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Abstract Periodic solutions of state-dependent impulsive ODEs in a prescribed set of con-
straints are examined. The so-called impulsive index is introduced, as a topological tool,
and its properties are studied. Some sufficient conditions for its homotopy property are dis-
cussed in detail. In a construction of the impulsive index the fixed point index on ANRs is
applied to an induced discrete semidynamical system on a barrier where jumps occur. Several
illustrative examples are added.

Keywords Periodic solution · Viable solution · Fixed point index · State-dependent
impulsive problems · Impulse function

Mathematics Subject Classification Primary 34B37; Secondary 34C25 · 37B30 ·
47H10 · 47H11

1 Introduction

Impulsive ordinary, or partial, differential equations became a strongly growing field of
research in a last half of a century. Some results in this field are simple modifications and
generalizations of analogous results for non-impulsive problems but, beyond them, there
are essentially new, nontrivial and interesting questions requiring new methods and proof
arguments. We meet this especially in state-dependent impulsive problems where jumps
occur in variable times. A study in this direction was initiated by Mil’man and Myshkis
in [18]. Problems with impulses in variable times are met in e.g. physical and biological
models (cf. [3]), where concerned quantities rapidly change when they attain some barriers
or some critical levels in a phase space or in an extended phase space. In an analysis of
solutions of such problems, in contrast to those with fixed impulse times, one also has to
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take into account a geometry or topology of barriers and their relationships with dynamics
of the problem. This area is still poorly investigated, especially in the context of applications
of known or construction of new appropriate topological tools.

In the paper we focus our attention on detecting a periodic behavior of some of trajectories
for state-dependent impulsive ODEs under an additional requirement that these trajectories
are viable in a prescribed closed subset K ⊂ R

n of a state space. In other words, we are
going to find a solution to the following periodic problem

⎧
⎪⎪⎨

⎪⎪⎩

ẋ(t) = f (x(t)) for a.e. t ≥ 0, x ∈ R
n,

x(t) ∈ K ,

x(t+) := lims→t+ x(s) = I (x(t)) for x(t) ∈ M ⊂ ∂K ,

x(0) = x(Tx ), for someTx > 0,

(1.1)

where f : Rn ⊃ � → R
n is sufficiently smooth to generate a semiflow, and I : M → R

n is
a continuous impulse function. More specific assumptions on f, M and I will be given later.
The notion of viability used above is motivated by biological models where some species
survives only if it does not leave a region of safety K given as a set of constraints.

There are only a few papers concerning problem (1.1) (see, e.g. [8,9,14,17]). In most of
them additional Nagumo-type tangency conditions are assumed to ensure that from every
point of K there starts at least one trajectory, evenwith impulses taken into account, remaining
in K for some nontrivial time interval. Then the fixed point theory can be applied for a suitably
defined Poincaré–Krasnoselskii operator.

If tangency conditions do not hold on the whole boundary, we allow trajectories for a
non-impulsive problem, even all of them, to leave K through a so-called exit set K−. Of
course, we want to prevent this escape, so we place a barrier M in K− trying to return at
least some of them to the set K via the impulse function I (see [14]). In some biological
models it means an external impact (e.g. restocking the lake). In [14] the impulse function
was assumed to satisfy I (M) ⊂ K . Analysis of models in mathematical biology shows that
it is worth considering a weaker assumption I (M) ⊂ R

n , in practice at least I (M)∩ K �= ∅.
This situation is more complicated and needs deeper local topological tools to study problem
(1.1). In the paper we construct a so-called impulsive index, which is a fixed point index of
suitably defined continuous map in an exit set K−. Its nontriviality will imply the existence
of viable periodic trajectories in K .

The paper is organized as follows. In Sect. 2 at first we give basic assumptions, and
define the impulsive index. Then properties of the index are presented, discussed and proved.
Several examples are given to illustrate the results. In Sect. 3 we present geometric sufficient
conditions for a homotopy property of the index with some results, concerning exit sets,
interesting in themselves. The Poincaré map technique is adapted to compute the impulsive
index in a neighborhood of a periodic point in Sect. 4 (see also [14] where this technique
was proposed). The last section (Sect. 5) contains several concluding remarks concerning
an alternative construction of the impulsive index. Advantages and disadvantages of this
alternative technique are discussed.

2 Impulsive index

Let K ⊂ R
n be an arbitrary closed subset, � ⊃ K an open neighborhood in R

n , and
f : � → R

n be a sufficiently smooth vector field such that the equation ẋ = f (x) generates
a semiflowπ on�.We are interested in viable in K solutions so,without any loss of generality,
we can assume in the sequel that� = R

n . Let us recall that by a solution of problem (1.1) we
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mean a left-continuous function x : [0,∞) → R
n , with a discrete set of discontinuity points,

absolutely continuous between these points, and satisfying ẋ(t) = f (x(t)) in a.e. t ≥ 0,
and x(t+) = I (x(t)) in discontinuity points. The set of functions from [0,∞) to R

n which
are continuous between discontinuity points taken from a discrete set, and left-continuous in
these points will be denoted below by PC([0,∞),Rn).

