computations yield

E ‖Fλ (x) (t) − Fλ (y) (t)‖2 ≤ 2
T 2q−1

2q − 1

(
C0K0

� (q)

)2

‖B‖2 M̂
∫ t

0
E

∥∥∥∥(x (t) − y (t))

∥∥∥∥

2

ds

+ 2
T 2q−1

2q − 1

(
C0K0

� (q)

)2

N 2
1 E

∥∥∥∥

∫ t

0
E

∥∥∥∥(x (t) − y (t))

∥∥∥∥

2

ds

Hence, we obtain a positive real constant γ (λ) such that

sup
t∈J

E ‖Fλ (x) (t) − Fλ (y) (t)‖2 ≤ γ (λ)sup
t∈J

E ‖x (t) − y (t)‖2 (3.2)

for all t ∈ J and all x, y ∈ H2. For any natural number n, it follows from successive iteration
of above inequality (3.2) that, by taking the supremum over J ,

∥∥Fn
λ (x) (t) − Fn

λ (y) (t)
∥∥2
H2

≤ γ n(λ)

n! ‖x − y‖2H2
(3.3)

For any fixed λ > 0, for sufficiently large n,
γ n(λ)
n! < 1. It follows from (3.3) that Fn

λ is
a contraction mapping, so that the contraction principle ensures that the operator Fλ has a
unique fixed point xλ in H2, which is a mild solution of (1.1)–(1.2). ��
Theorem 3.2 Assume that the assumptions (H1)–(H3) hold. Further, if the functions f, g1
and g2 are uniformly bounded and

{
T̃q : t ≥ 0

}
is compact, then the system (1.1)–(1.2) is

approximately controllable on J .

Proof Let xλ be a fixed point of Fλ. By using the stochastic Fubini theorem, it can be easily
seen that

xλ(T ) = x̃T −z(z I + �T
0 )−1

{
Ex̃T −S̃q(T )LV−1

[
x0+ 1

�(1−q)

∫ t
0 (t−s)−q g2(s)dBH

2 (s)
]}

+ z
∫ T
0 (z I + �T

0 )−1(T − s)q−1T̃q(T − s) f (s, xλ(s))ds

+ z
∫ T
0 (z I + �T

0 )−1[(T − s)q−1T̃q(T − s)g1(s) − ϕ̃(s)]dBH
1 (s).

It follows from the assumption on f that there exists D̂ > 0 such that

‖ f (s, xλ(s))‖2 ≤ D̂

for all (s, ω) ∈ J × �. Then there is a subsequence still denoted by f (s, xλ(s)) which con-
verges weakly to, say, to f (s) in X × L0

2.

From the above equation, we have

E ‖xλ(T ) − x̃T ‖2

≤ 6E

(∥∥∥z(z I + �T
0 )−1(Ex̃T − S̃q(T )LV−1x0)

∥∥∥
2
)
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+ 12Ht2H−1
(∫ T

0
(T − s)−q‖z(z I + �T

0 )−1S̃q(T )LV−1 1

�(1 − q)
‖2 ‖g2(s)‖2L0

2
ds

)

+ 6E

(∫ T

0
(T − s)q−1

∥∥∥z(z I + �T
0 )−1ϕ̃(s)

∥∥∥
2

L0
2

ds

)

+ 6E

(∫ T

0
(T − s)q−1

∥∥∥z(z I + �T
0 )−1

∥∥∥
∥∥T̃q(T − s)( f (s, xλ(s)) − f (s))

∥∥ ds
)2

+ 6E

(∫ T

0
(T − s)q−1

∥∥∥z(z I + �T
0 )−1T̃q(T − s) f (s)

∥∥∥ ds
)2

+ 12Ht2H−1
(∫ T

0
(T − s)q−1

∥∥∥z(z I + �T
0 )−1T̃q(T − s)g1(s)

∥∥∥
2

L0
2

ds

)
.