In each point x ∈ K we can consider the Bouligand tangent cone

TK (x) :=
{

v ∈ R
n | lim inf

h→0+ dist (x + hv, K )/h = 0

}

.

Obviously, if the following tangency condition

f (x) ∈ TK (x) for every x ∈ K

is satisfied, then all solutions starting in K remain in this set forever (see the first results of
this type in [19] and [6]). If it is not satisfied, the following exit set for K

K− = K−( f ) := {x0 ∈ K | ∀ε > 0 : π({x0} × (0, ε)) �⊂ K }
appears. If topological properties of the exit set sufficiently differs from properties of K , then
still there exists at least one viable trajectory in K . This was firstly proved in the celebrated
Ważewski paper [20]. More precisely, if K− is closed and it is not a strong deformation
retract of K , then a viable solution exists (comp. [11]). In the paper we are interested in even
worse case:

All absolutely continuous solutions to ẋ = f (x) leave the set K . (2.1)

It means, in consequence, that K is strongly deformed via homotopy onto K−. Namely, the
exit function τK : K → [0,∞), τK (x0) := sup{t ≥ 0 | π({x0} × [0, t]) ⊂ K is continuous,
and we can define a homotopy h : K × [0, 1] → K , h(x0, λ) := π(x0, λτK (x0)). Putting
r(x0) := h(x0, 1) we obtain a (continuous) retraction r : K → K−.

Hence, in the whole paper we assume that

h(x, α) := π(x, ατK (x)), x ∈ K , is a deformation of K onto K−. (2.2)

Of course, (2.2) implies that K− is a closed subset of K . When we consider a family πλ of
semiflows, we will assume, analogously, that deformations hλ are given, see below.

Let M ⊂ K− be an impulse set, i.e., there is an impulse function I : M → R
n moving

instantly each trajectory reaching the set M in a point p ∈ M to a point I (p) ∈ R
n . In

practice, we will be interested in impulse functions satisfying I (M) ∩ K �= ∅ which means
that some trajectories are moving back to K . In our considerations we assume that

(A1) K− is a closed ANR,
(A2) M = clK−(intK−M),
(A3) I is a compact map, i.e. I (M) is relatively compact,
(A4) dist (I (M), M) > 0,

where intK− A, clK− A and, in the sequel, ∂K− A denote the relative interior, closure and
boundary of a set A ⊂ K− in K−, respectively. Note that, if M is compact, which is
often the case, (A4) is implied by I (M) ∩ M = ∅. This condition or (A4) is assumed in
many papers concerning impulsive semidynamical systems (see, e.g., [1,5,10]). It implies, in
particular, that for every x0 ∈ K\M the sequence σ0(x0) = 0, σ1(x0) = φ(x0), σm+1(x0) =
σm(x0) + φ((I ◦ r)m(x0)) satisfies the condition limm→∞ σm(x0) = ∞, where φ(x) =
inf{s > 0 | π({x} × [0, s)) ∩ M = ∅ and π(x, s) ∈ M}.
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We define MI := I−1(K ) and

g : MI → K−, g(x) := r(I (x)) for x ∈ MI . (2.3)

Denote

P := {x ∈ PC([0,∞),Rn) | x is a viable periodic solution to (1.1)}.
Notice that, since every absolutely continuous solution to ẋ = f (x) leaves the set K , there is
a correspondence between elements of P and fixed points of iterations of the map g defined
in (2.3). Indeed, let x ∈ P start from x0 ∈ K . Then z = π(x0, τK (x0)) ∈ M , and there
is a minimal m ∈ N such that x0 = π(I (gm(z)), s) for some s ∈ [0, τK (I (gm(z)))]. It
implies that z = π(x0, τK (x0)) = gm+1(z), so z is a fixed point of gm+1. On the other
hand, if z = gm(z), then the map x(0) := z, x(t) := π(I (gk(z)), t − σk(I (z))) for t ∈
(σk(I (z)), σk+1(I (z))], k ≥ 0, is a viable periodic solution to problem (2.2) starting from z.

In particular, each fixed point of g generates a periodic viable trajectory in K . This moti-
vates us to construct a fixed point index type topological tool detecting fixed points of g.

Let V be an arbitrary open subset of K−. Let us define

UV := intK−(I−1(K ) ∩ V ) ⊂ V, (2.4)

and assume that

Fix g ∩UV is a compact set.

We define an impulsive index of π on V as

indK (π, I, V ) := ind(g,UV ), (2.5)

where ind(g,UV ) is a fixed point index for compact maps on ANRs (see [16]).
Below we show the following main properties of the impulsive index.

Theorem 2.1 (Existence) If indK (π, I, V ) �= 0, then there exists a viable periodic solution
to (1.1) reaching the set V .

Theorem 2.2 (Additivity)Let K− ⊃ V = V1∪V2, Vi open and V1∩V2 = ∅. If Fi x g∩(UV )

is a compact set, then

indK (π, I, V ) = indK (π, I, V1) + indK (π, I, V2).

Theorem 2.3 (Homotopy I) Let πλ, λ ∈ [0, 1], be a continuous family of semiflows, i.e.
the map R

n × [0,∞) × [0, 1] � (x, t, λ) �→ πλ(x, t) is continuous. Assume that, for every
λ ∈ [0, 1], the exit set K−

λ for πλ is a closed ANR, there are retractions rλ : K → K−
λ

along trajectories, i.e., rλ(x) = πλ(x, τK (x)), and M ⊂ K−
λ satisfies M = clK−

λ
(intK−

λ
M).

Moreover, assume that X = ⋃
λ∈[0,1] K

−
λ ∈ AN R, and the set

⋃
λ∈[0,1] rλ(I (M) ∩ K ) is

relatively compact in X.
Let V ⊂ ⋂

λ∈[0,1] K
−
λ be open in every K−

λ , and such that UVλ0
is an open subset of X

for some λ0 ∈ [0, 1], and Fix gλ ∩UVλ is compact, where gλ := rλ ◦ I : MI → K−
λ .

Then the numbers indK (πλ, I, V ) are well defined, and

indK (π0, I, V ) = indK (π1, I, V ).

Theorem 2.4 (Homotopy II) Let πλ, λ ∈ [0, 1], be a continuous family of semiflows, and
assume that, for every λ ∈ [0, 1], the exit set K−

λ for πλ is a closed ANR, there are retractions
rλ : K → K−

λ along trajectories, impulse sets Mλ ⊂ K−
λ satisfying Mλ = clK−

λ
(intK−

λ
Mλ),
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Fig. 1 A system with
V ∩ M = ∅

K

M

V

K−

I(M)

Fig. 2 A system with
I (M) ∩ K = ∅

K

M

K−

I(M)

and impulse functions Iλ → R
n. Moreover, assume that, for every pair 0 ≤ a ≤ b ≤ 1, the

set Xb
a = ⋃

λ∈[a,b] K
−
λ is an ANR, and the set

⋃
λ∈[a,b] rλ(Iλ(Mλ)∩K ) is relatively compact

in Xb
a .

Let Vλ ⊂ K−
λ be such that

⋃
λ∈[0,1] UVλ × {λ} is an open subset of X1

0 , and such that

F := ⋃
λ∈[0,1]

(
(Fix gλ ∩UVλ ) × {λ}) is compact, where gλ := rλ ◦ Iλ : MI

λ → K−
λ and

M I
λ := I−1

λ (Iλ(Mλ) ∩ K ). Then

indK (π0, I0, V0) = indK (π1, I1, V1).

Before proofs, let us comment some of assumptions in the above theorems.

Remark 2.5 If Fix g ∩ ∂K−(UV ) = ∅ in (2.5) and Theorem 2.1, then Fix g ∩ UV is a
compact set. Indeed, it follows from the continuity of g and compactness of the impulse
map in the following way. We have I (MI ) ⊂ K , K is closed in R

n , and cl(I (M)) is com-
pact. Hence, cl(I (MI )) ⊂ K is also compact. Now, cl(r(I (MI ))) ⊂ cl(r(cl(I (MI )))) =
r(cl(I (MI ))) ⊂ K−, and r(cl(I (MI ))) is compact because r is continuous.

If I (V ∩ M) ⊂ K in Theorem 2.1, then UV = intK−(I−1(K ∩ V ) = intK−(V ∩ M),
and

indK (π, I, V ) = ind(g, intK−(V ∩ M)).

In particular, if V ⊂ M is an open subset of K−, then

indK (π, I, V ) = ind(g, V ),

as in paper [14].
If V ∩ M = ∅ (see Fig. 1) or I (M) ∩ K = ∅ (see Fig. 2), then UV = ∅, and we trivially

obtain indK (π, I, V ) = 0.
The assumption M ⊂ ⋂

λ∈[0,1] K
−
λ in Theorem 2.3 is sensible. One knows that

K λ⇒ := {x ∈ ∂K ; fλ(x) /∈ TK (x)} ⊂ K−
λ ⊂ clK λ⇒,
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if semiflows are generated by equations ẋ = fλ(x) ([7], Lemma 5.1). Assume that M ⊂
{x ∈ ∂K ; fλ0(x) /∈ TK (x)} and ( fλ) is a continuous family of maps. Then, for λ sufficiently
near λ0, M ⊂ {x ∈ ∂K ; fλ(x) /∈ TK (x)} ⊂ K−

λ .
The existence of a family of retractions rλ in Theorem 2.3 is also natural. Indeed, if K is

bounded and πλ0 does not have a viable trajectory in K for some λ0 ∈ [0, 1], then πλ does
not have a viable trajectory in K for λ sufficiently close to λ0. To check this, let us assume,
by contrary, that there is a sequence λn → λ0 and a viable trajectory πλn (·, xn) in K for
every n ≥ 1. By the compactness of K we can assume, without any loss of generality, that
xn → x ∈ K . From the continuity of a family of semiflows it follows that πλ0(·, x) is viable
in K ; a contradiction.

Observe that in Theorem 2.4 we have a family of maps gλ with possibly different domains
and codomains, and, in fact, we consider an otopy introduced in [4] in the context of vector
fields on manifolds.