On the other hand, by assumption (H3), for all 0 ≤ s < T the operator z(z I + �T
0 )−1 → 0

strongly as z → 0+ and moreover ‖z(z I + �T
0 )−1‖ ≤ 1. Thus, by the Lebesgue dominated

convergence theorem and the compactness of both S̃q and T̃q implies that E‖xλ(T )− x̃λ‖2 →
0 as z → 0+. Hence, we conclude the approximate controllability of (1.1)–(1.2). ��

4 Example

In this section, we present an example to illustrate our main result.
Let us consider the following Sobolev type fractional stochastic partial differential equation
with control driven by a fractional Brownian motion:

C D2/3
t

[
x(t, z) − xzz(t, z))

]
− ∂2

∂z2
x(t, z) = μ(t, z) + f̃ (t, x(t, z))

+ g̃1(t, z)
d B̃H

1 (t)

dt
, (4.1)

x(0, z) = ∂2

∂z2

[

x0(z) + 1

�(1/3)

m∑

k=1

ck

∫ t

0
(t − s)−2/3g2(tk, z)B̃

H
2 (s)

]

, z ∈ [0, 1],

(4.2)

x(0, t) = x(1, t) = 0, t ∈ J, (4.3)

where 0 < q ≤ 1, 0 < t1 < · · · < tm < T and ck are positive constants, k = 1, . . . ,m;
the functions x(t)(z) = x(t, z), f (t, x(t))(z) = f̃ (t, x(t, z)), g1 (t) (z) = g̃1(t, z) and
g2 (t) (z) = ∑m

k=1 ckg2(tk, z). The bounded linear operator B : U → X is defined by
Bu(t)(z) = μ(t, z), 0 ≤ z ≤ 1, u ∈ U ; B̃H

1 (t) and B̃H
2 (t) are two sided one dimensional

fractional Brownian motions with Hurst parameter H ∈ (1/2, 1).
Let X = E = U = L2[0, 1], define the operators L : D(L) ⊂ X → X , M + �M :

D(M +�M) ⊂ X → X and V : D(V ) ⊂ X → X by Lx = x − xzz , (M + �M) x = −xzz
and V−1x = xzz where domains D(L), D(M + �M) and D(V ) are given by

{x ∈ X : x, xz are absolutely continuous, xzz ∈ X, x(0) = x(1) = 0}.
Then L , (M + �M) and V can be written respectively as

Lx =
∞∑

n=1

(1 + n2)(x, xn)xn, x ∈ D(L),
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(M + �M) x =
∞∑

n=1

−n2(x, xn)xn, x ∈ D(M + �M),

V−1x =
∞∑

n=1

n2(x, xn)xn, x ∈ D(V ),

where xn(z) = (
√
2/π) sin nz, n = 1, 2, . . . is the orthogonal set of eigen functions of

(M + �M). Further, for any x ∈ X we have

L−1x =
∞∑

n=1

1

1 + n2
(x, xn)xn,

(M + �M) L−1x =
∞∑

n=1

−n2

1 + n2
(x, xn)xn,

and

S̃(t)x =
∞∑

n=1

exp

( −n2t

1 + n2

)
(x, xn)xn .

T̃2/3(t)x = 2

3

∞∑

n=1

1

1 + n2

∫ +∞

0
sh2/3(s) exp

( −n2

1 + n2
t2/3s

)
ds(x, xn)xn .

It is easy to see that L−1 is compact, boundedwith ‖L−1‖ ≤ 1 and (M + �M) L−1 generates
the above strongly continuous semigroup S̃(t) on X with ‖S̃(t)‖ ≤ e−t ≤ 1. Therefore, with
the above choices, the system (4.1)–(4.3) can be written as an abstract formulation of (2.1)–
(2.2) and thus Theorem 3.1 can be applied to guarantee the existence of mild solution of
(4.1)–(4.3). Moreover, it can be easily seen that Sobolev type deterministic linear fractional
control system corresponding to (4.1)–(4.3) is approximately controllable on J , whichmeans
that all conditions of Theorem 3.2 are satisfied. Thus, Sobolev type fractional stochastic
partial differential equation with control driven by a fractional Brownian motion (4.1)–(4.3)
is approximately controllable on J .