Proof of Theorem 2.1. It is sufficient to notice that 0 �= indK (π, I, V ) = ind(g,UV ) implies
Fix g ∩ UV �= ∅ so, there is a point p ∈ UV ⊂ V with r(I (p)) = p. This means that a
solution of (1.1) starting from I (p) is viable in K and periodic, and touches the barrier in
p ∈ V . ��
Proof of Theorem 2.2. Notice that

UV = intK−(I−1(K ) ∩ V )

= intK−(I−1(K ) ∩ (V1 ∪ V2))

= intK−([I−1(K ) ∩ V1] ∪ [I−1(K ) ∩ V2]
Denote A := I−1(K )∩V1 and B = I−1(K )∩V2.We are going to check thatUV = UV1∪UV2 ,
i.e., intK−(A ∪ B) = intK− A ∪ intK− B. Of course, ‘⊃’ is always true. It is sufficient to
prove that each open set contained in A ∪ B can be represented as a sum of open subsets in
A and B, respectively.

LetW be an open subset of K− contained in A∪ B = I−1(K )∩V . DefineW1 := W ∩ A
and W2 := W ∩ B. Since W1 ⊂ V1 and V1 is open in K−, for an arbitrary x ∈ W1 there
exists r0 > 0 such that B(x, r0) ⊂ V1, where B(x, r0) is an open ball in K−. The set
W is open so there is 0 < r ≤ r0 such that B(x, r) ⊂ W ⊂ I−1(K ) ∩ V . Therefore,
B(x, r) ⊂ V1 ∩ I−1(K ) = A. Similarly we check that W2 is an open set contained in B.

Now, from the assumption it follows that Fix g∩ (UV1 ∪UV2) is a compact set. Moreover,
UV1 ∪ UV2 = ∅ so Fix g ∩ UVi is also compact for i = 1, 2. By the additivity property of
the fixed point index on ANRs we obtain

indK (π, I, V ) = ind(g,UV ) = ind(g,UV1) + ind(g,UV2)

= indK (π, I, V1) + indK (π, I, V2).

��
Proof of Theorem 2.3. At first we prove that UVλ = UVλ0

for every λ ∈ [0, 1]. To do this

we take any open set W ⊂ K−
λ contained in I−1(K ) ∩ V . Let λ′ ∈ [0, 1] be arbitrary.

Since V is open in K−
λ and in K−

λ′ , there is r0 > 0 such that for every 0 < r ≤ r0 we
have BK−

λ
(x, r) ∪ BK−

λ′ (x, r) ⊂ V , and consequently, BV (x, r) = BK−
λ
(x, r) = BK−

λ′ (x, r),

where these balls are in spaces V, K−
λ , K−

λ′ , respectively. But W is open in K−
λ so there is

0 < δ ≤ r0 such that BK−
λ
(x, δ) ⊂ W which implies that BK−

λ′ (x, δ) = BK−
λ
(x, δ) ⊂ W .

Hence, W is open in K−
λ′ .
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Consider the maps gλ as gλ : MI → X , i.e., with a codomain X . By the assumption, the
set UVλ0

is open in X . Therefore, we have a homotopy gλ : UVλ0
→ X . Now, we use the

contraction and homotopy properties of the fixed point index on ANRs to obtain

indK (π0, I, V ) = ind(g0,UVλ0
) = indX (g0,UVλ0

)

= indX (g1,UVλ0
) = indK (π1, I, V ),

where, to distinguish, indX stands for the fixed point index on the ANR X . ��
Remark 2.6 It is not obvious that UVλ0

, which is open in every K−
λ , is open in X , simulta-

neously. Some sufficient conditions for this property are presented in a separate section (see
Sect. 3).

Proof of Theorem 2.4. We show that the index indK (πλ, Iλ, Vλ) is locally constant, i.e., for
every λ0 ∈ [0, 1] there exists δ > 0 such that indK (πλ, Iλ, Vλ) = indK (πλ0 , Iλ0 , Vλ0) for
each λ ∈ (λ0 − δ, λ0 + δ) ∩ [0, 1].

Fix anyλ0 ∈ [0, 1]. From the assumption on the set F it follows that Fλ0 := Fix gλ0∩UVλ0
is a compact set as an image of F by the projection p : ∂K ×[0, 1] → ∂K , p(x, λ) = x . For
every point x ∈ Fλ0 there exists r(x) > 0 such that BX (x, r(x)) × (λ0 − r(x), λ0 + r(x)) ⊂
⋃

λ∈[0,1] UVλ ×{λ}. Hence, we can take a finite covering {BX (xk, r(xk))× (λ0 − r(xk), λ0 +
r(xk))}mk=1 of Fλ0 × {λ0}, and its Lebesgue number l. Then, denoting Iλ0 := (λ0 − l, λ0 +
l) ∩ [0, 1], we obtain

Fλ0 × {λ0} ⊂
⋃

x∈Fλ0

(BX (x, l) × Iλ0) =
⎛

⎝
⋃

x∈Fλ0

BX (x, l)

⎞

⎠ × Iλ0 ⊂
⋃

λ∈Iλ0
(UVλ × {λ}).

Denote U := ⋃
x∈Fλ0

BX (x, l). Then U ⊂ UVλ for every λ ∈ Iλ0 , and all assumptions

of Theorem 2.3 are satisfied with V := U and X := Xb
a , a := max{λ0 − l, 0}, b :=

min{λ0 + l, 1}. Hence, for every λ ∈ Iλ0 ,

indK (πλ, Iλ, Vλ) = ind(gλ,UVλ ) = ind(gλ,U ) = const.

By the compactness of [0, 1] we get indK (π0, I0, V0) = indK (π1, I1, V1). ��

3 Sufficient conditions for the homotopy property

As noted in Remark 2.6, conditions which are sufficient for the homotopy property (see
Theorem 2.3) need a deeper study. We start with a rather obvious observation:

Remark 3.1 If U is an open subset of each Ai , i ∈ {1, . . . ,m}, then U is open in X :=
⋃m

i=1 Ai .
Indeed, in a simple proof for every x ∈ U and i ∈ {1, . . . ,m} we find ri > 0 such that

U ⊃ BAi (x, ri ) = BX (x, ri ) ∩ Ai . Taking r := min{r1, . . . , rm} we immediately obtain

BX (x, r) =
m⋃

i=1

(BX (x, r) ∩ Ai ) =
⋃

BAi (x, r) ⊂ U,

which means that U is open in X .
It is easily seen that the above arguments fail in the case of infinitely many sets Ai .
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Below we present several results which give, aside from the main aim of the section,
interesting properties of exit sets.

Proposition 3.2 If ( fλ), λ ∈ [0, 1], is a continuous family of vector fields in R
n generating,

via equations ẋ = fλ(x), a continuous family of semiflows πλ, and K is a closed subset of
R
n with compact exit sets K−

λ , then the map φ− : [0, 1] � R
n, φ−(λ) = K−

λ is lsc (lower
semicontinuous).

Proof Suppose that φ− is not lsc. Then there are λ0 ∈ [0, 1] and ε > 0 such that for every
δ > 0 we can find λ ∈ [0, 1] with |λ − λ0| < δ and K−

λ0
�⊂ Nε(K

−
λ ), where Nε(·) denotes

an ε-neighborhood of a set. Taking δ = 1
m , m ≥ 1, we obtain, for every m ≥ 1, a number

λm ∈ (λ0 − 1
m , λ0 + 1

m ) ∩ [0, 1] and a point xm ∈ K−
λ0

such that dist (xm, K−
λm

) ≥ ε.
By the compactness of Kλ0 we obtain, up to subsequence, that xm → x0 for some

x0 ∈ K−
λ0
. Consider a family of Cauchy problems

{
ẋ = fλm (x),
x(0) = x0

(3.1)

with solutions ym defined on a common interval [0, T ], T > 0. From the convergence
λm → λ0 it follows that ym → y, where y is a solution to

{
ẋ = fλ0(x),
x(0) = x0.

(3.2)

We know that, for every η > 0, there is a positive time s ∈ (0, ρ) with y(s) /∈ K . Take s
such that |x0 − y(t)| < ε

3 for every t ∈ [0, s]. By the convergence ym → y and closedness
of the set K we get that ym(s) /∈ K for sufficiently big m ≥ 1. It implies that ym(sm) ∈ K−

λm
for some sm ∈ [0, s).

We can assume that m is so big that |ym(t) − y(t)| < ε
3 for every t ∈ [0, s]. Then

|ym(sm) − xm | ≤ |ym(sm) − y(sm)| + |y(sm) − x0| + |x0 − xm | < ε,

which contradicts the inequality dist (xm, K−
λm

) ≥ ε. ��
Under some regularity assumptions on the set K one obtains the following

Proposition 3.3 Assume that K ⊂ R
n is a closed C1-manifold with a boundary ∂K, ( fλ)

is as in Proposition 3.2, and int∂K K−
λ = K λ⇒ for every λ ∈ [0, 1] (see Remark 2.5.4). Then

the map φ+ : [0, 1] � R
n, φ+(λ) = cl(∂K\K−

λ ) has a closed graph.

Proof Assume that [0, 1] � λm → λ and ym → y, where ym ∈ cl(∂K\K−
λm

). Take a

sequence (xm) such that xm ∈ ∂K\K−
λm

and |xm − ym | < 1
n , for every n ≥ 1. Then,

obviously, xm → y. We shall show that y ∈ cl(∂K\K−
λ0

).

Suppose it is not true. Then y ∈ int∂K K−
λ0

which implies, by the assumption, that
〈n(y), fλ0(y)〉 =: d > 0, where n(y) stands for the outer normal vector to K in y. Using the
continuity of the family ( fλ), the map n(·) and an inner product, we get, for m big enough,

〈n(xm), fλm (xm)〉 = 〈n(xm) − n(y), fλm (xm)〉 + 〈u(y), fλ0(y)〉
+〈u(y), fλm (xm) − fλ0(y)〉

≥ −|n(xm) − n(y)|(| fλ0(y)| + 1) + d − |n(y)|| fλm (xm) − fλ0(y)|.
It implies that 〈n(xm), fλm (xm)〉 > 0 for sufficiently big m. Hence, xm ∈ K−

λm
; a contradic-

tion. ��

123



Viable periodic solutions in state-dependent impulsive problems 359

We use Propositions 3.2 and 3.3 to prove:

Proposition 3.4 Let assumptions of Proposition 3.3 be satisfied with compact exit sets K−
λ .