5 Conclusion

Sufficient conditions for the approximate controllability of a class of control systems
described by Sobolev type nonlocal nonlinear fractional stochastic perturbed equations with
fractional Brownian motion in Hilbert spaces are considered. Using fixed point technique,
fractional calculations, stochastic integrals for fractional Brownian motion, and methods
adopted directly from deterministic control problems. In particular, conditions are formu-
lated and proved under the assumption that the approximate controllability of the fractional
stochastic control nonlinear perturbed system is implied by the approximate controllability
of its corresponding linear part. More precisely, the controllability problem is transformed
into a fixed point problem for an appropriate nonlinear operator in a function space. Themain
used tools are the above required conditions, we guarantee the existence of a fixed point of
this operator and study controllability of the considered systems.

Our future work will be focused on investigating the approximate controllability for frac-
tional stochastic dynamical systems of Sobolev type with Lévy process and impulsive effects.
Upon making some appropriate assumptions, by employing the ideas and techniques as in
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this paper, one can establish the approximate controllability results for a class of Sobolev type
nonlocal nonlinear fractional stochastic dynamical systems with Lé vy process and impulsive
effects in Hilbert spaces.

Acknowledgements The authors would like to express their sincere gratitude to the anonymous reviewers
for their careful reading of the manuscript, as well as their comments that lead to a considerable improvement
of the original manuscript.

Compliance with ethical standards

Conflict of interest The authors declare that there is no conflict of interests regarding the publication of this
paper.

Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 Interna-
tional License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and
reproduction in any medium, provided you give appropriate credit to the original author(s) and the source,
provide a link to the Creative Commons license, and indicate if changes were made.

References

1. Sakthivel, R., Ganesh, R., Suganya, R.: Approximate controllability of fractional neutral stochastic system
with infinite delay. Rep. Math. Phys. 70, 291–311 (2012)

2. Sakthivel, R., Ganesh, R., Ren, Y., Anthoni, S.M.: Approximate controllability of nonlinear fractional
dynamical systems. Commun. Nonlinear Sci. Numer. Simul. 18, 3498–3508 (2013)

3. Bashirov, A.E., Mahmudov, N.I.: On concepts of controllability for linear deterministic and stochastic
systems. SIAM J. Control Optim. 37, 1808–1821 (1999)

4. Cao, J., Yang, Q., Huang, Z.: On almost periodic mild solutions for stochastic functional differential
equations. Nonlinear Anal. Real World Appl. 13, 275–286 (2012)

5. Chang, Y.K., Zhao, Z.H., N’Guérékata, G.M., Ma, R.: Stepanov-like almost automorphy for stochastic
processes and applications to stochastic differential equations. Nonlinear Anal. Real World Appl. 12,
130–1139 (2011)

6. Mao, X.: Stochastic Differential Equations and Their Applications. Horwood, Chichester (1997)
7. Sakthivel, R., Revathi, P., Renc, Y.: Existence of solutions for nonlinear fractional stochastic differential

equations. Nonlinear Anal. 81, 70–86 (2013)
8. Maslowski, B., Nualart, D.: Evolution equations driven by a fractional Brownian motion. J. Funct. Anal.

202, 277–305 (2003)
9. Boufoussi, B., Hajji, S.: Neutral stochastic functional differential equations driven by a fractional Brow-

nian motion in a Hilbert space. Stat. Probab. Lett. 82, 1549–1558 (2012)
10. Mahmudov, N.I.: Approximate controllability of semilinear deterministic and stochastic evolution equa-

tions in abstract spaces. SIAM J. Control Optim. 42, 1604–1622 (2003)
11. Li, F., Liang, J., Xu, H.K.: Existence of mild solutions for fractional integrodifferential equations of

Sobolev type with nonlocal conditions. J. Math. Anal. Appl. 391, 510–525 (2012)
12. Kerboua, M., Debbouche, A., Baleanu, D.: Approximate controllability of Sobolev type nonlocal frac-

tional stochastic dynamic systems in Hilbert spaces. Abstr. Appl. Anal. Art. ID 262191 (2013)
13. Kerboua,M.,Debbouche,A., Baleanu,D.:Approximate controllability of Sobolev type fractional stochas-

tic nonlocal nonlinear differential equations in Hilbert spaces. Electron. J. Qual. Theory Differ. Equ. 58,
1–16 (2014)
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