Assume that U ⊂ int∂K K−
λ0

is open in K−
λ0
. Then

∀x ∈ U ∃r > 0 ∃δ > 0 ∀λ ∈ (λ0 − δ, λ0 + δ) ∩ [0, 1] : dist (x, ∂∂K K−
λ ) > r.

Proof Suppose that for some x ∈ U we have

∀r > 0 ∀δ > 0 ∃λ ∈ (λ0 − δ, λ0 + δ) ∩ [0, 1] : dist (x, ∂∂K K−
λ ) ≤ r.

Take r = 1
m and δ = 1

m . Then, for every m ≥ 1, we can find λm ∈ (λ0 − 1
m , λ0 + 1

m ) ∩
[0, 1] such that dist (x, , ∂∂K K−

λm
) ≤ 1

m which implies that there exists xm ∈ ∂∂K K−
λm

with

|x − xm | ≤ 1
m .

From Proposition 3.2 it follows that for every m ≥ 1 there exists η > 0 such that
K−

λ0
⊂ N 1

m
(K−

λ ) for each λ ∈ [0, 1] with |λ − λ0| < η. Therefore, we can assume that

K−
λ0

⊂ N 1
m
(K−

λm
). By Proposition 3.3 the map φ+ : [0, 1] � R

n , φ+(λ) = cl(∂K\K−
λ ) has

a closed graph. Hence, since λm → λ0, xm → x and xm ∈ ∂∂K K−
λm

⊂ cl(∂K\K−
λm

), we

obtain that x ∈ cl(∂K\K−
λ0

). But we know that x ∈ K−
λ0
, so x ∈ ∂∂K K−

λ0
which contradicts

the assumption that x ∈ U ⊂ int∂K K−
λ0
. ��

Assumptions of Proposition 3.4 are sufficient for one of the main proof arguments in the
homotopy property of the impulsive index (see Remark 2.6) as we can see in the following:

Proposition 3.5 Under assumptions of Proposition 3.4 every set U ⊂ int∂K K−
λ0
, which is

open in K−
λ0

and contained in each K−
λ , is also open in X = ⋃

λ∈[0,1] K
−
λ .

Proof It is easy to see that U is open in ∂K . Moreover, U ⊂ X ⊂ ∂K . This completes the
proof. ��

Open problem. Is the following property true?

If ( fλ), λ ∈ [0, 1], is a continuous family of vector fields inRn generating a continuous
family of semiflows πλ, and K is a closed subset of Rn with compact exit sets K−

λ ,
then the map φ+ : [0, 1] � R

n , φ+(λ) = cl(∂K\K−
λ ) has a closed graph.

In other words, is Proposition 3.3 true without C1-regularity of the set and an additional
assumption int∂K K−

λ = K λ⇒ on the exit set?

4 Computation of the index via Poincaré-type maps

In the section we briefly remind the technique of computation of the fixed point index
ind(gλ,U ) and, consequently, the impulsive index indK (π, I, V ), proposed firstly in [14].
The idea is partially based on the Poincaré map and Poincaré section technique used in the
study of periodic trajectories of ordinary smooth flows.

Let K be a closed subset of Rn , and we are given a problem (1.1) with the differential
equation generating a closed exit set K− which is a strong deformation retract of K via the
homotopy along trajectories (see Sect. 2). Let M ⊂ K− be a barrier, and V ⊂ K− be any
subset open in K−.
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In what follows we assume that the vector field f : Rn → R
n and the impulse function

I : M → R
n are of classC1, at least. Let p ∈ M∩V be a fixed point of g = r I : MI → K−.

Denote q := I (p) ∈ K and the time T := τK (q). Obviously, p = π(q, T ), where π is a flow
generated by f . We shall also use the assumption that M is a level set {x ∈ R

n | γ (x) = 0}
for some smooth function γ : Rn → R.

Finally assume that p ∈ ∫

∂K (M ∩ V ), the vector f (p) is transversal to ∂K , and f (q) is
transversal to I (M). Then, for some N ⊂ M ∩ V with p ∈ intK−N there exists a δ > 0
such that for every y ∈ {π(x, t) | x ∈ N , |t | < δ} one can find a unique δ(y) ∈ (−δ, δ) with
π(y, δ(y)) ∈ N . Such a neighborhood N is a Poincaré section for π .

Under the above assumptions we can check that the exit time function τK is smooth
in a neighborhood of q . Without any loss of generality we can assume that I (N ) is this
neighborhood. Since g(x) = π(I (x), τK (I (x))), we get

gx (x) = πx (I (x), τK (I (x)))Ix (x) + πt (I (x), τK (I (x)))(τK )x (I (x))Ix (x), (4.1)

where, e.g., gx (x) stands for the state variable derivative of g. Remind that (one easily checks
it) t �→ f (π(q, t)) is a solution on [0, T ] to the linear differential equation ẏ = fx (π(q, t))y
with an initial condition y(0) = f (q). It is seen that y(T ) = f (p). We know also that
t �→ πx (q, t) is a fundamental matrix solution to the equation Ẏ = fx (π(q, t))Y with
Y (0) = πx (q, 0). Hence, we get

Y (T ) f (q) = πx (q, T ) f (q) = f (π(q, T )) = f (p).

Now we choose in R
n two bases B1 := { f (p), a2, . . . , an} and B2 := { f (q), b2, . . . , bn}

such that ai are parallel to M at p (they form a basis in a tangent space to M at p) and bi are
parallel to I (M) at q . We consider a linear map πx (q, T ) in bases B2 and B1 obtaining the
matrix

πx (q, T ) =
[
1 A
0 B

]

, where A ∈ M1×(n−1) and B ∈ M(n−1)×(n−1).

Ifw ∈ R
n is parallel to M at p, then it has the formw =

[
0

wM

]

. Moreover, Ix (p)

[
0

wM

]

=
[

0
wI M

]

, where

[
0

wI M

]

is a vector parallel to I (M) at q .

Now, using (4.1) we can compute a derivative of a Poincaré map. Letw be a vector parallel
to M at p. Then

Dg(p)w = πx (q, T )Ix (p)

[
0

wM

]

+ πt (q, T )(τK )x (q)Ix (p)

[
0

wM

]

= πx (q, T )

[
0

wI M

]

+ f (p)(τK )x (q)

[
0

wI M

]

=
[
AwI M

BwI M

]

+
[
c
0

]

,

for some c ∈ R. Since g maps M into K−( f ), we obtain in the basis B1

Dg(p)w =
[

0
BwI M

]

=
[
0 0
0 B · Tp I

]

w,

where Tp I : TpM → Tq I (M) is the derivative of I treated as a map between manifolds.
This is a very good information because in a computation of the degree one uses eigenvalues
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Fig. 3 Illustration to Example 4.1

of the derivative. Here, eigenvalues of Dg(p) correspond to those of the matrix B · Tp I ∈
M(n−1)×(n−1).

Taking a sufficiently small neighborhood U of p we obtain

ind(g, p) := ind(g,U ) = deg(i − g,U ) = (−1)β,

where β is the sum of the multiplicities of the negative real eigenvalues of idTpM − B · Tp I .
To illustrate how the above technique works in practice we present an example which is

a modification of Example 4.1 in [14].

Example 4.1 We have a system of equations

{
ẋ = 1
ẏ = y

generating a global flow π((x, y), t) = (x + t, yet ) on R
2. For the set of constraints K :=

[−1, 4] × [−3/2, 2] we obtain the exit set K− = K1 ∪ K2 ∪ K3, where Ki are the faces
x = 4, y = 2 and y = −3/2 of K , respectively (see Fig. 3). Let M := {(4, y) | y ∈
[−3/2, 2]} = clK−{(4, y) | y ∈ (−3/2, 2)} and I : M → R

n be an impulse function given
by I (x, y) := (y, y(y−1)). For simplicity, take V = {(4, y) | y ∈ (−3/2, 2)}which is open
in K−.

It is easy to check that MI = I−1(I (M) ∩ K ) = {(4, y) | y ∈ [−1, 2]} and UV =
intK−(I−1(I (V ∩ M) ∩ K ) ∩ V ) = {(4, y) | y ∈ (−1, 2)}.

Since g(4,−1) = I (4,−1) = (−1, 2) ∈ K− and g(4, 2) = I (4, 2) = (2, 2) ∈ K−, we
have ind(g,UV ) = 0. On the other hand, it is evident that p := (4, 0) is a fixed point of
g with q := I (p) = (0, 0). Now, as in [14], we take two bases B1 := {(1, 0), (0, 1)} and
B2 := {(1, 0), (1,−1)} of R2, and notice that πx (q, T ) =

[
1 1
0 −eT

]

in bases B2 and B1,

i.e., πx (q, T ) : (R2,B2) → (R2,B1), where T = τK (q) = 4.
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Since DI (p) =
[
0 0
0 1

]

in bases B1 and B2, for any vector w =
[
0
v

]

parallel to M we

get

Dg(p)(w) = Dg(p)

[
0
v

]

=
[
0
−eT v

]

=
[
0 0
0 −eT

] [
0
v

]

.

This implies that ind(g, p) := ind(g,W ) = deg(i − g,W ) = sgn(1 + eT ) = 1 for some
small neighborhood W of p in UV . From the additivity property of the fixed point index
we obtain ind(g,UV \clK−( f )W ) = ind(g,UV ) − ind(g,W ) = −1 �= 0 which implies the
existence of another periodic trajectory.

5 Concluding remarks

We start the section with a discussion on a possible alternative definition of the impulsive
index. Instead of conditions (A1)–(A4) from Sect. 2 we assume

(Z1) ∂K is a closed ANR, and the exit set K− is closed,
(Z2) M = cl∂K (int∂K M),
(Z3) I is a compact map, i.e. I (M) is relatively compact,
(Z4) dist (I (M), M) > 0.

As before, we assume (2.1) with the retraction r : K → K−, r(x) = π(x, τK (x)). Define
MI := I−1(K ) and g : MI → ∂K , g(x) := r(I (x)) for x ∈ MI . Notice that a codomain
is different from the one in (2.3). Of course, g(MI ) ⊂ K−.

Let V be an arbitrary open subset of ∂K . We define

UV := int∂K (I−1(K ) ∩ V ) ⊂ V, (5.1)

and assume that

Fix g ∩UV is a compact set.

Now we put
ind′

K (π, I, V ) := ind(g,UV ), (5.2)

where ind(g,UV ) is a fixed point index in an ANR ∂K , not in K−.
This index has standard properties (see Sect. 2) with the homotopy property under easier

assumptions. We give, for instance, an analogue to Theorem 2.3 as the following

Theorem 5.1 (Homotopy I) Let πλ, λ ∈ [0, 1], be a continuous family of semiflows.
Assume that, for every λ ∈ [0, 1], the exit set K−

λ for πλ is closed, there are retractions
rλ : K → K−

λ , rλ(x) = πλ(x, τK (x)), and M = cl∂K (int∂K M). Moreover, assume that the
set

⋃
λ∈[0,1] rλ(I (M) ∩ K ) is relatively compact.

Let V be an open subset of ∂K, and Fix gλ ∩UVλ is compact.
Then the numbers ind′

K (πλ, I, V ) are well defined, and

ind′
K (π0, I, V ) = ind′

K (π1, I, V ).

Proof Notice that UVλ = int∂K (I−1(K ) ∩ V ) = UV0 is independent of the choice of λ. So,
we have a homotopy gλ : UV0 → ∂K with assumptions allowing to apply the homotopy
property of the index on ANRs. This finishes the proof. ��
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Fig. 4 indK (π, I, V ) = 1 for
V = M = K−

K

M = K−

V = M

I(M)

Fig. 5 ind′
K (π, I, V0) is not

defined
K

M = K−

V0 = int∂KM
I(M)

Fig. 6 indK (π, I, V1) =
ind′

K (π, I, V1) = −1 and
indK (π, I, V ) = 1 K

M = K−

V1

V = M

I(M)

Onewould think that the index ind′
K is better because it simplifies considerations.However,

it does not cover some important cases. Indeed, the set V cannot be equal to K− since K−
is closed and usually not open in ∂K . The following concrete example shows the difference
between the results obtained by the use of indK and ind′

K .

Example 5.2 Let K be a rectangle in R
2, for instance K = [0, 3]× [0, 2] and π is generated

by the equation (ẋ, ẏ) = (g(t), 0) with g(t) > 0. Then, obviously, K− = {3} × [0, 2]. Put
M = K−, see Figs. 4, 5, 6 and 7.

At first, assume that I (x, y) := (1, y) and V = M = K− which is allowed in Sect. 2
(Fig. 4). Then UV = K− and indK (π, I, V ) = ind(id, K−) = χ(K−) = 1, where χ(K−)

is the Euler characteristic of the set K− (equal to the Lefschetz number of id).
Notice that, for every open subset V0 of ∂K , the set UV0 constructed in (5.1), even the

largest one, is not equal to K−. It implies that the index ind′
K (π, I, V0) for no V0 (see Fig. 5)

is well defined, because Fix id ∩UV0 = UV0 is not compact.
Now, let M, V, V0 be as above, and I (x, y) := (1, 3

√
y − 1 + 1). Consider V1 := {3} ×

(1/2, 3/2) (see Figs. 6, 7). Since UV1 = V1 in both approaches [see (2.4) and (5.1)], and
g(3, y) = (3, 3

√
y − 1 + 1), we easily obtain indK (π, I, V1) = ind′

K (π, I, V1) = −1 and
indK (π, I, V ) = 1, while ind′

K (π, I, V0) = −1.

Our final remarks concerns possible generalizations of the impulsive index. One knows
that a differential inclusion ẋ ∈ F(x) taken instead of ẋ = f (x) in (1.1), where F is
upper semicontinuous (usc) convex compact valued with a sublinear growth, generates a
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Fig. 7 indK (π, I, V0) =
ind′

K (π, I, V0) = −1
K

M = K−

V1

V0 = int∂KM
I(M)

multivalued dynamical system. Moreover, the solution map R
n � x0 � SF (x0), where

SF (x0) ∈ C([0,∞),Rn) is a solution set for the Cauchy problem with x(0) = x0, is usc
with compact Rδ-values. Under suitable assumptions on the set of constraints K and an exit
set, one can obtain results on the existence of viable and stationary trajectories (see, e.g.,
[12,13]). If we suppose that there is no viable solution in K , it is sensible to assume that
there exists a multivalued retraction � of K onto Ke(F), where

Ke(F) := {x0 ∈ ∂K | ∃x ∈ SF (x0) : x leaves K immediately}

is a bigger exit set (see [14], or [12] where a discussion on two exit sets K−(F) and Ke(F)

is presented). Now, if I : M � R
n is a multivalued impulse map, then the construction

of the fixed point index of the composition � ◦ I is still possible under suitable geometric
assumptions on Ke(F) and regularity assumptions on I . In particular, if Ke(F) is a compact
ANR and I is usc with Rδ-values, then the index proposed in [2] could be used (see also [15]
for other versions of the index). Details of the construction and properties of the impulsive
index for multivalued flows and jumps we leave for further considerations.
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